Tải bản đầy đủ (.doc) (4 trang)

Học kỳ I: Toán 10,12 (08-09)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (86.29 KB, 4 trang )

Trường THPT Hoàng Long Thi hết học kì I


(Đề I)
*******************
MÔN TOÁN LỚP 12
(Thời gian làm bài 90’)
Bài 1. Cho hàm số
3 2
3 1y x x= − −
(C).
a) Khảo sát và vẽ đồ thị của (C).
b) Hãy viết phương trình tiếp tuyến của (C) tại điểm uốn của nó.
c) Viết phương trình tiếp tuyến của (C) biết rằng nó đi qua gốc tọa độ.
d) Tìm giá trị lớn nhất, nhỏ nhất của y trên đoạn [-1; 3].
Bài 2. Giải các phương trình sau:
a)
8 18 2.27
x x x
+ =
,
b)
3 2
log 2log 2 log .x x x− + = −
Bài 3.
a) Cho
2
log 20,
α
=
hãy tính


4
log 40
theo
α
.
b) So sánh các số sau: log
5
0,1 và log
0,7
0,5.
Bài 4. Cho tam giác cân ABC, cân tại A, có cạnh bên dài 8cm, cạnh đáy dài
4cm. Tính diện tích xung quanh và thể tích hình nón tạo bởi khi cho tam
giác quay quanh chiều cao hạ từ đỉnh A.
-Hết-
(Học sinh không được dùng tài liệu)
Trường THPT Hoàng Long Thi hết học kỳ I
Đề II
******************
MÔN TOÁN LỚP 12
(Thời gian làm bài 90’)
Bài 1. Cho hàm số
3 2
3 1y x x= − + +
(C).
e) Khảo sát và vẽ đồ thị của (C).
f) Hãy viết phương trình tiếp tuyến của (C) tại điểm uốn của nó.
g) Viết phương trình tiếp tuyến của (C) biết rằng nó đi qua gốc tọa độ.
h) Tìm giá trị lớn nhất, nhỏ nhất của y trên đoạn [-2; 2].
Bài 2. Giải các phương trình sau:
a)

27 48 2.64
x x x
+ =
,
b)
3 2
ln 2ln 2 ln .x x x− + = −
Bài 3.
c) Cho
2
log 20,
α
=
hãy tính
8
log 80
theo
α
.
d) So sánh các số sau: log
8
0,1 và log
0,7
0,9.
Bài 4. Cho tam giác cân ABC, cân tại A, có cạnh bên dài 16cm, cạnh đáy dài
8cm. Tính diện tích xung quanh và thể tích hình nón tạo bởi khi cho tam
giác quay quanh chiều cao hạ từ đỉnh A.
-Hết-
(Học sinh không được dùng tài liệu)
Trường THPT Hoàng Long Thi hết học kỳ I


Đề I
*******************
MÔN TOÁN LỚP 10
(Thời gian làm bài 90’)
Bài 1.
a) Hãy cho ví dụ về 5 mệnh đề, và chỉ ra sự đúng sai của 5 mệnh đề
vừa cho.
b) Tìm mệnh đề phủ định của các mệnh đề sau, và chỉ ra tính đúng sai
của các mệnh đề đó:
2
P " R, 2",x x= ∀ ∈ >

Q =
“ Cái bàn là cái ghế ”.
Bài 2.
a) Hãy vẽ đồ thị của hàm số
2 4y x= +
.
b) Tìm a, b biết rằng đồ thị của hàm số
y ax b= +
đi qua các điểm
A(1,2) và B(-1,3).
Bài 3. Cho hai vector
(1;3), ( 2,1)u v −
r r
, tìm tọa độ của các vector sau:
a)
3 5 ,a u v= −
r r r

b)
2 3 5 .b u v a= + −
r
r r r
Bài 4. Cho tam giác ABC, có A(1,2), B(3,4), C(8,3). Hãy tìm tọa độ trung
điểm M của AB, và tọa độ trọng tâm G của tam giác ABC.
Bài 5. Giải các phương trình sau:
a)
2 3 2x x− = −
,
b)
2
(3 1)( 4 3) 0.x x x− − + =
-Hết-
(Học sinh không được dùng tài liệu)
Trường THPT Hoàng Long Thi hết học kỳ I
Đề II
************************
MÔN TOÁN LỚP 10
(Thời gian làm bài 90’)
Bài 1.
a) Hãy cho ví dụ về 5 mệnh đề, và chỉ ra sự đúng sai của 5 mệnh đề vừa
cho.
b) Tìm mệnh đề phủ định của các mệnh đề sau, và chỉ ra tính đúng sai
của các mệnh đề đó:
2
P " R, 0",x x= ∃ ∈ <

Q =
“ Trái đất quay quanh mặt trời”.

Bài 2.
a) Hãy vẽ đồ thị của hàm số
2 4y x= − +
.
b) Tìm a, b biết rằng đồ thị của hàm số
y ax b= +
đi qua các điểm
A(3,2) và B(-1,6).
Bài 3. Cho hai vector
(1;3), ( 2,1)u v −
r r
, tìm tọa độ của các vector sau:
a)
2 7 ,a u v= −
r r r
b)
4 2 3 .b u v a= + −
r
r r r
Bài 4. Cho tam giác ABC, có A(7,6), B(3,4), C(8,3). Hãy tìm tọa độ trung
điểm M của AB, và tọa độ trọng tâm G của tam giác ABC.
Bài 5. Giải các phương trình sau:
a)
4 3 2x x− = −
,
b)
2
(2 5)( 6 9) 0.x x x− − + =
-Hết-
(Học sinh không được dùng tài liệu)

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×