Tải bản đầy đủ (.doc) (3 trang)

DỮ LIỆU NGUYÊN HÀM- TÍCH PHÂN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (68.02 KB, 3 trang )

( )( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( ) ( )
( )
( )
( )
( )
( )
( )
( )

sin
dcos

41
dx2

4e
dxe

1
dxx


4x
dxx

xdx

1x
xdx

94
dx
92x
dx

9x1
dx

4
dx

251
dx

3
x
1
3
x
d

)(sin cos

lnx

ln
dx
cos1
sin2x
)12(cot 3 cot
dxe

1
dxe
1x
dxx

x1
xdx

c
dx

12
dx

83x
3)dx-(2x

x1
)xd(1
)sin(
4

π
2cos )21cos( )32cos( )2cosα(cos 3cos
ln1cos
xln1d
)3(3cos
1cos
dx

ln
2sincos
xsin
cosxdx
cossin
653x2
5)dx-(6x

1x
dxx

4x
dxx

1x
xdx
2 1 12 28 38
1)(c
a
dx

32

dx

1
x1d
1 )( )(sinsin
xsincos
dx

1x
dxx1

1x
dx2x1

2
sin cot

sincos
cos2x

cos2x1
cos1

2
3.22.3

3x-3
dx

1


x
1

1
532
x
x
11x )21( 4,3
2gh
dh

x2
dx
10
x
dx
x
222x
x
8
3
6
2
42
4
2
22
222
2

133sinsin
222
2
3
2
222
2
2
2
2
3
3 2
3
2
3
4
3
5
4
2
5 3222
3
5
6
5
2
2
15
3
22

2
22
2
222
22
2
2
4
3 2
3
3
2
2
38,08,02,1
3
23
17,0
2
n
32
∫∫∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫
∫∫∫∫∫
∫∫∫∫∫∫
∫∫∫∫∫∫
∫∫∫∫∫∫

∫∫∫∫∫∫
∫∫∫∫∫
∫∫∫∫
∫∫∫∫
∫∫∫∫∫∫∫
+

+

+

+

++
−−

+
+
++
++
−−
+−+
+













−−−−
+
+
+
+−+++
+−+
+
−−

+−
+
+
+
++
+
+
+
+
+−−
+−








−+
+−
+−+−

+−−

−−

α
αα
a
xxax
xx
dxxexdxe
dxedxedxexdexdxedx
xxx
dx
x
dxxgxdxtggxdxtgxdx
aee
mxx
x
dxee
dxxdxxdxxdxxxdx
x
xxd
tgxx
dx

x
x
xdxx
xdxx
x
dxxxdxxxdxxxdx
bxa
m
dxxdxx
bxx
x
dxxtgxxdtgxxd
xx
dx
x
xdxgxdxtg
dx
xx
dx
x
dxdx
x
xx
dx
x
x
dx
x
x
dz

z
z
dxxxx
dx
xex
dxxxdxudxx
dxeadxdxdxx
x
x
xx
xxxxx
m
x
x
x
x
xx
c
x
xx
x
xxx
m
( )
( )
( )
( )
( ) ( ) ( )( )
( )( )
dx

sinx-1
sinx1
dx
cosx1
cosx-1

sinx1
dx

cosx-1
dx
dxsin dxcos
962
dx
968
dx

34
dx

)3(2x-1
dx

544x
dx

5,2x
dx

32x

dx
41)-(x
dx

3x2
dx

94x
dx

107x
dx

103x
dx
dx
1x
1x

x-bx-a
dx
32x1x
dx

1xx
dx

1-xx
dx
dx

1x
x
dx
1
x
dx
1x
1x
dx
1x
x1
dx
12x
2x
dx
2x
1-2x
dx
3
x3
dx
bxa
Ax
dx
12x
x
dx
4x
x


1xx
dx
dx
)x-(1
x-x1
dx
x1
x-1x
dx
x1
x-1
dx
9x
1-3x
dx
x-1
x1
dx1e dx
e
1-e

22
2
222
222
222222
2
2
44
2

2
2
2
2
2
32
2
4
2
2
2
3
x
x
2x
∫∫∫∫∫∫∫
∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫∫
+
++
−−
−+−−+
++−−++
+−−+−−+−
+
−+++−+


+
+

+
−−
+
+++
−+
+
+++
+
+
xx
xx
xxxx
xxx
xx
x
x
( )
( )
( )
( )
( )
( )
dx
x

x
dx


1
dx

x
dx

ax
dx

11
dx
dx
1x
x
dx
1)x(x
x

x1
dx
dx
2-xx
1x

1xx
dx
dx
2)-(x
34x

)z 1 xÆt (§
1x1
dx
1-x
dxx
sinxdxex
x2
dxex
a
x1
dxx
coslnxdx sinlnxdx
sinnxdxe cos2x)dx-(sin2xe sinxdxe dx
x
xln
dx
x
xln
xdxln
xdxcosx sinxdxx dxax dxex dxex dx1xlnx
x1
dxx
x1
dxx
dx1xln dx
x
lnx
xdxxcos xdxxtg 1)(n lnxdxx dxx3
dxxe xcosxdx xsin2xdx
xsin

dx
xdxsin xdxsin xdxtg xdxtg
xdxcos
xcos
dx
d
cos
sin
dx
xsin
xcos
dx
cosx
xsin
dx
cosx
sinx1
os3xdxcosxcos2xc

cosx
dx
dxsin2xsin5x dxcos2xcos3x xcosxsin3xd
sinxcosx1
cos2xdx
dx
4
3
2
43333
3

2
3
x2
2
x2
22
2
2
axxx
5
2
2
3
2
223x2x3x-222
2
3
2
2
2
2
3
22nx
x-
6
4534
3
4
3
4

33
42
∫∫∫∫∫∫∫
∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫

+−−
++
++
+
+
+
+
+
+
=+
++
+
+

+
+
+
+≠


+
+
xx
xxxx
mb
x
dxx
xtgxtg
α
α
α

1

1

)4(

cossin
ln
2cos2sincos1
ln
ln1

1
)z 1 eÆt (§
1
2
2

4
2
2222
2
222
22
5
24x
4
2
∫∫∫∫∫∫
∫∫∫∫∫
−+
−++

+
+
+
=+
+
dx
x
x
dx
x
x
axx
dx
xa
dxx

axx
dx
x
dxx
dx
xx
tgx
xdxxxdx
xx
x
e
dx
dx
e
e
x
x
x
( )
( )
( )
( )
( )
( )
( )
( )

32x
x


2113

194
)52(

1865
)34(

132
)43(

269
)52(
1744
)13(

23
)3(

22
)2(

25
)118(

2912

269
25
cossin

21

42
)1(

1
)31(
cos
sin

cos
2cos

1
1

ln1
ln
ln3

cos

49
)12(

1
)32(

1


3

1
31
32
dxx3x-2 xdxxcos dxee-1
sin

dxe)e(1 2)1( dxxsin dxe
1
)1(

1
1
4
1

9

9

22
22
2
2
2
2
222
2
2

3
3
2
6
4
2
3
2
2
2
222
2
2
3
63
25
3
1
5
1
3
4
2xx
cos
3x23x2
3
x
2
2
22

3
22
222
6
3
2
3
22

∫∫∫∫∫∫
∫∫∫∫∫∫
∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫
∫∫∫∫∫∫∫
∫∫∫∫∫∫


+
+−++

++

+−

++
+
+−


−−

++
+
−+

−−+−
+−
++
++

+

+
+−

−−

+
+

+
+
−+










+++
+
+

+



+−

+


dx
bx
xa
dx
xx
xdx
xx
dxx
xx
dxx
xx
dxx
xx
dxx

xx
dxx
xx
dxx
xx
dxx
xx
dxx
xx
dx
xx
dx
xx
dx
dxbadxxxdxxax
x
xdx
x
xdx
x
xdx
x
dxx
dxxtgdx
x
x
dx
x
x
dx

x
xx
xx
xdx
xx
dx
dx
x
x
x
dxx
x
dxx
ee
dx
ee
dx
x
dxx
dx
xx
xx
dx
e
x
dx
x
e
dxxxx
xex

dxx
xx
dx
x
dx
x
x
dxxx
ax
dx
xx
dx
xx
dx
dx
x
x
xa
dx
nxmx
x
xxx
x
x
x

×