V¤n ð« 1:
1)Cho hai hàm s¯ y = f(x) và y = g(x)
!"#$%&'(')*'+
,
-
.
/01%23
456#7
89#:;9#:
'+<=")>?@ !"#$%&'+ ;
,
∩
.
/
?&AB#
C<1%2D5'+nghi®m s¯
E")>?@-5C5")>?@'+%5@<
$?&AB#
C<1%289#:;9#:/!"
*"S$?&AB#
'+!"*"51<E
")>?@
2) Xét hai phß½ng trình
89#:;9#:9,: !"51<S
,
9#:;9#:9.: !"51<S
.
/
5")>?@D5'+ tß½ng ðß½ng
F5G H!"51<7S
,
;S
.
)>?@9.:'+h® quäE")>
?@9,:6I!"51<S
,
⊂S
.
/
3) Các phép biªn ð±i tß½ng ðß½ng
:J"5C)K5L6HMN
H!"#$%&LK5")>?@
4:J"IOPL6-'QO4!49'R:-
''IST49'R:
:J"5L6HMN
F$FUL+ H!"#$%&LK5
")>?@
4) Phép biªn ð±i không tß½ng ðß½ng
:@")>59V:L6E")>
?5%)*")>?@1WIC
4:>5CTAB5BIX5L6
E")>?@)Y%)*")>?@
<Q51<
5"
1.1.5C5$")>?@
:9#Z,:9#
.
Z[#:;\9#Z,: 4:#]
1x
+
;
1x
+
:
1x
4
1x
x
2
−
=
−
^:
1x
1
1x
x
−
=
−
_:
xx
−=
8:#]
2x
−
;,]
2x
−
:
1x
+
9#
.
]\#: ;` :
2x
−
9#
.
Za#]
b:;`
c7:c;d±,e\f4:c;d`f:c;d±.f
^:c;∅
_:c;d`f8:c;∅:c;dZ,e`f:c;
d.e[f
1.2.5C5$")>?@
:#]
1x
1
−
;
1x
1x2
−
−
4:#]
2x
1
−
;
2x
3x2
−
−
:
2x
x
−
;
2x
1
−
Z
2x
−
^:g#Z.g;#],
_:
1x
1x
3x
1x
4x
2
++
+
+
=
+
−
8:g#],g;#Z.
:./g#Z,g;#]. :g#Z.g;.#Z
,
c7:c;d.f4:c;∅:c;∅^:c;d
2
1
f
_:c;d\f8:c;∅:c;d`e\f:c;
d,f
1.3.5C5")>?@
:
x2
x
x2
|x|
−
=
−
4:
1x
x
1x
|x|
−
=
−
:
1x
2x
1x
|2x|
−
−
=
−
−
^:
2x
x1
2x
|1x|
−
−
=
−
−
c7:h`e.:4:9,e]∞::h.e]∞:^:∅
V¤n ð« 2:
ijklm
no
1) Xét phß½ng trình A.x = B
;`<;p7O<L+")>?@
=∈∀→=
φ=→=
RS:Rx0x.0
S:VNconstx0
≠`<≠p75%)*#;
A
B
!"51<c;d
A
B
f
2) Các phß½ng trình ðßa v« b§c nh¤t
khác(Gq%r%5sIF5151<L+
"C5#J%52IF51!51<
5"
2.1.5C5L+451'I!
:9<
.
].:#Z.<;#Z[
4:<9#Z<:;#]<Z.
:<9#Z<][:;<9#Z.:]b
^:<
.
9#Z,:]<;#9[<Z.:
_:9<],:
.
#;9.#],:<]a#].
8:9#].4
.
:Z
[
;4
.
9#]:
:9]4:
.
#].
.
;.9]4:]9
.
]4
.
:#
:9#].4
.
:Z
.
;4
.
9#]:
2.2.5C5L+451'I!
:
m
3x
2mx)1m(
=
+
−++
4:
1
1x
3mmx
=
+
−−
tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
,au.vece"w5Ae5055Ox</L/L-x8"/L/L
vvb[a`y
,
:
2
x
3x
2x
mx
=
+
+
−
−
^:
2
mx
1x
1x
mx
=
−
−
+
−
−
_:
2
x1
2)1x(b
x1
bx
1x
xa
−
−−
=
+
−
+
−
−
8:
ax
bx
ax
bax
+
−
=
−
+
2.3.5C5L+451'I!
:g#]<g;g#Z<].g 4:g#Z<g;g#]
,g
:g<#],g;g.#]<Z[g ^:g<#],g;g[#]
<Z.g
2.4.5C5L+451'I!
:
2x
3x
1x
mx
−
+
=
−
+
4:
3
mx
2mmx
=
−
−+
:
1x
)1x(a
1x
b
1x
1ax
2
2
−
+
=
+
+
−
−
^:9#Z<:9<#Z[:
;`
V¤n ð« 3:
mzk{
jk0|jk0|cjk0
1)Ði«u k¸ên Ax = B có nghi®m duy nh¤t
≠
F5}+5}@I~5}<
0A
2) Ði«u ki®n Ax = B nh§n ∀x∈ là
nghi®m
=
=
0B
0A
3) Ði«u ki®n Ax = B có nghi®m
•J 51<^IOQ
•J 51<'+∀#∈
4) Ði«u ki®n Ax = B vô nghi®m
;`L+≠`
51<L+4&'M5
5"
3.1.@<<%P")>?@ 51<^IO
Q
:9<],:
.
#],Z<;9y<Za:#
4:
mx
2x
1x
1x
−
+
=
−
+
:
2
x
2x
1x
mx
=
−
+
+
+
c7:<≠.-[4:<≠Z.-`-,:<≠[-,
3.2.•$%&<%P")>?@ !"
51<'+
:<
.
#;v#]<
.
Z\<][ 4:<
[
#;<
.
]
<#Z<
:9#Z,:]9.#],:4;#].
^:9.#Za:]9\Z[#:4]bZ#;`
c7:[4:`-,:;Z,-4;,^:;
.-4;,
3.3.@<<%P")>?@LU51<
:
2
x
2x
1x
mx
=
−
+
+
+
4:
1x
3m2x
1x4
1x
mx2
−
+−
=−−
−
+
:9#Z,:<
.
]#<].#Z,;`
^:
2
mx
1x
1x
mx
=
−
−
+
−
−
c7:<;,-[4:<≤.u[:∅^:<≠,
3.4.@<<%P")>?@ 51<
:.9g#g]<Z,:;g#gZ<][
4:<
.
9#Z,:;\#Z[<].LK5#€`
:
2x
1m2x2
2x
2x
mx3
−
−+
=−+
−
−
^:
2x
−
9<#Z<]\:;`
c7<≤[ua4:<•Z.L<€,:<€,^:
I‚q
V¤n ð« 4:
k
•J1")>?@
=+
=+
222
111
cybxa
cybxa
w;
22
11
ba
ba
;
,
/4
.
Z
.
/4
,
/
w
#
;
22
11
bc
bc
;
,
4
.
Z
.
4
,
/
w
O
;
22
11
ca
ca
;
,
.
Z
.
,
/
6Iw≠`<≠p 51<^IO
Q'+
r"AB9#;
D
D
x
-O;
D
D
y
:
6Iw;`L+w
#
≠`Lw
O
≠`71LU
51<
6Iw;w
#
;w
O
;`71 LUAB
51<C
,
#]4
,
O;
,
5"
4.1.5C5$1")>?@
tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
,au.vece"w5Ae5055Ox</L/L-x8"/L/L
vvb[a`y
.
:
=+
=+
1,1y7x2
8,7y24x27
4:
=−
=+
21y5x13
23y9x7
:
=−
=−
8y9x7
3y4x5
^:
=−
=+
11y5/3x2/5
16y3/2x4/3
_:
=+
=−
3y2x5
1yx3
8:
=−−
−=++
22y)12(x2
12yx)12(
4.2.1
=−
=−
154v7u3
50v9u5
/~O5C51L+AIO
?51<E1
=
−
+
+
=
−
−
+
308
2y
7
3x
3
100
2y
9
3x
5
c7I;.ƒ-L;,`#;Z,byuab-O;\,u.`
4.3.5C5L+451'I!pF51 51<@<
135„#-O%='!"%B5LK5<r-
4
:
+=+
+=+
5m2myx2
1my2mx
4:
=+++
=−+
2y)1m(x)2m(
5y)2m(mx
:
−=−+
−=+−
m1yx)2m(
1m3y2x)1m(
^:
=+
+=−+
2myx2
1my)1m(mx
_:
=−+−
=+−+
my)4m(x)1m2(
4y)2m(x)4m(
8:
=−
=−
2
2
bybx
ayax
:
=+
+=+
ab2aybx
babyax
22
:
=−
−=−
b4ybbx
babyax
2
2
V¤n ð« 5:
mzjkk
{jk0-|jk0-{|cjk0
1) H® có nghi®m duy nh¤tF5w≠`
2) H® vô nghi®m :
…w-5C5w;`<
O<L+15")>?@F$
I@LU51<
3) H® vô s¯ nghi®m :
…w-5C5w;`<
O<L+15")>?@5B
I@ LUAB51<
5"
5.1.1
+=+
=+
1m2ymx
m3myx
9<<AB:
:&<%P1 51<^IOQp56
13'5'M5„$51<%='!"%B5
LK5<
4:@<<∈%P51<E1'+$AB
IO
c7:<≠±,-9#9#Z.:;9OZ,:9OZ[:4:Z[-
Z.-Z,-`
5.2.1
+=+
=+
1mmyx
m2ymx
9<'+<AB:
:&<%P1LU51<p
4:&ABIO<%P1 51<^IO
Q'+ABIOp…$51<% p
c7:<;Z,4:<;`79,e`:-<;Z.79[e.:
5.3.&<%P1 &<^IOQ
:
=−+++
=−++
0m31y)3m(mx
0m4y8x)1m(
c7<≠,-<≠[
4:
−=+−
=++
)1m(2
y
2
x
2
)2m(
m
y
1
m
x
2
)1m(
c7<≠`-.-.±
b
-Z,±
3
5.4.@<%52IF51%P1 LUAB51<
tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
,au.vece"w5Ae5055Ox</L/L-x8"/L/L
vvb[a`y
[
:
+=++
+=+−
m3y2x)6m(
m1myx4
c7<;Z.
4:
−=+=+
−=+++
1by)ba(2x)a5(
aby)ba(x)a1(
c7;[-4;aL;Z4;Z\±
17
5.5.@<%52IF51-4%P1LU51<
−=+
+=+
baaybx
babyax
c7;±4≠`
V¤n ð« 6:
†0‡†
ˆj‰oŠi
1)иnh nghîa7≥4Z4≥`
‹$?)Y*"^)>7
.
≥`-gg≥`-
A
≥`-…E5ABH^QI/≥`-
Œ$4@")>
.
]
.
]
.
≥`
2) Tính ch¤t 7
:…=7
‹=5L6H<=AB7
≥]F≥]F
‹=LLKL6E54Q%‡3H
52I7
≥n≥w]≥]w
9Gq7FU%)*?TL6LKL6:
4:…7
‹5L6E4Q%‡3H
<=AB^)>%)*4Q%‡3H52I
-AB<@4Q%‡3%Œ52I
‹≥LK/€`
A
1
≤
B
1
‹≥€`
≥
/n
n
A
≥
n
B
:…4•(I7
≥n≥≥
5"
6.1.wH%&Ž3<57
:∀-4-∈7
.
]4
.
]
.
≥4]4]
4:∀-4∈74]]4≤,]
.
]4
.
/
:∀-4--^-_∈7
.
]4
.
]
.
]^
.
]_
.
≥94]]^]_:
^:∀-4-∈7
.
9,]4
.
:]4
.
9,]
.
:]
.
9,]
.
:≥b4
6.2.3<5
:∀-4∈
]
7
2
a
b
b
a
≥+
4:∀-4∈7
2
22
2
ba
2
ba
+
≥
+
:]4€`7
3
33
2
ba
2
ba
+
≥
+
^:∀≠`7
2
≥+
,
6.3.∀-4-#-O∈/3<54Q%‡
3
I5AU"AF57g/#]4/Og≤
)yx)(ba(
2222
++
T% AIO?7a/A5],.A≤,[
6.4 3<5$4Q%‡3?4)A_"
:6I≥4-#≥O7.9/#]4/O:≥9]4:9#]
O:
4:6I≥4-#≤O7.9/#]4/O:≤9]4:9#]
O:
:6I≥4≥-#≥O≥•7
[9/#]4/O]/•:≥9]4]:9#]O]•:
^:6I≥4≥-#≤O≤•7
[9/#]4/O]/•:≤9]4]:9#]O]•:
_:T% AIO?7?<D∆'IU'IU
5:]4]≥
3
π
9]4]:
55:
≤
++
cba
hhh
S.18
]4]
6.5.]4;,/•$<5
:
.
]4
.
≥
2
1
4:
[
]4
[
≥
4
1
:
\
]4
\
≥
8
1
w7:
.
]9Z4:
.
≥,]`4:%PqZ4≥Z
2
1
9
.
]4
.
:
:9
.
]4
.
:
.
]9
.
Z4
.
:
.
≥
4
1
]`
6.6.-4-'+4M<5$
:/4/≥9]4Z:9Z4]:9Z]4]:
4:
cba
3
ac
1
cb
1
ba
1
++
>
+
+
+
+
+
:
[
]4
[
]
[
≥[//4/
w7:≥g4Zg
.
≥
.
Z94Z:
.
-…
4:]4]€]4-…=:9///:/≥`
6.7.3<5
:6Igg≤,-g4g≤,@g]4g≤g4],g
4:6I-4-<€`L+
b
a
≤,@
b
a
≤
mb
ma
+
+
tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
,au.vece"w5Ae5055Ox</L/L-x8"/L/L
vvb[a`y
\
:6I-4-<€`L+
b
a
≥,@
b
a
≥
mb
ma
+
+
w7:4@5L64:L@≤4:L@≥4
6.8.3<5
:6I≥4≥,@
b.a1
2
b1
1
a1
1
22
+
≥
+
+
+
4:6I#-O∈L+#]O€`@
yxyx
21
2
41
1
41
1
+
+
≥
+
+
+
w7:WIO%‘%)L29Z4:
.
94Z,:≥`4:
)>’
6.9.-4--^-#-O-•€`/3<5
:,•
ac
c
cb
b
ba
a
+
+
+
+
+
•.
4:.•
bad
ad
adc
dc
dcb
cb
cba
ba
++
+
+
++
+
+
++
+
+
++
+
•[
:6I
z
c
y
b
x
a
≤≤
@
z
c
z
c
y
b
x
a
x
a
≤++≤
w7:u9]4]:•u9]4:4:9]4:u9]4
]]^::•#9u•:L+;#9u#:=L6
F6WIC
6.10.3<5
:6I-4--^€`L+
22
db
cdab
d
c
b
a
+
+
<<
4
@5
4:6I-4--^€`@
db
1
ca
1
d
1
c
1
b
1
a
1
111
++
+
≤
+
+
+
:6I€4€`L+<€-<-∈@
nn
nn
mm
mm
ba
ba
ba
ba
+
−
>
+
−
^:6I
3
4
b1
1
a1
1
≥
+
+
+
@/4≤
4
1
w7:WIO%U^Z4≥`9%:4:WIO%‘
9^Z4:
.
≥`9%::WI5%‘
<Z
€4
<Z
9%:
V¤n ð« 7:
†0‡†
ˆQ%‡3IO
1) B¤t ðÆng thÑc Cauchy cho 2 s¯7
-4≥`7
]4≥.
ab
4≤
2
2
ba
+
wQI%‡3#CO?F5;4
2) B¤t ðÆng thÑc Cauchy cho n s¯ :
AB
,
-
.
-////-
≥`
,
]
.
]////]
≥
n
n21
a....aa
,
.
/////
≤
n
n21
n
a.......aa
++
wQI%‡3#CO?F5
,
;
.
;///;
/
3) H® quä :
‹6I5AB-4 ŒFU%Œ@…
%MlF5;47/4≤
2
2
ba
+
‹6I5AB-4 …FU%Œ@Œ
%MF5;47]4≥.
b.a
5"
7.1.wH4Q%‡3IO5AB
3<57
:-4€`7
a
b
b
a
+
≥.
4:-4≥`79]4:9,]4:≥\4
:-4€`7
+
+
a
b
1
.b
a
1
≥\
^:-4€`7
+
+
a
b
1.
b
a
1
≥\
_:-4€`7
+
+
b
b
1
a
a
1
≥\
8:-4-€`7
8c
c
1
b
b
1
a
a
1
≥
+
+
+
:-4-€`7
81
a
c
1
c
b
1
b
a
≥
+
+
+
:-4-€`7
8a
c
1
c
b
1
.b
a
1
≥
+
+
+
5:-4€`7
1k
kk
2
a
b
1
b
a
1
+
≥
++
+
eF∈
7.2.-4≥,/3<5
:
2
ab
1b.a
≤−
4:
b.a1ab1b.a
≤−+−
:
cbacabcb.a
++≤++
7.3.-4-≥`/cN^“4Q%‡3
IO5AB3<54Q%‡3
IO4AB7]4]≥[
3
c.b.a
7.4.-4--^€`/3<5
:9]4]:/9
c
1
b
1
a
1
++
:≥v
4:4]4]≥[
3
222
c.b.a
:9,]:9,]4:9,]:≥9,]
3
c.b.a
:
[
^:
9
4
3
abc.9c4b3a2
≥++
_:
b
]4
v
≥\9
.
4
[
Z,b:
8:
.
4]4
.
]
.
≥[4
tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
,au.vece"w5Ae5055Ox</L/L-x8"/L/L
vvb[a`y
a