Tải bản đầy đủ (.ppt) (13 trang)

Bài soạn dự thi cấp tỉnh

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (629.27 KB, 13 trang )


Chaìo mæìng quyï
tháöy, cä giaïo âãún
dæû giåì, thàm låïp!
Chaìo caïc em hoüc sinh låïp
11
1
Træåìng THPT Quäúc Hoüc!

Hàm số mũ y = a
x
( a >0 ; a ≠ 1 ) có hàm số
ngược không ? Tập xác định, tập giá trị của
hàm số ngược này ?
ÄN TÁÛP VÃÖ HAÌM SÄÚ
MUÎÎ
y = a
x
( 0 < a ; a ≠ 1 )
Hãy nêu tập xác định ? Tập giá trị?
Tính chất biến thiên của hàm số mũ y = a
x

( a >0 ; a ≠ 1 )?
* Khi a > 1 hàm số đồng biến trên R
* Khi 0 < a < 1 hàm số nghịch biến trên R
Tập xác định: D = R
Tập giá trị : T = ( 0 ; + ∞ )
Bảng biến thiên
y
+∞


x
y
-∞
+∞
+∞
0
a > 1
0 < a < 1
x
+∞
0
- ∞


Tìm log
a
x ( a > 0 ; a ≠ 1 ; x > 0) tức là tìm số y
sao cho a
y
= x
1. Định nghĩa:
Hàm số ngược của hàm số y = a
x
(a > 0; a ≠ 1)
được gọi là hàm số lôgarit cơ số a của x;
kí hiệu là y = log
a
x
Tập xác định: D = (0 ; + ∞) Tập giá trị: T = R
Với a > 0 ; a ≠ 1 ; x > 0: y = log

a
x ⇔ x = a
y


Tìm log
a
x ( a > 0 ; a ≠ 1 ; x > 0) tức là tìm số thỏa
điều kiện gì ?
Ví dụ:
1) log
a
1 =
2) log
a
a =
3) log
2
(1/16 ) =
4) log
10
? = 3
5) log
2
(- 4) =
Hãy
tính:
0 ; vì a
0
= 1

1 ; vì a
1
= a
-4 ; vì 2
-4
= 1/16
; vì 10
3
= 1000
Không xác định vì – 4 < 0
4) log
10
1000 = 3
1. Định
nghĩa
x =

1. Định
nghĩa
2. Sự biến
thiên và
đồ thị
2. Sự biến thiên của hàm số lôgarit
Bảng biến thiên của hàm số y = log
a
x (0 < a ; a ≠1) Hãy nêu phương pháp vẽ đồ thị của hàm số
y=log
a
x ?
x 0 1 a

+∞
y=log
a
x
+∞
1
0
- ∞
a>1
x 0 a 1
+∞
y=log
a
x
+∞
1
0
- ∞
0<a<1

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×