Tải bản đầy đủ (.doc) (9 trang)

Luyện thi cvào 10- Biến đổi căn thức

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (165.41 KB, 9 trang )

II . Biến đổi căn thức
II.1 Các phép tính căn thức
1. Kiến thức cần nhớ
*
A
tồn tại (có nghĩa) A

0
A với A

0
* Hằng đẳng thức
AA
=
2
=
-A với A < 0
2. Các ví dụ
Ví dụ 1: Tìm các giá trị của x để các biểu thức sau có nghĩa:
a)
23

x
c)
65
2

xx
e)
2
2



x
b)
12
4

x
d)
3
2
+
x
Giải:
a)
23

x
có nghĩa 3x 2

0 x


2
3
b)
12
4

x
có nghĩa

2 1 0
1
2 1 0
2
x
x
x


>





c)
65
2

xx
có nghĩa

x
2
- 5x + 6

0

(x + 1) (x - 6)


0
Lập bảng xét dấu ta có
6
1
x
x







d) Ta có x
2

0

x => x
2
+ 3 > 0

x nên
3
2
+
x
có nghĩa với

x.

e)
2
2x
có nghĩa

x
2
- 2

0

2
x

2


x



2
hay x

2
hoặc x

-
2


Ví dụ 2 Tính
a)
3 2 2
b)
5 2 6
Giải:
a) Ta có:
3 2 2
=
2
( 2 1)
=
2 1
=
2 1
(vì
2 1>
)
b)
5 2 6
=
2
( 2 3)
=
2 3
=
3 2
(vì
3 2>
)

Ví dụ 3: Khoanh tròn vào chữ cái đầu kết quả mà em cho là đúng
a) Biểu thức 3 -
2 6x
có nghĩa khi:
A. x 3 C. x > 3
B. x -
1
3
D. x <
1
3
b) Giá trị của biểu thức
6 2 5
bằng
A. 1 -
5
B.
2 3
C.
5 1
D.
3 2
Đáp số: a) B
b) C
3. Những điều cần lu ý
- Muốn tìm các giá trị của x để căn thức
A
có nghĩa ta phải giải bất phong trình: A 0
+ Nếu A là đa thức bậc nhất: ta phải giải bất phơng trình một ẩn.
+ Nếu A là đa thức bậc hai: Ta phân tích A thành nhân tử rồi giải bất phơng trình bằng cách

xét dấu.
+ Nếu bất phơng tình có dạng: x
2
a hoặc x
2
a (a - hằng số dơng) ta có thể giải nh sau:
x
2
a


x a



a x a
x
2
a


x a


x
a
hoặc
x a
- Nếu A không phân tích đợc thành nhân tử, ta chứng minh biểu thức A luôn có giá trị không
âm (

A
có nghĩa
x

) hoặc A luôn có giá trị âm (
A
không có nghĩa
x

)
4. Bài tập tự luyện
1. Tìm giá trị của x để biểu thức sau có nghĩa:
a)
6 3x
c)
2
6 x x
e)
2
1
1x
b)
1
6 3x
d)
2 3 5x x x + + +
g)
1
1 1x
2. Tính:

a)
6 2 5 6 2 5 + +
c)
6 2 5 13 4 3+ +
b)
7 4 3 7 4 3+ +
3. Rút gọn các biểu thức:
a)
49
7
x
x


(x 0; x 49) c)
2
6 9
6 2
x x
x
+

(x 3)
b)
2 2
6 9 6 9a a a a+ + + +
II.2 Liên hệ giữa phép nhân, phép chia và phép khai phơng
1. Kiến thức cần nhớ
+ Khai phơng một tích: Nếu A
1

; A
2
, ; A
n
0
Thì
1 2 3 1 2 3
. . ...... . . .........
n n
A A A A A A A A=
+ Khai phơng một thơng: Nếu A 0; B > 0 thì
A A
B
B
=
2. Một số vấn đề cần lu ý
+ A 0 thì (
A
)
2
=
2
A
= A
+ Với A, B 0 thì:
A B A B+ +

A B A B
(A B)
(Chứng minh 2 bất đẳng thức trên bằng cách bình phơng 2 vế)

3. Các ví dụ
Ví dụ 1: Tính
a)
9 17 . 9 17 +
c)
2
4( 3)a
(a 3) e)
2
45
20
mn
m
(m; n > 0)
b)
6 14
2 3 28
+
+
d)
2 2
( 1)b b
(b < 0)
Giải:
a)
9 17 . 9 17 (9 17)(9 17) 81 17 + = + =
=
64
= 8
b)

6 14 2. 3 2. 7 2( 3 7) 2
2
2 3 28 2 3 4. 7 2( 3 7)
+ + +
= = =
+ + +
c)
2 2
4( 3) 4. ( 3) 2. 3a a a = = =
2 (a - 3) (Vì a 3)
d)
2 2 2 2
( 1) . ( 1) . 1b b b b b b = =
= b (b - 1)
Vậy
2 2
( 1)b b =
b (b -1)
e)
2
45
20
mn
m
=
2 2 2 2
3
45 9 9 9.
20 4 2 2
4

n
mn n n n
m
= = = =
=
3
2
n
(vì n > 0)
4. Bài tập tự luyện
1. Tính:
a)
( 32 50 8 +
) :
2
d)
9 6 2 6
3

b)
2
2 2( 3 2) (1 2 2) 2 6 + +
e)
( 5 2 6 2). 3 +
c)
2 3
2

2. Rút gọn:
A =

3 3
3
x y x y
x y
+ +
+
(x, y 0) C =
2 2 4
2
x x
(x 4)
B =
( ).( )x y y x x y
xy
+
(x, y > 0) D =
2
4
( 2 1)
1
( 1)
1
y y
x
x
y
+




(x

1; y

1; y > 0)
3. Tìm x biết:
a)
2
9 3 3 0x x =
b)
2
4 2 2 0x x + + =
II.3 Các phép biến đổi đơn giản căn thức bậc hai
1. Kiến thức cần nhớ
+ Đa một thừa số ra ngoài dấu căn:
2
.A B A B=
(B 0)
+ Đa một thừa số vào trong dấu căn:
2
.A B A B=
với A 0; B 0 ;
2
.A B A B=
với A < 0; B 0
+ Khử mẫu của biểu thức lấy căn:
1A
AB
B B
=

với
0
A
B

; B

0
+ Trục căn thức ở mẫu:
+)
A A B
B
B
= (B > 0) +)
2
( )A A B C
B C
B C
=


m
(B 0; B C
2
)
+)
( )A A B C
B C
B C
=



m
(B 0; C 0; B C)
2. Các ví dụ
Ví dụ 1:
a) Cho các số
3 12

2 26
. Chọn kết quả đúng trong các kết quả sau:
A.
3 2 2 26>
; B.
3 2 2 26<
; C.
3 2 2 26=
b) Cho các số:
1
2 2


1
19
3
. Chọn kết quả đúng trong các kết quả sau:
A.
1 11 1
19
2 2 3

<
; B.
1 11 1
19
2 2 3
>
C.
1 11 1
19
2 2 3
=
Đáp số: a) B b) A
c) Chọn kết quả đúng trong các kết quả sau:
A.
2
. 2x x
x
=
; B.
2
. 2x x
x
=
với x
0

C.
2
. 2x x
x

=
với x > 0
Đáp số: c) C
Ví dụ 2 Rút gọn các biểu thức sau
a)
2 2
3 1 3 1

+
c)
3 3
3 3
x x
x x
+
+
(x 0)
b)
5 5 5 5
5 5 5 5
+
+
+
d)
4 2
2
5 (1 4 4 )
2 1
x x x
x

+

(x
1
2
)
Giải:
a)
2 2 2( 3 1) 2( 3 1) 2 3 2 2 3 2
2
3 1 3 1 2
3 1 3 1
+ + +
= = =

+
b)
2 2
5 5 5 5 (5 5) (5 5) 25 10 5 25 10 5 5 5
3
25 5 25 5 20
5 5 5 5
+ + + + + +
+ = + = =

+
c)
3 3
3 3
x x

x x
+
+
(x 0) =
3 3
3 3 3 3 1
( ) ( 3) ( 3)( 3 3) ( 3)
x x x x
x x x x x
+ +
= =
+ + + +
d)
4 2 2 2 2 2
2 2 2
5 (1 4 4 ) (5 ) (1 2 ) . 1 2 . 5
2 1 2 1 2 1
x x x x x x x
x x x
+ = =


=
2
2
2 5
2 5
x
x







nếu
1
2
1
2
x
x
>
<
3. Những vấn đề cần lu ý
Khi khử mẫu của biểu thức lấy căn không nhất thiết phải nhân cả tử và mẫu của biểu thức
lấy căn với mẫu mà ta chỉ cần nhân cả tử và mẫu với số (biểu thức) mà mẫu có dạng bình ph -
ơng của một biểu thức.
Ví dụ:
1.
3 3.2 6 6
8 8.2 16 4
= = =
2.
3
( 0; 0)
b
ab a
a


=
4 2
.b a ab
a a
=
Việc đa một thừa số ra ngoài dấu căn đôi khi ta phải biến đổi biểu thức lấy căn về dạng thích
hợp rồi mới thực hiện đợc.
Ví dụ:
3
28a b
(ab 0) =
2
4 .7a ab
=
2
(2 ) .7a ab
=
2 7a ab
4. Bài tập tự luyện
1. Tính giá trị của biểu thức sau:
a)
2 2
3 2 2 3 2 2

+
b)
3 2
2 3 3 2 3



c)
2 3
2 2
2
x y xy xy
y
x xy y
+ +
+ +
(xy 0; y 0) tại x = 2; y = 1
d)
1 1 1
2 1 3 2 4 3
+ +
+ + +
e)
1 1 1
.....
1 2 2 3 2006 2007
+ + +
+ + +
2. So sánh:
a)
5
3 7 5 2+
với
3
13
b)
30 29

với
29 28
3. Rút gọn các biểu thức sau:
a)
2a b b
a b
a b a b


+
(a 0; b 0; a b)
b)
2 4
2 2 2
2
a b a b
b a ab b

+
(b # 0; a # b)
4. Tìm x biết:
a)
3 2 3 2x =
b)
7 3 9 0x x + =
II. 4 Thực hiện phép tính. Rút gọn biểu thức có chứa căn bậc hai

×