Tải bản đầy đủ (.pdf) (31 trang)

Hóa học Nghiên cứu ăn mòn cục bộ kim loại bằng phương pháp nhiễu điện hóa

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.95 MB, 31 trang )

Header Page 1 of 89.
VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM

HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ

……..….…………

NGUYỄN VĂN CHIẾN

NGHIÊN CỨU ĂN MÒN CỤC BỘ KIM LOẠI
BẰNG PHƯƠNG PHÁP NHIỄU ĐIỆN HÓA

Chuyên ngành: Hóa lý thuyết và Hóa lý
Mã số : 62 44 01 19

TÓM TẮT LUẬN ÁN TIẾN SĨ HÓA HỌC

Hà Nội – 2015

Footer Page 1 of 89.


Header Page 2 of 89.

Công trình được hoàn thành tại: Viện kỹ thuật nhiệt đới - Học viện
Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ
Việt Nam

Người hướng dẫn khoa học: PGS.TS, Lê Văn Cường
TS, Nguyễn Trọng Tĩnh


Phản biện 1:

Phản biện 2:

Phản biện 3:

Luận án sẽ được bảo vệ trước Hội đồng chấm luận án tiến sĩ, họp tại
Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công
nghệ Việt Nam vào hồi … giờ …’, ngày … tháng … năm 2016

Có thể tìm hiểu luận án tại:
-

Thư viện Học viện Khoa học và Công nghệ

-

Thư viện Quốc gia Việt Nam

Footer Page 2 of 89.


Header Page 3 of 89.
A. GIỚI THIỆU LUẬN ÁN
1. Mở đầu
Hiện nay trên thế giới, phương pháp nhiễu điện hóa đang được
hoàn thiện và đề xuất để bổ sung, giải quyết các vấn đề tồn tại trong
nghiên cứu điện hóa nói chung và nghiên cứu ăn mòn của các phương
pháp đo lường điện hóa. Đặc trưng và ưu thế của việc đo nhiễu điện
hóa là phát hiện các tín hiệu bất thường rất điển hình trong các quá

trình thay đổi trạng thái bề mặt.
Như vậy vấn đề đặt ra là:
 Làm thế nào có thể đo được tín hiệu nhiễu và có thể so sánh
với các phương pháp đo tin cậy khác.
 Khả năng đo được các thông số gì, và định hướng các quá
trình là rất cần thiết để có một cơ sở đo đạc vững chắc.
 Làm thế nào có thể phân tích hiệu quả nhất dữ liệu và giải
thích đáng tin cậy.
 Triển vọng ứng dụng của tín hiệu nhiễu vào thực tiễn là gì.
 Ưu điểm của phương pháp đo nhiễu điện hóa trong nghiên
cứu ăn mòn kim loại.
Phương pháp này đơn giản bởi là phương pháp không phá hủy;
ghi và phân tích tín hiệu liên tục hay rời rạc nên có thể phân biệt các
hiện tượng và quá trình điện hóa khác nhau trong các môi trường
khác nhau. Dữ liệu nhiễu điện hóa với đặc trưng nghèo thông tin đầu
vào nhưng qua phân tích đem lại nhiều thông số giá trị. Phương pháp
đo nhiễu điện hóa có thể áp dụng nghiên cứu trực tiếp với đối tượng
đang làm việc nên có ý nghĩa thực tiễn lớn. Nhờ những ưu điểm nêu
trên, nghiên cứu và ứng dụng của phương pháp nhiễu điện hóa cho
mục đích khác nhau đã và đang giành được mối quan tâm phổ biến
của nhiều nhà khoa học trong lĩnh vực nghiên cứu vật liệu mới.
Phương pháp nhiễu điện hóa có thể đánh giá trực tiếp mức độ ăn
mòn của kim loại trong môi trường xâm thực với điều kiện có hoặc
không có bảo vệ chống ăn mòn, cả quá trình chuyển từ trạng thái thụ
động sang trạng thái hoạt động ăn mòn và ngược lại. Trong các dạng
ăn mòn thường gặp, ăn mòn cục bộ là dạng ăn mòn nguy hiểm nhất
bởi là dạng ăn mòn rất phổ biến, rất khó phát hiện trước khi xảy ra sự
cố. Vì thế, nguy cơ phá hủy vật liệu, thiết bị kim loại do ăn mòn cục
bộ là rất lớn và là lý do phải nâng cao, thậm chí phải hoàn thiện các


Footer Page 3 of 89.

-1-


Header Page 4 of 89.
phương pháp truyền thống đồng thời xây dựng các phương pháp mới
để phát hiện, theo dõi nhằm mục đích kiểm soát ngăn ngừa các sự cố
do ăn mòn kim loại.
Trên cơ sở các kết quả nghiên cứu trong và ngoài nước, tiếp tục
nội dung nghiên cứu trước đây, đề tài luận án là “Nghiên cứu ăn
mòn cục bộ kim loại bằng phương pháp nhiễu điện hóa”.
2. Mục đích của Luận án.
 Thiết lập sơ đồ thu thập và đánh giá dữ liệu nhiễu điện hóa.
 Ứng dụng kĩ thuật sóng nhỏ để phân tích tín hiệu nhiễu điện hóa
trong lĩnh vực ăn mòn cục bộ kim loại.
 Nghiên cứu một số dạng ăn mòn cục bộ kim loại điển hình trong
điều kiện phòng thí nghiệm từ dữ liệu nhiễu điện hóa.
3. Những đóng góp mới của luận án.
 Từ các kết quả nghiên cứu, thực nghiệm luận án đã thiết lập một
sơ đồ tổng quát trình tự các nguyên tắc phương pháp thực nghiệm và
phân tích tín hiệu nhiễu điện hóa trong lĩnh vực nghiên cứu điện hóa
nói chung và trong nghiên cứu ăn mòn kim loại nói riêng
 Những kết quả của luận án góp phần làm sáng tỏ thêm về biểu
hiện của các dạng ăn mòn, thụ động nói chung và ăn mòn cục bộ nói
riêng thông qua việc phân tích thống kê, phân tích phổ tín hiệu nhiễu
ở thời gian ngắn và đánh giá phổ mật độ công suất và năng lượng của
từng dạng ăn mòn bằng cách chuyển dữ liệu vùng thời gian sang vùng
tần số và kết hợp miền thời gian – vùng tần số.
 Luận án cũng đã góp phần mang lại những hiểu biết sâu sắc hơn

nguyên nhân khác nhau về mặt cơ chế và khả năng phản ứng của từng
dạng ăn mòn cục bộ trên cơ sở theo dõi và phân tích dữ liệu nhiễu
điện hóa trong miền thời gian – vùng tần số và mật độ năng lượng của
chúng bằng phương pháp sóng nhỏ
 Luận án đã đề xuất và sử dụng các công cụ toán tin hiện đại
(Lapview, Matlab, KaleidaGraph…) để thiết lập hệ đo và phân tích
các tín hiệu nhiễu điện hóa cho lĩnh vực ăn mòn kim loại, và chúng
tôi tin rằng đó là công cụ hữu hiệu có độ tin cậy cao để mô phỏng hay
phân tích các biểu hiện tín hiệu và các thông số điện hóa trong nghiên
cứu cũng như ứng dụng thực tiễn.

Footer Page 4 of 89.

-2-


Header Page 5 of 89.
 Khả năng ứng dụng trong thực tiễn: Các kết quả của đề tài này
góp phần vào việc phân biệt cụ thể các dạng ăn mòn điện hóa nhất là
ăn mòn cục bộ, thụ động bề mặt kim loại. Bằng các phương pháp biến
đổi sóng nhỏ và phân tích tập dữ liệu đang được theo dõi trực tiếp
trên hệ hoạt động trích ra ở trạng thái dừng. Đồng thời với việc giải
quyết vấn đề đặt ra bằng các phương pháp phân tích và tính toán trên
có thể đóng góp định hướng cho việc thiết kế bảo vệ chống ăn mòn có
đủ hiệu quả đáp ứng được những điều kiện làm việc của các thiết bị
hay công trình kim loại trong môi trường ăn mòn đã dự đoán trước.
4. Bố cục luận án: Luận án được trình bày trong 143 trang, bao gồm
ba chương và các phần Mở đầu, Kết luận, Danh mục các bài báo đã
công bố và Tài liệu tham khảo, cụ thể gồm các chương: Chương 1
trình bày tổng quan về ăn mòn kim loại và nhiễu điện hóa trong nghiên

cứu ăn mòn. Giới thiệu phương pháp sóng nhỏ ứng dụng phân tích tín
hiệu nhiễu điện hóa. Chương 2 trình bày các phương pháp thực
nghiệm và phân tích sử dụng trong luận án. Chương 3 trình bày các
kết quả nghiên cứu các dạng ăn mòn, thụ động nhưng chủ yếu tập
trung vào ăn mòn cục bộ của hợp kim thép cacbon thấp, hợp kim 304
bằng phương pháp nhiễu điện hóa.

B. NỘI DUNG LUẬN ÁN
Chương 1. Tổng quan
Phần tổng quan đề cập ba vấn đề chính: Tổng quan về ăn mòn kim
loại; tổng quan các phương pháp điện hóa ứng dụng trong nghiên cứu
ăn mòn kim loại và các phương pháp phân tích dữ liệu nhiễu điện
hóa.
Trong tổng quan ăn mòn kim loại, trên cơ sở khoa học ăn mòn đã
nêu định nghĩa về ăn mòn kim loại:“Ăn mòn kim loại là khái niệm
dùng để chỉ quá trình tự diễn biến phá huỷ vật liệu kim loại do tương
tác hóa – lý với môi trường xung quanh”. Tiếp theo là phân loại ăn
mòn theo cơ chế (ăn mòn hoá học và ăn mòn điện hoá), theo hình
dạng bề mặt bị ăn mòn và theo môi trường ăn mòn….
Trong phần tổng quan các phương pháp điện hóa ứng dụng trong
nghiên cứu ăn mòn kim loại đề cập hai nhóm phương pháp: tổng quan
về các phương pháp điện hóa phổ biến – kinh điển ứng dụng trong

Footer Page 5 of 89.

-3-


Header Page 6 of 89.
nghiên cứu ăn mòn. Tiếp theo là tổng quan về phương pháp nhiễu

điện hóa trong nghiên cứu ăn mòn kim loại. Trong phần này đề cập
trực tiếp các quan điểm và khái niệm đã được thống nhất về nhiễu
điện hóa phân biệt với các loại nhiễu khác một cách tổng quát và
đang được sử dụng, nghiên cứu trên thế giới, một số phương pháp –
kĩ thuật đo đạc, thu thập phân tích thống kê dữ liệu nhiễu cụ thể.
Trong phần tổng quan các phương pháp phân tích dữ liệu nhiễu
điện hóa đề cập đến các tìm kiếm cơ bản mà tín hiệu nhiễu điện hóa
liên quan đến ăn mòn nhất là ăn mòn cục bộ. Thống kê các phương
pháp ENA và khuynh hướng phát triển hiện nay.
Từ phần tổng quan này chúng tôi đã lựa chọn hướng ứng dụng và
phát triển phương pháp thu thập dữ liệu nhiễu điện hóa và phân tích
bằng kĩ thuật sóng nhỏ (Wavelet Transform Analysis) cho các phản
ứng điện hóa bề mặt trong nghiên cứu ăn mòn cục bộ kim loại phù
hợp điều kiện Việt Nam, đây là nội dung chính của luận án.
Luận án này không xây dựng thuật toán biến đổi sóng nhỏ mà chỉ
áp dụng chúng trên công cụ sẵn có để phân tích tín hiệu.Tuy nhiên, để
có cái nhìn đầy đủ về phép biến đổi sóng nhỏ, chúng tôi trình bày các
phần cơ bản của phép biến đổi sóng nhỏ liên tục và phép biến đổi
sóng nhỏ rời rạc. Đặc biệt là kĩ thuật đa phân giải, một kĩ thuật
thường được sử dụng trong việc phân tích tín hiệu để lọc nhiễu, tách
trường và xác định đột biến tín hiệu. Phần ứng dụng của phép biến
đổi sóng nhỏ tập trung hai ứng dụng chính đó là:
 Ứng dụng trong nghiên cứu đột biến tín hiệu: Số liệu tín
hiệu bất kỳ có thể được phân tích ở vùng sóng nhỏ bằng phép biến
đổi sóng nhỏ rời rạc. Các hệ số sóng nhỏ được tách ra thành các tỉ lệ
khác nhau mà ở mỗi tỉ lệ sẽ tương ứng với một giá trị gần đúng của
tín hiệu so với tín hiệu ban đầu. Vậy những tần số thấp sẽ được biểu
diễn bởi rất ít các hệ số khai triển sóng nhỏ và các hệ số đó sẽ định vị
chủ yếu ở các mức khai triển thô (mức cao). Ngược lại, các tần số cao
sẽ biểu diễn bởi nhiều hệ số khai triển ở mức khai triển tốt nhất (mức

thấp). Vậy, chúng ta có thể xác định vị trí các nguồn đột biến (ví dụ
đột biến dòng/ thế do ăn mòn cục bộ) nhỏ từ nguyên lý chồng chất
sóng điện từ bằng cách chọn lựa mức độ phân giải và các hệ số sóng
nhỏ chi tiết thích hợp. Công việc chúng ta là tìm các hệ số sóng nhỏ
chi tiết có biên độ lớn hơn các hệ số khác quanh nó; Sự định vị của

Footer Page 6 of 89.

-4-


Header Page 7 of 89.
các hệ số sóng nhỏ chi tiết cực đại cho ta mối tương quan với sự định
vị các nguồn đột biến thặng dư.
 Ứng dụng trong nghiên cứu tín hiệu nhiễu điện hóa của
quá trình ăn mòn: ứng dụng này đã được giới thiệu để giải quyết
những hạn chế của phương pháp FFT và MEM cho việc giải thích
những biến động bất thường của dữ liệu nhiễu điện hóa. Biến đổi
sóng nhỏ được phân loại thành các biến đổi sóng nhỏ rời rạc và biến
đổi sóng nhỏ liên tục. Chúng có thể được sử dụng để đại diện cho tín
hiệu thời gian liên tục. CWT hoạt động trên mọi quy mô và có thể
biến đổi trong khi DWT sử dụng một tập hợp cụ thể về tỉ lệ và giá trị
biến đổi hoặc lưới đại diện. Lợi ích này đã được sử dụng để loại bỏ
xu hướng trôi nền hay tách các phần dữ liệu cho các bước phân tích
khác.

Chương 2. Điều kiện và phương pháp thực nghiệm
2.1. Điều kiện thiết lập sơ đồ hệ đo nhiễu dòng và thế điện hóa
Phương pháp mạch điện trở bằng không (ZRA hình 2.1a) dựa trên
hai tiêu chuẩn chính là ASTM G199 09 và ASTM STP 1277. Phương

pháp này cho phép thu thập cả dữ liệu nhiễu dòng và thế mà không
gây bất kỳ tác động nào đến hệ điện hóa. Dữ liệu được thu thập bằng
kĩ thuật số trên nền Labview và hercules.

In1

In2

Z1

WE 1

Z2

WE 2

RE
V Em
A

Im

(a)

Hình 2.1. Sơ đồ mạch (a); Hệ đo thực cho nhiễu điện hóa (b).
Hệ đo nhiễu điện hóa được thiết lập với hai điện cực giống hệt
nhau làm điện cực đối và điện cực làm việc. Các dòng điện chạy giữa
hai điện cực làm việc được đo theo phương pháp ZRA. Điện thế được
đo giữa các điện cực làm việc với điện cực so sánh (kể từ khi được
ngắn mạch với nhau, cả hai điện cực “làm việc” có cùng điện thế). Hệ


Footer Page 7 of 89.

-5-


Header Page 8 of 89.
đo điện hóa được đặt trong một lồng Faraday (lồng bằng lưới thép nối
đất) để cách điện từ các nguồn gây nhiễu bên ngoài. Các thiết bị đo
này được đánh giá bằng một tế bào điện tử giả.
2.2. Vật liệu và môi trường thử nghiệm
2.2.1. Vật liệu thử nghiệm.
A - Thép các bon thấp thử
nghiệm ăn mòn đều, thụ động
và ăn mòn cục bộ.
B - Thép hợp kim 304 với
quy trình thử nghiệm ăn mòn
khe và ăn mòn lỗ trong dung
dịch FeCl3 theo ASTM G-78.
C - Thử nghiệm điện hóa Hình 2.2. Mẫu sử dụng trong nghiên
trong axit sulfuric theo ASTM.
cứu nhiễu điện hóa.
Thông thường, diện tích bề mặt điện cực làm việc đã được khuyến
cáo tối thiểu 10 cm2 trong dung dịch chất điện li. Tỉ lệ diện tích bề
mặt và thể tích dung dịch thử là 13,9 cm2/ lít.
Các mẫu kim loại (hình 2.2) được phân tích thành phần nguyên tố
theo ASTM E415-08; ASTM E1251-11trên thiết bị ARL 3460 OSE
của Trung tâm đánh giá hư hỏng vật liệu – Viện khoa học vật liệu –
Viện Hàn lâm khoa học và công nghệ Việt Nam.
Bảng 2.1: Thành phần nguyên tố mẫu thử nghiệm (% khối lượng ).


Fe

C

99,6818 0,0078

Mo

V

0,0035

0,0013

Fe

C

71,0153 0,0565

Mo

V

0,2904

0,0575

Footer Page 8 of 89.


Thép cacbon thấp
Si
S
P
Mn
0,0112 0,0061

Cu

W

Ti

0,0128 0,0010

Si

Sn

0,0477 0,0055

Thép hợp kim 304
S
P
Mn

0,4463 0,0053

Cu


0,0167 0,1233

0,0331 1,3594

W

Ti

0,2779 0,0425

Sn

0,0073 0,0097

-6-

Ni

Cr

0,0156

0,0425

Co

Al

0,0028


0,0468

Ni

Cr

8,0860

18,2010

Co

Al

0,1061

0,0058


Header Page 9 of 89.
2.2.2. Môi trường thử nghiệm
Môi trường thử nghiệm ăn mòn là dung dịch nước chứa các ion
xâm thực được trình bày chi tiết trong bảng 2.2 dưới đây:
Bảng 2.2: Môi trường thử nghiệm ăn mòn.
Hệ thử
ăn mòn

Mẫu kim loại


Dung dịch

A

Thép cacbon
thấp

axít Xitric
C6H8O7 0,1M

B
C
D
E

Chế độ

Ghi chú

ASTM
G199-09
25°C
ASTM G599 ở 25°C

ăn mòn
đều

Thép cacbon
thấp
Thép các bon

thấp
Thép các bon
thấp

NaCl 3,5%

ở 25°C

Ca(OH)2+NaCl
0,1M (1:1)

ở 25°C

Thép hợp kim
304

6% FeCl3
1% HCl

ASTM
G48-03 ở
25°C

H2SO4 1N

ăn mòn
đều
ăn mòn
đều
ăn mòn

cục bộ
ăn mòn
cục bộ

Hệ A và B sẽ cho một chế độ ăn mòn đều; hệ B sẽ cho một chế độ
ăn mòn hỗn hợp và hai hệ còn lại (D & E) sẽ là ăn mòn cục bộ.
2.2.3. Thiết bị và chế độ đo đạc và thử nghiệm
Quy trình chuẩn bị mẫu và xử lý mẫu sau các chu kỳ thử nghiệm
được tiến hành theo ISO 847 – 91và ASTM G1 – 81. Dung dịch và
chế độ làm việc được ghi trong bảng dưới 2.3 dưới đây:
Bảng 2.3: Quy trình chuẩn bị và xử lý bề mặt mẫu.
Kim loại

DD tẩy sản phẩm ăn mòn

HCl (=1,19g/ml) – 100 ml
Thép các
Hexametylentetramin– 3,5g
bon thấp
Nước cất 1 lít
NaOH
– 200 g
Thép
Zn
bột
– 50 g
hợp kim
304
Nước cất 1 lít


Footer Page 9 of 89.

-7-

Nhiệt độ, 0C

Thời gian

20 - 30

10 phút

sôi

20 phút


Header Page 10 of 89.
Mẫu thử ăn mòn khe theo ASTM G-48, 2005. Khe nhân tạo được
làm bằng Teflon (PTFE). Cố định khe bằng vít và bu lông nhựa kèm
một đệm cao su đàn hồi. Vít và bu lông nhựa kèm một đệm cao su là
cô lập về điện với các mẫu và dung dịch. Bề mặt điện cực sau khi
đánh bóng đến cỡ hạt mài 600 được làm sạch bằng xà phòng và
axetone, để khô tự nhiên một giờ trước khi thử nghiệm. Các phép đo
EN được lặp lại 3 lần cho một chế độ thử nghiệm.
Một bình điện hóa phù hợp được mô tả trong tiêu chuẩn ASTM
G5 với một ngoại lệ quan trọng là vị trí đặt điện cực. Trong toàn bộ
quá trình thực nghiệm, Các điện cực được thiết lập cùng cách cố định
khoảng cách giữa hai bề mặt điện cực làm việc và điện cực đối là như
nhau (1 cm) cho toàn bộ các thí nghiệm.

Hệ đo nhiễu điện hóa được thiết lập như sơ đồ hình 2.1. Đo nhiễu
dòng (CN) được thực hiện trên thiết bị hp 34401A Multimeter, nhiễu
thế (PN) được đo giữa cặp điện cực làm việc với điện cực so sánh
trên thiết bị HIOKI 3801 - 50 Digital Hitester. Những nguồn nhiễu
tạo ra bởi các thiết bị đo không thể loại bỏ được đánh giá trước.
Bảng 2.4: Thiết bị đo điện hóa sử dụng trong nghiên cứu.
Tên thiết bị

Nước sản suất Đơn vị quản lý và sử dụng

AUTOLAB G30

Hà Lan

HIOKI-3801-50
Ocilloscope LeCroy
424
hp 34401A
Multimeter

Nhật Bản

Viện Kỹ thuật nhiệt đới
Đại học Giao thông vận tải
Viện Kỹ thuật nhiệt đới

Nhật Bản

Viện Kỹ thuật nhiệt đới


Mỹ

Viện Vật lý ứng dụng và
thiết bị khoa học

2.3. Phương pháp phân tích kết quả dữ liệu nhiễu điện hóa
Dữ liệu gốc tín hiệu nhiễu điện hóa được sử lý bằng bộ lọc kĩ thuật
số trong dải tần từ 10-3 13 Hz, tiếp theo là loại xu hướng để lấy tín
hiệu biên độ dao động bởi các tín hiệu dòng và thế nhiễu có giá trị
cho ăn mòn đều nằm trong vùng tần số thấp này. Tùy vào mục đích
và điều kiện nghiên cứu mà có thể tiến hành lọc tiếp trong các giải tần
khác nhau (0,0156 2 Hz cho 1024 điểm dữ liệu tùy tốc độ xử lý).

Footer Page 10 of 89.

-8-


Header Page 11 of 89.

WE1

(a)

R

RE

+
ZRA

-

WE2

Đo dòng
V = IR

Đo thế

+
-

Hệ số bộ lọc
(≥ 95%)

Bộ lọc
nhiễu trắng

Xác suất
thống kê

Bộ lọc
thông thấp

(b)

Bộ lọc
băng thông

Điều kiện tín hiệu


Phân tích

Xác suất
thống kê

Bộ lọc
thông thấp

Chuẩn hóa

F

Xn

FFT; STFT; W…

H

Xn

Hanning

m

Xn

Loại đường trung bình

ECN


Đánh giá sự sai khác

(c)

Xn

EPN

ESD(Xn)k

Dự đoán
tuyến tính

ECN

Bộ lọc
băng thông

PSD(Xn)k

Bộ lọc
nhiễu trắng

EPN

Hình 2.3. Sơ đồ chung các bước thu thập và phân tích dữ liệu nhiễu
điện hóa cho một hệ điện hóa.

Footer Page 11 of 89.


-9-


Header Page 12 of 89.
2.3.1. Phân tích mật độ phổ công suất dữ liệu nhiễu điện hóa
Trong kĩ thuật này, các dữ liệu EN trong miền thời gian ( ) được
chuyển vào miền tần số ( ) sử dụng thuật toán khai triển nhanh
Fourier (FFT) và được xác định là đường PSD. Đường này có thể cho
nhiều thông tin về loại hình, cơ chế và tôc độ ăn mòn. Các mối quan
hệ sau đây cho thấy mối liên hệ giữa mật độ phổ công suất của điện
áp hay dòng (PSD) và tần số:
(2.1)
2
2
Trong đó S là độ dốc thể hiện dưới dạng log(V hoặc A Hz-1)/
log(Hz) và A là cường độ nhiễu điện thế hoặc dòng của đường PSD
thể hiện dưới dạng log(V2 hoặc A2 Hz-1). Độ lớn của đoạn bằng phẳng
phía trên (A) có thể được coi là dấu hiệu cho thấy tốc độ và mức độ
nghiêm trọng của quá trình ăn mòn cho nhiễu thế hay dòng. Trong
khi đó, độ dốc (S) có thể liên quan đến loại ăn mòn sinh ra nhiễu. Các
phân tích tần số thường được thực hiện trong mỗi khối chứa 1024
(hoặc 2n) điểm trong dữ liệu EN.
2.3.2. Phân tích mật độ phổ năng lượng dữ liệu nhiễu điện hóa
Sử dụng kĩ thuật biến đổi sóng nhỏ (WT) dựa trên trực giao db2
hoặc db4, sau đó sử dụng FFT. Toàn bộ tính toán dựa trên phần mềm
Matlab, Originlab hoặc Kaleida Graph cho tín hiệu ở trạng thái dừng.
Các dữ liệu sóng nhỏ EN thu thập được phân tách bảy cấp (d1-d7, và
s7). Sau đó, các phần nhỏ của năng lượng liên kết với mỗi đơn vị cơ
bản chi tiết ( ) được tính như sau:

(j = 1,2….,7)
(2.2)
Trong đó d là đơn vị cơ bản chi tiết và N là tổng số điểm dữ liệu
cho mỗi lần ghi. E là năng lượng tổng tương đương với tổng số bảy
đơn vị cơ bản chi tiết (d1-d7), khấu trừ sự đóng góp của s7.
(2.3)
Các phương pháp biến đổi trực giao dựa trên sóng nhỏ thời gian
gần đây đã được đề xuất cho việc ước lượng độ dốc  và kích thước
phân đoạn D. Đối với phân tách sóng nhỏ trực chuẩn rời rạc, các mối
quan hệ có thể được thay thế bằng quan hệ sau (tuân theo định luật
năng lượng):
(2.4)

Footer Page 12 of 89.

- 10 -


Header Page 13 of 89.
Trong đó
là phương sai của đơn vị cơ bản chi tiết dj, và có thể
được tính bằng phương trình sau đây:
với j = 1,2….,7
Độ dốc β thu được từ đường

(2.5)

so với mức j:

(2.6)

Việc xác định các kích thước phân đoạn có thể được tính như sau:
(2.7)
Kích thước phân đoạn đã được tính: D = 2,5 - 0,5β. Kích thước
phân đoạn cũng có thể cũng được sử dụng để mô tả đặc tính phức tạp
của các tín hiệu.
X
cD1

cA1
cD2

cA2
cA3

cD3

C:
L:

cA3 cD3

cD2

cD1

Lendth of Lendth of Lendth of Lendth of Lendth of

cA3

cD3


cD2

cD1

X

Hình 2.4. Sơ đồ thuật toán tính toán mật độ năng lượng.

Chương 3. Kết quả nghiên cứu
3.1. Khảo sát nhiễu của hệ thiết bị sử dụng trong nghiên cứu
3.1.1. Phân tích đánh giá các điều kiện đo đạc thu thập dữ liệu
Phân tích, đánh giá tín hiệu nhiễu trắng hệ thiết bị đo dòng theo sơ
đồ hình 2.1. Sử dụng tế bào điện hóa giả của AUTOLAB G30 đo mẫu
trắng.
Kết quả mật độ phổ công suất (hình 3.1b) có giá trị LogPSDi là
hằng số theo thời gian cũng như tần số thấp trong khoảng giá trị  -19
A2 /Hz ứng với f < 10-2 Hz. Mật độ phổ công suất tín hiệu nhiễu trắng
cuộn lại ở tần số  0,1 Hz tại giá trị khoảng -18 A2 /Hz sau đó giảm
về giá trị đầu và ổn định ở vùng tần số cao hơn.

Footer Page 13 of 89.

- 11 -


-16

2.0


Đã loại nhiễu trắng (-3dB.mV)(a)

(b)

Log PSDi , A2/Hz

Biên độ nhiễu dòng, A 10 -7

Header Page 14 of 89.

-18

1.0

0.0

-20

-1.0

-22

Chưa loại nhiễu trắng

-2.0

200

400


600

-24

800

Thời gian, giây

-3

-2

-1

0

1

LogF (Hz)

Hình 3.1. Phổ dữ liệu tín hiệu nhiễu trắng của thiết bị hp 34401A.
Kết quả phân tách 7 bậc tín hiệu bằng sóng nhỏ 1D với db4 (hình
3.2) với dữ liệu dòng nhiễu mẫu trắng ở trên cho thấy: i) Tín hiệu
dạng sóng dải đều trên toàn bộ các bậc tách. ii) Biên độ nhiễu của
thiết bị phù hợp ngưỡng đo (10-8  10-9 A). iii) Có thể loại đươc tín
hiệu này bằng bộ lọc số hoặc tương tự.
-9

5


0

-5
0

-9

500

1000 1500 2000 2500 3000 3500

x 10

0

-5
0

500

1000 1500 2000 2500 3000 3500

0

-5
0

5
D4


D1

5

-8

500

1000 1500 2000 2500 3000 3500

500

1000 1500 2000 2500 3000 3500

500

1000 1500 2000 2500 3000 3500

0

-8

5 x 10

x 10

0

-5
0


1000 1500 2000 2500 3000 3500

x 10

-5
0

Signal

D5

-2
0

500
-8

x 10

0

1000 1500 2000 2500 3000 3500

0

-8

2


x 10

-5
0 -8 500
x 10
5
D2

5
D6

-8

x 10

D3

D7

5

500

1000 1500 2000 2500 3000 3500

0

-5
0


Hình 3.2. Bảy bậc tách tín hiệu nhiễu trắng của thiết bị hp 34401A.
3.1.2. Phân tích thống kê dữ liệu
Phân tích thống kê ở khoảng thời gian ổn định (cho 1024 điểm)
cho dữ liệu dòng nhiễu trắng của thiết bị và dữ liệu đo trên mẫu thử.
Mẫu thử là mẫu ăn mòn khe với điều kiện thử nghiệm trình bày trong
chương 2.

Footer Page 14 of 89.

- 12 -


Header Page 15 of 89.

Độ lệch chuẩn

Kết quả phân tích thống kê
10 -5
2,8210 -6 A
cho thấy các tín hiệu nhiễu điện
hóa do ăn mòn bề mặt kim loại so
10 -6
7,43210 -7 A
với tín hiệu nhiễu của thiết bị là
cao hơn từ 35  100 lần (hình
10 -7
3.3). Các kết quả tính toán cho độ
2,45410 -8 A
-8
nghiêng và độ nhọn không tiết lộ

10
mối tương quan nào.
hp 34401A Khe+mặt ngoài Khe
Việc phân tích độ lệch chuẩn
Hình 3.3. Mẫu sử dụng trong
chỉ ra rằng tham số này cho phép
nghiên cứu nhiễu điện hóa.
đánh giá độ tin cậy của các kết quả nghiên cứu đồng thời có thể thể
hiện mức độ xâm thực của dung dịch cũng như sự hiện diện của ăn
mòn kim loại trong các môi trường.
Nhận xét:
Vùng tần số thấp (< 10-2 Hz) và tần số cao (> 0,2 Hz) không gây
ảnh hưởng nhiễu đến tín hiệu đo do các dạng ăn mòn cục bộ, thụ
động và ăn mòn đều nằm trong hai khoảng tần số này.
Tín hiệu có mật độ công suất hay năng lượng >> -19 A2 /Hz đều
có thể sử dụng hệ thiết bị này để đo đạc và phân tích tín hiệu nhiễu
điện hóa.
3.2. Sử dụng kĩ thuật nhiễu điện hóa nghiên cứu ăn mòn cho thép
cacbon thấp
3.2.1. Biểu hiện nhiễu điện hóa ăn mòn đều của thép cacbon thấp

(a)
-440

H2SO4 1N
-480
-520

xitric 0,1M


-560
0

1.200 2.400 3.600 4.800 6.000 7.200

Thời gian, giây

Mật độ dòng nhiễu.A 10 -5/cm2

Điện thế nhiễu, mVSCE

Dữ liệu gốc nhiễu điện hóa dòng và thế của thép cacbon thấp được
ghi và biểu diễn trên hình 3.4.
(b)

6

H2SO4 1N

4
2

xitric 0,1M
0
-2

0

1.200 2.400 3.600 4.800 6.000 7.200


Thời gian, giây

Hình 3.4. Biểu hiện thế và dòng nhiễu điện hóa của thép cacbon thấp
theo thời gian trong các môi trường ăn mòn khác nhau.

Footer Page 15 of 89.

- 13 -


Header Page 16 of 89.

4000 5000

6000 7000

2000

3000

4000 5000

6000 7000

2000

3000

4000 5000


6000 7000

2000

3000

4000 5000

6000 7000

0

-2
0
1000
x 10 -6
5

D2

3000

D1

0
1000

3000

4000


5000

6000 7000

2000

3000

4000

5000

6000 7000

2000

3000

4000

5000

6000 7000

2000

3000

4000


5000

6000 7000

0

-5
0 -71000
x 10
5
0
-50

1000

6000 7000

2000

3000

4000 5000

6000 7000

2000

3000


4000 5000

6000 7000

2000 3000

4000 5000

6000 7000

2000

3000

4000

5000

6000 7000

2000

3000

4000

5000

6000 7000


2000

3000

4000

5000

6000 7000

2000

3000

4000

5000

6000 7000

0
-5
0

1000

x 10-7
5
0


-50
1000
x 10-6
1

D2

2000

0

-50
1000
x 10-7
5

4000 5000

xitric 0,1M - 2h đầu thử nghiệm

0

-10
1000
x 10-7
5

3000

0


-1
0
1000
x 10 -4
5

D3

-7

Signal

0
-1
0
1000
x 10 -6
1

2000

0

-5
0
1000
x 10 -5
1


0

-10
1000
x 10-6
2

D1

D7

D6
D5

2000

0
-1
0
1000
x 10 -6
1

x 10
1

x 10 -6
2

D3


0
-1
0
1000
x 10 -6
1

-1
0

D4

H 2 SO4 1N - 2h đầu thử nghiệm

x 10 -6
1

0

-2
0 -41000
x 10
2

Signal

D4

D5


D6

D7

Tín hiệu gốc nhiễu dòng trong hai giời thử nghiệm và tách 7 bậc
bằng sóng nhỏ 1D với db4 (hình 3.5). Toàn bộ tín hiệu đều thể hiện
rất đặc trưng cho ăn mòn đều, đó là đều xuất hiện với tần suất lớn trên
toàn bộ 7 bậc tách với 7 khoảng tần số (từ 2 Hz đến 0,0156 Hz ).

1
0
0

1000

Thời gian, giây
-16

0.5

(a)
1

Dấu hiệu
ăn mòn đều

-18

-20


(b)
xitric 0,1M

0.4

Ed , A2 /Hz

LogPSDi , A 2 /Hz

-14

0.3

2

0.2

-22

1 - H2 SO4 1N
-24
2 - axít xitric 0,1M
Thép cacbon thấp 2 giờ TN
-26
-4
-3
-2
-1
0


LogF, Hz

0.1

H2 SO4 1N

0.0
1

1

2

3

4

5

Bậc tách, J

6

7

Hình 3.5. Bảy bậc tách tín hiệu nhiễu dòng theo thời gian và phổ
PSDi, phân bố ESDi 2 giờ thử nghiệm ăn mòn.

Footer Page 16 of 89.


- 14 -


Header Page 17 of 89.
Từ biên độ dao động, kết quả thu được phổ PSD và ESD (hình
3.5a và b). Phổ công suất dòng cho biểu hiện đặc trưng ăn mòn đều
tập trung ở phần tần số cao cuộn lại thành cung rõ ràng hơn so với
phổ công suất thế. Ăn mòn đều tập trung dao động ở phía tần số cao
thể hiện dao động tương ứng với mật độ năng lượng lớn (tập trung ở
D1 - D2 ứng j = 1 - 2 trên phổ ESD). Nhưng với mật độ phổ công
xuất không phù hợp bởi phần có công suất cao lại ở tần số thấp hơn.
-36

H2 SO 4 1N;  = 0,6438; D = 2,1781

-38

Log 2  j 2

Hệ số góc của phương
sai năng lượng theo bậc
tách có giá trị tỉ lệ tốc độ
ăn mòn (hình 3.6). Hệ số
kích thước phân đoạn (D
> 2) mô tả đặc tính của
các tín hiệu ăn mòn đều
tương ứng với hình thái
bề mặt ăn mòn sau thử
nghiệm - hình 3.7.


-40
-42
-44

-46
-48

 = 0,6011; D = 2,1995; xitric 0,1M
1

2

3

4

5

6

7

Bậc tách, J

Hình 3.6. Phương sai năng lượng theo
hệ số phân chia cơ bản Dj.

Hình 3.7. Hình ảnh bề mặt (100) mẫu thép cacbon thấp sau 16 giờ
khảo sát ăn mòn bằng kĩ thuật nhiễu điện hóa.

(C - D - bề mặt chưa tẩy sản phẩm ăn mòn; C’ – D’ bề mặt sau tẩy sản
phẩm ăn mòn, lần lượt trong dung dịch a xít xitric 0,1M và H2SO4 1N)

Footer Page 17 of 89.

- 15 -


Header Page 18 of 89.
3.2.2. Biểu hiện nhiễu điện hóa quá trình thụ động và ăn mòn cục
bộ của thép cacbon thấp trong môi trường pH cao có chứa ion Cl-

Biên độ dòng nhiễu, A  10 -7

Thép cacbon thấp được khảo sát trong môi trường 0,1M Ca(OH)2
+ NaCl (1:1). Trong hệ này, thụ động bề mặt của điện cực thép
carbon thấp đã được dự kiến trong dung dịch thử. Tại một số chỗ bề
mặt màng thụ động chưa hoàn chỉnh có sự hấp thụ các ion halogen
Cl-; tại đó kim loại bị hoà tan với tốc độ đủ lớn tạo lỗ phát sinh ăn
mòn lỗ.
Biến động bất
4.0
thường thể hiện
2.0
trên phổ nhiễu hai
0.0
giờ đầu chính là
-2.0
quá trình bề mặt
-4.0

Vùng thụ động
Vùng ăn mòn lỗ
-6.0
thép cacbon thấp
chuyển sang trạng
0
3.600
7.200 10.800 14.400 18.000 21.600
Thời gian, giây
thái thụ động
trong môi trường Hình 3.8. Phổ biên độ nhiễu dòng thép cacbon
thấp theo thời gian.
thử nghiệm này.
Dòng nhiễu có xu hướng chuyển phân cực từ catốt sang anốt sau
khoảng 320 giây. Giai đoạn sau cho thấy biến động của các hoạt động
điện hóa bề mặt cục bộ cao được chỉ ra bởi sự hiện diện số lượng thời
gian ngắn đã thu thập được quan sát (hình 3.8).
Kết quả được phân tích chi tiết hơn bằng mật độ phổ công suất
cho dòng và thế nhiễu trình bày trên hình 3.9.
4.2.2.1.Biểu hiện nhiễu điện hóa quá trình thụ động
Kết quả phân tách 7 bậc và tính toán năng lượng được trình bày
trên hình 3.9 với hai phân đoạn thời gian bao gồm chuyển trạng thái
thụ động (350 giây đầu) và thụ động thời gian sau đó.
Mật độ công suất và năng lượng tương đối tối đa cho cả hai trạng
thái theo thời gian cho quá trình thụ động đều tại hệ số đơn vị cơ sở
D2, với một tần số tương đối cao 0,5 - 1 Hz ứng với khoảng thời gian
ngắn là 1 - 2 giây.

Footer Page 18 of 89.


- 16 -


D3
15000

17500

20000

12500

15000

17500

20000

12500

15000

17500

20000

12500

15000


17500

D2

12500

D1

x 10-7
2
0
-2
10000
x 10-7
5
0
-5
10000
x 10-7
2
0
-2
10000
x 10-7
2
0
-2
10000

Signal


D4

D5

D6

D7

Header Page 19 of 89.

20000

x 10-7
5
0
-5
10000
x 10-7
1
0
-1
10000
x 10-8
5
0
-5
10000
x 10-6
1

0
-1
10000

Thời gian, giây

12500

15000

17500

20000

12500

15000

17500

20000

12500

15000

17500

20000


12500

15000

17500

20000

Đặc trưng thụ động

0.6

(a)

2.500 – 7.200s

-18

0 – 7.200s
0.4

Ed

Log PSDi, A2 /Hz

-16

-20

0.2

-22
0.0
-24

-3

-2

-1

0

1

1

2

Log f, Hz

3

4

5

Bậc tách, J

6


7

Log 2  j2

Hình 3.9. Bảy bậc tách tín hiệu nhiễu dòng theo thời gian và phổ
PSDi, phân bố ESDi 2 giờ thử nghiệm ăn mòn.
-48
Độ dốc β và kích thước phân
0 – 7.200s :  = 0,1257; D = 2,4372
đoạn D được tính toán từ dữ liệu
-50
và thể hiện trong hình 4.10 từ
-52
log2 . Kết quả cho thấy trong
-54
cả hai trạng thái thụ động thì β
có giá trị độ dốc thấp và D > 2.
-56
2.500s -7.200s:  = 0,3612; D = 2,3194
Tín hiệu EN trong điều kiện
-58
1
2
3
4
5
6
7
thụ động chủ yếu nằm trong các
Bậc tách, J

tín hiệu giống ăn mòn đều
Hình 3.10. Phương sai năng lượng
nhưng tần số thấp hơn một bậc
theo hệ số phân chia cơ bản Dj.
do vậy giá trị độ dốc của β thấp.
4.2.2.2. Biểu hiện nhiễu điện hóa ăn mòn cục bộ
Biến động mạnh của cả dòng và thế trong khoảng 15.000 đến
35.000 giây (khoảng 4 đến 10 giờ thử nghiệm – hình 3.8) có thể là do
màng thụ động đã bị thủng một cách đáng kể. Tuy nhiên, tổng điện
thế bề mặt vẫn nằm trong vùng thụ động của thép (theo giản đồ E –

Footer Page 19 of 89.

- 17 -


Header Page 20 of 89.

D3
15000

17500

20000

12500

15000

17500


20000

12500

15000

17500

20000

12500

15000

17500

D2

12500

D1

x 10-7
2
0
-2
10000
x 10-7
5

0
-5
10000
x 10-7
2
0
-2
10000
x 10-7
2
0
-2
10000

Signal

D4

D5

D6

D7

pH) dẫn đến ăn mòn cục bộ với tốc độ hòa tan rất nhỏ. Biên độ dao
động của dòng theo thời gian có biểu hiện rất đặc trưng của ăn mòn
cục bộ (ăn mòn lỗ).

20000


x 10-7
5
0
-5
10000
x 10-7
1
0
-1
10000
x 10-8
5
0
-5
10000
x 10-6
1
0
-1
10000

Thời gian, giây

0,3
0,2

-22

-24
-3


17500

20000

12500

15000

17500

20000

12500

15000

17500

20000

12500

15000

17500

20000

Log 2  j2


0,4

-20

15000

Log 2 j;2  = 1,1452; D = 1,9274 -48
E jd
-50
-52
-54
-56
-58

0,5
-18

Ed , A2 /Hz

LogPSDi , A2 /Hz

-16

12500

0,1
0.0

-2


-1

LogF (Hz)

0

1

1

2

3

4
5
Bậc tách, J

6

7

Hình 3.11. Bảy bậc tách tín hiệu nhiễu dòng theo thời gian và phổ
PSDi, phân bố ESDi.
Giá trị đỉnh ESD tương đối của ăn mòn lỗ trong trường hợp này
được xác định tại vị trí của D7 (Hình 3.11). Chúng có một tần số
tương đối thấp từ 0,0312 - 0,0156 Hz, khoảng thời gian dài 32 - 64
giây. Kết quả này chỉ ra rằng ăn cục bộ là một quá trình chậm với tần
số thấp và khoảng thời gian dài. Nhưng tại D2, năng lượng của tín

hiệu thụ động vẫn chiếm ưu thế (tương ứng là biểu hiện cuộn lại ở
phổ PSD có dạng giống ăn mòn đều) bởi bề mặt kim loại vẫn hình
thành thụ động tiếp tục trong môi trường này.
Độ dốc β trong điều kiện ăn mòn này có giá trị cao (β = 1,1452).
Các kích thước phân đoạn D của thụ động lớn hơn 2 nhưng D của ăn
mòn lỗ thấp hơn 2 (D = 1,9274), điều này có thể giải thích rằng độ
sâu ăn mòn của ăn mòn lỗ là lớn hơn so với độ dày của màng thụ
động hình thành trên kim loại. Ăn mòn lỗ luôn xảy ra trong khu vực
cục bộ do sự cố của màng thụ động và ion có tính ăn mòn như Cl-.

Footer Page 20 of 89.

- 18 -


Header Page 21 of 89.
Biên độ nhiễu thế, mVSCE

Biên độ nhiễu dòng, A 10 -7

Biên độ dao động cho
4
1
Đặc trưng cục bộ
thời gian ngắn (hình 3.12)
PN
của nhiễu dòng rất đặc
2
0.5
trưng cho quá trình hình

0
0.0
thành lỗ tại vị trí màng
-2
bắt đầu bị khuyết tật do
-0.5
CN
Cl- có mặt ngay từ đầu
-4
(hoặc khuếch tán qua
-1
15.400 15.600 15.800 16.000 16.200 16.400 16.600
màng thụ động) trên bề
Thời gian, giây
mặt kim loại. Dạng dao Hình 3.12. Tín hiệu nhiễu dòng đặc trưng
động nhiễu dòng này đặc
ăn mòn lỗ trong môi trường thụ động.
trưng cho trạng thái lỗ giả
bền và lan truyền.
a

1 giờ TN

c

b

6 giờ TN

16 giờ TN


Hình 3.13. Hình ảnh (100) bề mặt thép cacbon thấp trong và sau
khảo sát ăn mòn cục bộ trong dung dịch 0,1M Ca(OH)2+NaCl (1:1).
Những dữ liệu nhiễu điện hóa đã phân tích ở phần trên được đối
chiếu chi tiết của bề mặt của mẫu thử nghiệm liên quan đến sự ăn
mòn cục bộ với kính hiển vi, tức là sự hiện diện và tính chất của hố
do bị ăn mòn cục bộ như thể hiện trong hình 3.13.

Footer Page 21 of 89.

- 19 -


Header Page 22 of 89.
3.2.3. Biểu hiện nhiễu điện hóa ăn mòn hỗn hợp của thép cacbon
thấp
Hầu hết các nghiên cứu ăn mòn đều cho rằng thép cac bon thấp
biểu hiện ăn mòn hỗ hợp trong môi trường NaCl. Nhưng các kết quả
về tốc độ ăn mòn đều tính toán dạng ăn mòn đều.

4000

5000

6000

7000

2000


3000

4000

5000

6000

7000

D2

D6

3000

D5

D1

0

-20
1000
-8
5 x 10

2000

3000


4000

5000

6000

7000

2000

3000

4000

5000

6000

7000

Signal

D4

0
-5
0
1000
x 10-7

1
0
-1
0

1000

0
-2
0
1000
-6
5 x 10

-5
0
1000
-4
1 x 10

4000

5000

6000

7000

2000


3000

4000

5000

6000

7000

2000

3000

4000

5000

6000

7000

2000

3000

4000

5000


6000

7000

0.5
0
0

1000

-15

0.5

Log2 j2 ; =0,8096; D=2,0952
Ejd

-47
-48

-19

3000

0

Thời gian, giây

-17


2000

0
-5
0
1000
-6
5 x 10

Log 2  J 2 (2h)

LogPSD, A2 /Hz(2h)

2000

0.4

-49

-21

0.3

-50

0.2

-51

-23


0.1

-52

-25

0.0

-53
-27-4

-3

-2

-1

0

1

LogF (Hz)

Ed , A2 /Hz (2h)

0
-5
0
1000

-6
2 x 10

-7
2 x 10

D3

D7

-8
5 x 10

1

2

3

4

5

Bậc tách, J

6

7

Hình 3.14. Bảy bậc tách tín hiệu nhiễu dòng theo thời gian (giây) và

phổ PSDi, phân bố ESDi 2 giờ thử nghiệm ăn mòn.
Phổ PSD dòng nhiễu (hình 3.14) quan sát thấy ở vùng tần số thấp
các dữ liệu thử nghiệm có đoạn nằm ngang nhưng không rõ ràng.
Xuất hiện của quá trình ăn mòn cục bộ xảy ra ở giai đoạn này là hợp
lý. Tại tần số cao hơn của tín hiệu dòng nhiễu xuất hiện phần cuộn lại
thể hiện cho đặc tính của ăn mòn đều. như vậy đây là một quá trình
ăn mòn hỗn hợp.
Phổ phân bố ESD (hình 3.14) tập trung ở hai đơn vị cơ sở chi tiết:
D1 thể hiện cho ăn mòn đều; D6 thể hiện cho ăn mòn cục bộ trong
khoảng tần số 0,0625 - 0,0312 Hz tương ứng 16 - 32 giây. Giá trị D
trong trường hợp này là 2,0952 ( 2) thể hiện cho quá trình ăn mòn
thép các bon thấp trong môi trường này xảy ra là hỗn hợp nhưng ăn

Footer Page 22 of 89.

- 20 -


Header Page 23 of 89.
mòn đều vẫn chiếm ưu thế hơn.
Trên hình 3.15b cho thấy bề mặt kim loại bị ăn mòn tương đối
đồng đều theo khái niệm ăn mòn đều, đồng thời thể hiện một loại các
hố miệng rộng thể hiện phần nào xu hướng ăn mòn cục bộ.
B’

B

Hình 3.15. Hình ảnh (100) bề mặt thép cacbon thấp sau khảo sát EN
ăn mòn trong dung dịch NaCl 3,5% sau 16 giờ thử nghiệm.
(B , B’ - Trước và sau khi loại sản phẩm ăn mòn)

3.2.4. Biểu hiện điện hóa thông thường của thép cacbon thấp trong
các môi trường ăn mòn

lgi, A/ cm 2

-4
-5
(2)

-6

3,5% NaCl – (4)
1N H2 SO4 –(2)
0,1M C6 H8 O7 –(3)
0,1M
Ca(OH)
+NaCl (1:1)–(1)
2
(1)

-8
-9
-0.70

(3)

(4)

-7


-0.65

-0.60

-0.55

-0.50

Giá trị điện trở, R (  )

5.000
-3

4.000
1.200
1.000
200
100

0

14

Rp
Rn

Ico rr

10
6


2
0

0,1M Ca(OH) 2NaCl 3,5% xitric 0,1M H2 SO4 1N
+ NaCl (1:1) Môi trường thử nghiệm

-0.45

Điện thế phân cực, VSCE (V)

Mật độ dòng , A 10 -4 / cm 2

Hình 3.16 biểu diễn đường cong phân cực điện hóa của thép
cacbon thấp trong các môi trường ăn mòn khác nhau (dung dịch
NaCl, H2SO4, C6H8O7 và Ca(OH)2 + NaCl) và mối tương quan Rp-Rn.

Hình 3.16. Đường cong phân cực điện hóa và mối tương quan Rp-Rn.
Hầu hết các nghiên cứu đã và đang cố gắng tìm mối tương quan
của một số thông số điện hóa nhưng các kết quả nghiên cứu đã chỉ ra
rằng chỉ có mối tương quan của điện trở phân cực và điện trở nhiễu ở
trong điều kiện ăn mòn đều. Các điều kiện ăn mòn cục bộ khác như
ăn mòn lỗ, ăn mòn khe, ăn mòn dự ứng lực … đều không thu được
bất kỳ tương quan đủ tin cậy nào và vẫn còn đang được tranh luận.

Footer Page 23 of 89.

- 21 -



Header Page 24 of 89.
3.3. Ăn mòn cục bộ của thép hợp kim 304
Hợp kim này có chứa các nguyên tố kim loại cơ bản như niken
(Ni) 11,86 %, crôm (Cr) 18 %, molypden (Mo) 2,3 %, mangan (Mn)
1,7 %. Hàm lượng Cr và Mo cung cấp khả năng bảo vệ vượt trội
chống các điều kiện oxi hóa khử.
3.3.1. Ăn mòn lỗ

50000 6000

7000

2000

3000

4000

50000 6000

7000

2000

3000

4000

50000 6000


7000

2000

3000

4000

50000 6000

7000

D2

4000

x 10-5

0

-2
0 -51000
x 10
1
0
-1
0 -61000
x 10
5
0


-5
0 -31000
x 10
1
0.5
00
1000

2000

3000

4000

50000 6000

7000

2000

3000

4000

50000 6000

7000

2000


3000

4000

50000 6000

7000

2000

3000

4000

50000 6000

7000

Thời gian, giây

-10

-30

-12

j2 , R = 0,9864

-14

-16

-18

0.6

EjD

-34

Log 2  j2

Log PSD, A2 /Hz (2h)

2

 = 2,15326; D = 1,4234

0.4

-38

-42

0.2

-20
-46

-22

-24
-4

-3

-2

-1

LogF (Hz)

0

1

-50

Ed , A2 /Hz (2h)

-5
0 -51000
x 10
2
0
-2
0
1000

3000


D1

-5
0 -51000
x 10
5
0

2000

Signal

D6

0

-50
1000
x 10-5
5
0

D4

D3

x 10-5
5

D5


D7

Kết quả nghiên cứu về nhiễu điện hóa ăn mòn lỗ trên điện cực
thép không gỉ 304 trong dung dịch FeCl3 được trình bày trên hình
3.17.

0.0
1

2

3

4

5

Bậc tách, J

6

7

Hình 3.17. Bảy bậc tách tín hiệu nhiễu dòng theo thời gian và phổ
PSDi, phân bố ESDi 2 giờ thử nghiệm ăn mòn.
Tín hiệu đặc trưng ăn mòn lỗ tập trung ở D7 của phổ ESD tương
ứng phần nằm ngang của phổ PSD. Tín hiệu có một tần số tương đối
thấp từ 0,0312 - 0,0156 Hz và có khoảng thời gian dài 32 - 64 s. Điều
đó chỉ ra rằng ăn mòn cục bộ là một quá trình chậm với tần số thấp và

khoảng thời gian dài. Góc nghiên đường logarit phương sai năng
lượng lớn. Tương ứng là kích thước phân đoạn D nhỏ hơn 2 (D =
1,4234).

Footer Page 24 of 89.

- 22 -


Header Page 25 of 89.

(a)

3
2
1
0
-1

Biên độ nhiễu dòng, A 10 -5

Biên độ nhiễu dòng, A  10 -5

Hình 3.18 minh họa kết quả một số thời gian ngắn có thể tiếp tục
làm gia tăng lỗ giả bền hoặc bền trong nghiên cứu này. Các đặc tính
biểu hiện gia tăng nhanh và phục hồi chậm của nhiễu dòng đã được
quan sát. Ngoài ra, tất cả các gai nhiễu là trong cùng một hướng.
Dòng ở thời gian ngắn là kết quả từ sự tạo mầm, phát triển và biến
mất của hố giả bền kéo dài một vài giây. Đến khi chuyển về trạng thái
ổn định thì dòng giảm chậm.

Lan truyền lỗ

2
1
0

-1

-2
-3

Tái thụ động
100 200 300 400 500 600 700

100 200 300 400 500 600 700

Thời gian thử nghiệm, giây

(b)

Thời gian thử nghiệm, giây

Hình 3.18. Lỗ giả bền (a) và lỗ bền (b).
Từ hình 4.19 (b) cho thấy khi sử dụng phương pháp phân cực điện
hóa đã tác động lên lớp sản phẩm ăn mòn bật ra khỏi miệng lỗ làm
cho lỗ phát triển sâu, rộng và miệng lỗ có dạng hình tròn. Từ kết quả
hình 3.19 (a) cho thấy bằng phương pháp nhiễu điện hóa nghiên cứu
cho quá trình ăn mòn lỗ không tác động bề mặt. Quá trình ăn mòn
xảy ra là tự nhiên. Sản phẩm ăn mòn bịt trên miệng các lỗ làm giảm
tốc độ ăn mòn của bề mặt thép. Chính các lớp sản phẩm ăn mòn này

đóng góp một phần vào dữ liệu nhiễu dòng hay thế theo cách mà ta đã
thu được.
(a)

100

100

(b)

50 m m

100 µm

200 µm

Hình 3.19. Các lỗ phát triển quan sát được trên bề mặt mẫu thép 304
(100); (a - EN sau 2 giờ; b - các lỗ sau khi đo phân cực điện thế).

Footer Page 25 of 89.

- 23 -


×