Tải bản đầy đủ (.pdf) (123 trang)

Tuyển tập bất đẳng thức trong đề thi thử quốc gia 2016 môn toán Trần tài

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.47 MB, 123 trang )

Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
TỔNG HỢP

BẤT ĐẲNG THỨC VÀ CỰC TRỊ

I.CÁC BẤT ĐẲNG THỨC THƢỜNG ĐƢỢC SỬ DỤNG
 Bất đẳng thƣ́c Cauchy (AM – GM)

  a, b  0, thì: a  b  2 a.b . D}́u "  " xảy ra khi và chỉ khi: a  b.
  a, b, c  0, thì: a  b  c  3. 3 a.b.c . D}́u "  " xảy ra khi v| chỉ khi: a  b  c.
2

Nhiều trường hợp đánh giá dạng:

ab 

3

ab
ab
abc
 a.b  
 v| a.b.c  
 
2
2
3






 Bất đẳng thƣ́c Cauchy – Schwarz (Bunhiaxcôpki)

  a, b, x, y  , thì: ( a.x  b.y )2  ( a 2  b2 )( x 2  y 2 ) . D}́u "  " xảy ra khi và chỉ khi:

a b
 
x y

  a, b, c , x , y , z  , thì: ( a.x  b.y  c.z )2  ( a 2  b 2  c 2 )( x 2  y 2  z 2 ) .
D}́u "  " xảy ra khi v| chỉ khi:

a b c
  
x y z

Nhiều trường hợp đánh giá dạng: a.x  b.y  ( a2  b2 )( x2  y 2 ).
Hệ quả. Nếu a, b, c l| c{c số thực v| x , y , z l| c{c số dương thì:
a 2 b 2 ( a  b) 2
a 2 b 2 c 2 ( a  b  c )2
v|
: b}́t đẵng thức cộng m}̂u số.
 
  
x
y
xy
x

y
z
xyz

 Bất đẳng thƣ́c véctơ
Xét c{c véctơ: u  ( a; b), v  ( x; y) . Ta luôn có : u  v  u  v


a2  b2  x2  y 2  (a  x)2  (b  y)2 . D}́u "  " xảy ra khi và chỉ khi u v| v cùng hướng.

 Một số biến đổi hằng đẳng thƣ́c thƣờng gặp



x3  y3  ( x  y)3  3xy( x  y).





x3  y3  z3  ( x  y  z)3  3( x  y)( y  z)( z  x).



x3  y3  z3  3xyz  (x  y  z) x2  y2  z2  (xy  yz  zx) .

x2  y 2  z2  ( x  y  z)2  2( xy  yz  zx).

 (a  b)(b  c)(c  a)  ab2  bc 2  ca2  (a2 b  b2 c  c 2 a).
 ( a  b)(b  c)(c  a)  (a  b  c)(ab  bc  ca)  abc.

 ( a  b)2  (b  c)2  (c  a)2  2( a2  b2  c 2  ab  bc  ca) 

2( a3  b3  c 3 )  6abc

abc

 (a  b)3  (b  c)3  (c  a)3  3(a  b)(b  c)(c  a).
( a  b) 2  ( a 2  b 2 )
2  
2  

( a  b)2 
( a  b)2 v| ab 
2
4
2
 Một số đánh giá cơ bản và bất đẳng thƣ́c phụ
Các đánh giá cơ bản thƣờng đƣợc sử dụng (không cần chứng minh lại)



.( a2  b2 )  .ab 

suy ra
 x 2  y 2  z 2  xy  yz  zx.
a.  x; y; z  0 

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

1



Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
suy ra
 ( x  y)( y  z)( z  x)  8 xyz.
b.  x; y; z  0 

c.  x; y; z 

suy ra

 3( x 2  y 2  z 2 )  ( x  y  z)2 .

suy ra
 ( x  y  z)( x 2  y 2  z 2 )  3( x 2 y  y 2 z  z 2 x).
d.  x; y; z  0 
suy ra
 ( x  y  z)2  3( xy  yz  zx).
e.  x; y; z  0 
suy ra
 x 2 y 2  y 2 z 2  z 2 x 2  xyz( x  y  z).
f.  x; y; z  0 
suy ra
 ( xy  yz  zx)2  3 xyz( x  y  z).
g.  x; y; z  0 

h.  x; y; z 


suy ra

 3( x 2 y 2  y 2 z 2  z 2 x 2 )  ( xy  yz  zx)2 .

9
suy ra

 ( x  y  z)( xy  yz  zx)  ( x  y)( y  z)( z  x).
8
Các bất đẳng thức phụ thƣờng đƣợc sử dụng (chứng minh lại khi áp dụng)
1
suy ra
j.  x; y  0 
 x 3  y 3  ( x  y) 3 .
4
1
1
2
1
1
2
suy ra
suy ra








k.  xy  1 
v|  xy  1 
2
2
2
2
1  xy
1  xy
1 x
1 y
1 x
1 y

i.  x; y; z 

suy ra
Suy ra:  xy  1 


suy ra

l.  x; y  1 

1
1
2
1
1
2
suy ra

v|  xy  1 






1  x 1  y 1  xy
1  x 1  y 1  xy

1
1
1



2
2
1  xy
(1  x) (1  y)

suy ra

m.  x; y  0;1 

1
1 x

2




1
1 y

2



2
1  xy



2

x, y  0
  2

1
 1
suy ra
n.  

   1   1  
 1 
x
 y
 xy


x  y  1
Chƣ́ng minh các đánh giá cơ bản
suy ra
 x 2  y 2  z 2  xy  yz  zx.
a. Chƣ́ng minh:  x; y; z  0 

 x2  y 2  2 x2 y 2  2 xy



Áp dụng BĐT Cauchy:  y 2  z 2  2 y 2 z 2  2 yz  x 2  y 2  z 2  xy  yz  zx. D}́u "  " khi x  y  z.
 2
2
2 2
 z  x  2 z x  2 zx
suy ra
 ( x  y)( y  z)( z  x)  8 xyz.
b. Chƣ́ng minh:  x; y; z  0 

 x  y  2 xy

nhân
Áp dụng BĐT Cauchy  y  z  2 yz  ( x  y)( y  z)( z  x)  x 2 y 2 z 2  8 xyz. D}́u "  " khi x  y  z.

 z  x  2 zx

c. Chƣ́ng minh:  x; y; z 

suy ra


 3( x 2  y 2  z 2 )  ( x  y  z)2 .

Áp dụng BĐT Cauchy – Schwarz dạng cộng m}̂u số, ta được:
x2  y 2  z2 

x2 y 2 z 2 ( x2  y 2  z 2 )



 3( x 2  y 2  z 2 )  ( x  y  z)2 . D}́u "  " khi x  y  z.
1
1
1
3

suy ra
 ( x  y  z)( x 2  y 2  z 2 )  3( x 2 y  y 2 z  z 2 x).
d. Chƣ́ng minh:  x; y; z  0 

Ta có: ( x  y  z)(x2  y 2  z 2 )  ( x3  xy 2 )  ( y 3  yz 2 )  ( z 3  zx2 )  x2 y  y 2 z  z 2 x
Áp dụng BĐT Cauchy cho từng dấu (<) ta được:
VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

2


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
( x  y  z)( x2  y 2  z 2 )  2x2 y  2 y 2 z  z 2 x  x2 y  y 2 z  z 2 x  3( x2 y  y 2 z  z 2 x). D}́u "  " khi x  y  z.

suy ra
 ( x  y  z)2  3( xy  yz  zx).
e. Chƣ́ng minh:  x; y; z  0 

Ta có: ( x  y  z)2  x2  y 2  z2  2( xy  yz  zx)  3( xy  yz  zx). D}́u "  " khi x  y  z.
suy ra
 x 2 y 2  y 2 z 2  z 2 x 2  xyz( x  y  z).
f. Chƣ́ng minh:  x; y; z  0 

Đặt: a  xy; b  yz; c  zx thì bất đẳng thức c}̀n chứng minh tương đương với:
a2  b2  c 2  ab  bc  ca : luôn đúng theo bất đẳng thức Cauchy (BĐT a.)
D}́u đẵng thức khi x  y  z hoặc y  z  0 hoặc x  y  0 hoặc z  x  0.
suy ra
 ( xy  yz  zx)2  3 xyz( x  y  z).
g. Chƣ́ng minh:  x; y; z  0 

Đặt: a  xy; b  yz; c  zx thì bất đẳng thức c}̀n chứng minh tương đương với:
(a  b  c)2  3(ab  bc  ca) : luôn đúng theo BĐT e.

D}́u đẵng thức khi x  y  z hoặc y  z  0 hoặc x  y  0 hoặc z  x  0.
h. Chƣ́ng minh:  x; y; z 

suy ra

 3( x 2 y 2  y 2 z 2  z 2 x 2 )  ( xy  yz  zx)2 .

 ( xy)2 ( yz)2 ( zx)2  Cauchy Schwarz
Ta có: 3( x 2 y 2  y 2 z 2  z 2 x 2 )  3  




( xy  yz  zx)2 .

1
1
1


D}́u đẵng thức xãy ra khi x  y  z.

i. Chƣ́ng minh:  x; y; z 

9
suy ra

 ( x  y  z)( xy  yz  zx)  ( x  y)( y  z)( z  x).
8

Cauchy

Ta có: ( x  y)( y  z)( z  x)  2 xy . yz . zx  8 xyz.
Mặt khác: ( x  y  z)( xy  yz  zx)  xyz  ( x  y)( y  z)( z  x). Suy ra:

1 
9
( x  y  z)( xy  yz  zx)    1  ( x  y)( y  z)( z  x)  ( x  y)( y  z)( z  x).
8
8



D}́u đẵng thức xãy ra khi: x  y  z.
Chƣ́ng minh các bất đẳng thƣ́c phụ
1
suy ra
j. Chƣ́ng minh:  x; y  0 
 x 3  y 3  ( x  y) 3 .
4
2

Cauchy
xy
( x  y )3
Ta có: x3  y 3  ( x  y)3  3x.y( x  y)  ( x  y)3  3. 
.(
)
x

y

 Dấu "  " khi x  y.

4
 2 
1
1
2
1
1
2
suy ra

suy ra







k. Chứng mnh:  xy  1 
v|  xy  1 
1  x2 1  y 2 1  xy
1  x 2 1  y 2 1  xy

Chứng minh: xy  1 

1
1
2


2
2
1  xy
1 x
1 y

(1)

 1
1   1

1 


B}́t đẵng thức (1) tương đương với: 
0
  
2
2
1  xy   1  y
1  xy 
1 x



xy  x2
(1  x )(1  xy)
2

 ( y  x) 





xy  y 2
(1  y )(1  xy)
2

x(1  y 2 )  y(1  x2 )
(1  x )(1  y )(1  xy)

2

2

( y  x)2 ( xy  1)
(1  x2 )(1  y 2 )(1  xy)

0

x( y  x)
(1  x )(1  xy)

 0  ( y  x) 

2



y( x  y)
(1  y 2 )(1  xy)

( x  y)  xy(y x)
(1  x2 )(1  y 2 )(1  xy)

0

0

 0 : đúng xy  1. D}́u "  " khi x  y hoặc xy  1.


VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

3


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
Chứng minh: xy  1 

1
1
2


2
2
1  xy
1 x
1 y

(2)

Ta làm tương tự và d}́u đẵng thức xãy ra khi và chĩ khi x  y hoặc xy  1.
Suy ra: xy  1 

1
1
2
1

1
2
v| xy  1 





1  x 1  y 1  xy
1  x 1  y 1  xy
1
1
1
3



1  x2 1  y 2 1  z 2 1  xyz

Mỡ rộng:  x; y; z  1 thì

(3)

Chứng minh: Ghép từng cặp xoay vòng, cộng lại. D}́u " = " khi và chỉ khi: x  y  z  1.
suy ra

l. Chƣ́ng minh:  x; y  1 

1
1

1



2
2
1  xy
(1  x)
(1  y)
2

 1
1
1
1
1 
2
1
Ta có:





0
 
2
2
1  xy
(1  x) (1  y)

 1  x 1  y  (1  x)(1  y) 1  xy
( y  x)2
1  xy  x  y
( y  x)2
( x  1)( y  1)



0


 0 : đúng x , y  1.
2
2
2
2
(1  x) (1  y) (1  x)(1  y)(1  xy)
(1  x) (1  y) (1  x)(1  y)(1  xy)

D}́u đẵng thức xãy ra khi và chĩ khi x  y  1.
1

suy ra

m. Chƣ́ng minh:  x; y  0;1 

Ta có: 1.

1
1 x


2

 1.

Cauchy Schwarz

1
1 y

Mặt khác x , y  (0;1), thì



2

1 x

12  12 .

2



1
1 y

2




2
1  xy

1
1

2
1 x
1  y2



(1)

1
1
2


2
2
1

xy
1 x
1 y

(2)


 1
xy  x 2
xy  y 2
1   1
1 




0


0
Th}̣t v}̣y: (2)  

 
2
1  xy   1  y 2 1  xy 
(1  x 2 )(1  xy) (1  y 2 )(1  xy)
1 x



x( y  x)
(1  x2 )(1  xy)

Từ (1), (2), suy ra:




y( x  y)
(1  y 2 )(1  xy)
1
1  x2



0

1
1  y2



( y  x)2 ( xy  1)
(1  x2 )(1  y 2 )(1  xy)
2

1  xy

 0 : đúng xy  1.

, x; y  0;1 . D}́u đẵng thức xãy ra khi: x  y.
2

x, y  0
  2

1
 1

suy ra
n. Chƣ́ng minh:  

   1   1  
 1 
x
 y
 xy

x  y  1

Ta có: BĐT 

( x  y )2
( x  y)2
1 1 1
4
4
1
4
1 1
4
  









xy x y ( x  y)2 x  y
xy ( x  y)2 x y x  y
xy( x  y)2 xy( x  y)

 ( x  y)2 (1  x  y)  0 : đúng với mọi x  y  1 và dấu "  " khi và chỉ khi: x  y.

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

4


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016

BẤT ĐẲNG THỨC VÀ CỰC TRỊ
TRONG CÁC ĐỀ THI THỬ NĂM 2016
Câu 1: Cho a, b, c là các số thực thoả mãn a, b, c [1;2] . Tìm giá trị lớn nhất của biểu thức sau:
2(ab  bc  ca)
8
bc4
P


2(2a  b  c)  abc 2a(b  c)  bc  4
bc  1
Trƣờng THPT Anh Sơn 2 – Lần 2
Lời giải tham khảo
Vì a, b, c [1;2] nên ta có (a 1)(b  2)(c  2)  0


 abc  2(2a  b  c)  2(b  c)a  bc  4
Dấu ‚=‛ xảy ra khi a = 1 hoặc b = 2 hoặc c = 2
Do đó v| do a  1 nên ta có

P



2(ab  bc  ca)
8
bc4


2(2a  b  c)  abc 2a(b  c)  bc  4
bc  1

2(ab  bc  ca)
8
b  c  4 2a(b  c)  bc  4  bc  4 b  c  4




2a(b  c)  bc  4 2a(b  c)  bc  4
2a(b  c)  bc  4
bc  1
bc  1

 1


bc  4
bc4
bc  4
bc4
bc  4
2 bc  4
 1


 1

2a(b  c)  bc  4
2(b  c)  bc  4
bc  4 bc  4
bc  1
bc  1
bc  1

Đặt t  bc [1;2] . Xét hàm số f (t )  1 

f '(t ) 

t 2  4 2t  4

trên [1;2]
(t  2) 2 t  1

4t  8
2

4 2

  0
2
2
(t  2) (t  1)
27 9

nên f (t ) liên tục v| đồng biến trên [1;2] Suy ra P  f (t )  f (2)  
Vậy, giá trị lớn nhất của P  

7
6

7
khi a =1 , b = c = 2.
6

Câu 2: Cho các số thực a, b, c không âm thỏa mãn a2  b2  c2  1 .Chứng minh rằng

1
1
1
9


 .
1  ab 1  bc 1  ca 2
Trƣờng THPT Bắc Yên Thành – Lần 1
Lời giải tham khảo

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

5


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
1
1
1
9
ab
bc
ca
3


 



1  ab 1  bc 1  ca 2
1  ab 1  bc 1  ca 2

Ta có

ab
2ab
2ab

.
 2
 2
2
2
1  ab 2a  2b  2c  2ab a  b2  2c 2

 a  b 
a2
b2
4ab
Theo bất đẳng thức Bunhiacopxki 2 2  2 2  2
.
2
2
2
a c b c
a  b  2c
a  b 2  2c 2
2

Vậy

ab
1  a2
b2 
  2 2  2 2 .
1  ab 2  a  c b  c 

Tương tự


bc
1  b2
c2
  2

1  bc 2  b  a 2 c2  a2

 ac
1  a2
c2
,



 2 2
2
2
 1  ac 2  a  b c  b


.


3
.
3

Cộng lại ta có điều phải chứng minh. Dấu bằng khi a  b  c 
Câu 3: Cho x, y, z là các số thực dương thỏa mãn điều kiện xyz


8.

48
x y z 3

Tìm giá trị nhỏ nhất của biểu thức : P  ( x  y )( y  z )( z  x) +

Trƣờng THPT Số 3 – Bảo Thắng – Lào Cai– Lần 1
Lời giải tham khảo

(x

y )(y

Ta có : a

a2

a

b2

xy;b
xy

z )(z

b


2

c2

yz;c
yz

zx

x)

(x

y

(b

c)2

(c

ab

bc

ca

a )2

zx vào (*)

2 6 x

z ) xy

y

yz

zx

8

0

a

b

xy

yz

c

2

zx

3 ab
2


bc

3xyz x

ca * . Thay
y

z

z

Do đó : P  2  x  y  z  6  x  y  z  

48
8
x y z 3

Đặt : t  x  y  z  3 3 xyz  6  P  2t 6t 

48
 8,  t  x  y  z, t  6 
3t

3 6t  t  3  24
48
Xét hàm số f (t )  2t 6t 
 8,  t  6   f '(t ) 
 f '(t )  0, t  6
3

3t
 t  3
3

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

6


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
 f (t ) đồng biến trên 6;  . Vậy Min f (t )  f (6)  80
6; 

Suy ra P  80 dấu bằng xảy ra khi x  y  z  2
Kết luận : Giá trị nhỏ nhất của P l| 80 đạt được khi x  y  z  2
Câu 4: Cho các số thực dương a, b, c thỏa mãn a

b

7

Tìm giá trị nhỏ nhất của biểu thức A

a2

b2

c


1.

121
14(ab bc

c2

ca )

Trƣờng THPT Bình Minh – Ninh Bình – Lần 1
Lời giải tham khảo
Ta có 1

(a

c)2

b

a2

c2

7

Do đó A

a


2

b

a2

Suy ra t

b2

(a

Mặt khác 1

a2

Suy ra t

c

7
t

2

a

b2

a


b

c

1

a2

b2

c2

1
. Vậy t
3

c2

121
,t
7(1 t )

121
7(1

2

1 nên 0


c

7
t

(a

7(1

c)2

b

Xét hàm số f (t )

2

c2

b2

2(ab

bc

ca)

ab

bc


c

1

ca

1

(a 2

b2
2

c2 )

.

121

2

Đặt t a 2 b2 c2 .
Vì a,b,c 0 và a b

f '(t )

b2

0


2

t)

t

c 2 ))

1,0
2(ab

b

1,0
bc

ca )

3(a 2

b2

c2 )

1
;1
3

1

;1
3
7
18

BBT

t

f '(t )
f (t )

1
3
-

7
18
0

1
+

324
7

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

7



Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
Suy ra f (t )

a

1
;b
2

324
, t
7

1
;c
3

324
với mọi a,b,c thỏa điều kiện đề bài. Hơn nữa, với
7

1
;1 . Vậy A
3

7
a 2 b2 c2

1
thì
18
6
a b c 1

324
Vậy min A
7

và A

324
7

Câu 5: Cho các số thực x, y , z thỏa mãn x  2, y  1, z  0 .
Tìm giá trị lớn nhất của biểu thức: P 

1
2 x  y  z  2(2 x  y  3)
2

2

2



1
y ( x  1)( z  1)

Trƣờng THPT Bố Hạ – Lần 2

Lời giải tham khảo:
Đặt a  x  2, b  y 1, c  z  a, b, c  0

P

1
2 a 2  b2  c2  1

Ta có a 2  b2  c 2  1 



1
(a  1)(b 1)(c 1)

(a  b)2 (c  1)2 1

 (a  b  c  1)2
2
2
4

Dấu “=” xảy ra khi a  b  c  1
Mặt khác ( a  1)(b  1)(c  1) 
Khi đó P 

(a  b  c  3)3
27


1
27
. Dấu “=” xảy ra khi a  b  c  1

a  b  c  1 (a  b  c  3)3

1
27
Đặt t  a  b  c  1  1 . Khi đó P  
,t 1
t (t  2)3
1
27
1
81
81t 2  (t  2) 4
f (t )  
,
t

1;
f
'(
t
)





t (t  2)3
t 2 (t  2) 4
t 2 (t  2) 4

Xét f '(t )  0  81t 2  (t  2) 4  0  t 2  5t  4  0  t  4 (do t>1) lim f (t )  0
x 

t

1

f’(t)

+

f(t)



4
0

-

1
8

0

0


VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

8


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
Từ BBT Ta có maxf(x)=f(4)=
Vậy ma xP  f(4) 

1
8

a  b  c  1
1

 a  b  c  1  x  3; y  2; z 1
8
a  b  c  1  4

Câu 6: Cho x, y, z  0 thoả mãn x + y + z  0 .
Tìm giá trị nhỏ nhất của biểu thức P =

x 3 + y 3 + 16z 3

x + y + z

3


Trƣờng THPT Cam Ranh – Khánh Hoà– Lần 1
Lời giải tham khảo
3

Trước hết ta chứng minh được: x + y

3

x + y


3

4

 x + y  + 64z 3 = a - z 
Đặt x + y + z = a. Khi đó 4P 
3
3

a

3

+ 64z 3

a

3


= 1 - t  + 64t 3 (với t =
3

z
;0 < t <1 )
a

Xét hàm số f(t) = (1 – t)3 + 64t3 với t   0;1 .
1
2
Có : f'(t) = 3 64t 2 - 1 - t   ,f'(t) = 0  t =  0;1 . Lập bảng biến thiên


9
16
64
đạt được khi x = y = 4z >0
 Minf  t  =
 GTNN của P là
81
81
0;1

Câu 7: Cho x, y, z là các số thực dương lớn hơn 1 v| thoả mãn điều kiện:

1 1 1
+ + 2
x y z


. Tìm giá trị lớn nhất của biểu thức: A =  x - 1 y - 1 z - 1
Trƣờng THPT Cam Ranh – Khánh Hoà – Lần 2
Lời giải tham khảo
Ta có

1 1 1
+ +  2 , nên :
x y z

1
1
1
y -1
z -1
(y - 1)(z - 1)
 (1 - ) + (1 - ) = (
)+(
)2
(1)
x
y
z
y
z
yz

1
1
1
x -1

z -1
(x - 1)(z - 1)
 (1 - ) + (1 - ) = (
)+(
)2
(2)
y
x
z
x
z
xz
1
1
1
x -1
y -1
(x - 1)(y - 1)
 (1 - ) + (1 - ) = (
)+(
)2
(3)
z
x
y
x
y
xy

Nhân vế với vế của (1), (2), (3) ta được (x - 1)(y - 1)(z - 1) 


1
8

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

9


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
1
3
x=y=z=
8
2

Vậy Amax =

Câu 8: Giả sử a , b , c là các số thực dương thỏa mãn a  b  c  1 .
Tìm giá trị nhỏ nhất của biểu thức: P 

a2
b2
3

 ( a  b)2
2
2

(b  c)  5bc (c  a)  5ca 4
Trƣờng THPT Cao Lãnh 2 – Đồng Tháp – Lần 1
Lời giải tham khảo

Áp dụng bất đẳng thức Côsi

Tương tự:

a2

(b  c)2  5bc

a2
4a2

5
9(b  c)2
( b  c )2  ( b  c )2
4

b2
4b 2

(c  a)2  5ca 9(c  a)2

a2
b2
4  a2
b2  2  a
b 




 



2
2
2
2 
(b  c )  5bc (c  a)  5ca 9  (b  c ) (c  a)  9  b  c c  a 

2

2

 ( a  b) 2

2
 c(a  b) 
2
2



2 a  b  c(a  b)
2
2  2( a  b)2  4c(a  b) 
2

 
  
  

9  ab  c( a  b)  c 2 
9  ( a  b) 2
9  ( a  b ) 2  4c( a  b )  4c 2 
2 
 c( a  b)  c 

 4

2

Vì a  b  c  1  a  b  1  c nên ta có
2

2

2  2(1  c)2  4c(1  c)  3
8
2  3
P 
 (1  c)2   1 
 (1  c)2 (1)

2
2 
9  (1  c)  4c(1  c)  4c  4
9  c 1 4

2

Xét hàm số

8
2  3
f (c)   1 
 (1  c)2 , c  (0;1)

9  c 1 4
f (c ) 

16 
2  2
3
1
1
 (c  1); f ( c)  0  c 


2
9  c  1  (c  1) 2
3

Bảng biến thiên

c
f (c)
f (c)


1
3
0

0




1



1
9

1
Dựa vào BBT ta có f (c)   , c  (0;1) (2)
9
VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

10


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
1
1
Từ (1) và (2) suy ra P   , dấu đẳng thức xảy ra khi a  b  c 

3
9
1
Vậy giá trị nhỏ nhất của P là 
9
Câu 9: Với x, y, z là các số thực đôi một phân biệt. Hãy tìm giá trị nhỏ nhất của biểu thức:
2

2

 2x  y   2 y  z   2z  x 
M 
 
 
 .
 x y   yz   zx 
2

Trƣờng THPT Chuyên KHTN – Lần 2
Lời giải tham khảo

Câu 10: Xét các số thực dương x, y, z thỏa mãn điều kiện x 2  y 3  z 4  x 3  y 4  z 5 , chứng minh rằng
x3  y 3  z 3  3
Trƣờng THPT Chuyên KHTN– Lần 1
Lời giải tham khảo
Xét các số thực dương x, y, z thỏa mãn điều kiện x 2  y 3  z 4  x 3  y 4  z 5 , chứng minh rằng
x3  y 3  z 3  3

thức :


VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

11


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
Câu 11: Cho x, y, z là các số thực dương v| thỏa mãn điều kiện a 2

ab

b2

c a

b

c .Tìm

giá trị lớn nhất của biểu thức:
P

a  c

b  c 

2

2a  2ac  c

2

2



2

2b  2bc  a
2

2



ab

 a  b

2



ab
a  4bc  b 2
2

Trƣờng THPT Chuyên KHTN – Lần 3
Lời giải tham khảo
Bổ đề : Cho x, y


(xy

Thật vậy (*)

a  c

2



1 khi đó :

b  c 

1

y 2 )(1

xy )



1

2

2b  2bc  a
2


1

2

1
x

y)2

1)(x

x 2 )(1

(1

2

2a  2ac  c
2

0; xy

2

2
y

1

2


1

xy

(*)

0 (Luôn đúng)

 a 
1 

ac

2



1
 b 
1 

bc

2



2
ab

1
(a  c)(b  c)

(a  c)(b  c) ab  c( a  b  c)  a  b 
2t 1
1
Đặt t 


 4 thì P  f (t ), f (t ) 
 
ab
ab
4
1 t t t  2
2

Ta có : f '(t ) 

2

1  t 

2

Suy ra : f (t )  f (4) 



1

1
1
1
2
2

 0 do 2 


2
2
2
2
t
t
 t  2
 t  2  t (t  2) (t  1)

121
121
Dấu bằng xảy ra khi t  4  a  b  c . Vậy : Pmax 
60
60

Câu 12:Cho x, y, z là ba số thực dương thỏa: x2 + y2 + z2 = 3. Tìm giá trị nhỏ nhất của biểu thức :
P = 3(x + y + z) + 2(

1
x


 1y  1z )
Trƣờng THPT Chuyên Lê Quý Đôn – Khánh Hoà – Lần 1
Lời giải tham khảo

Trước hết ta có: (x – 1)2(x – 4) ≤ 0 ,x <
Hay : x2 + 9 ≤ 6x +

4
x

 ½ (x2 + 9) ≤ 3x +

3 (dấu “=” xảy ra tại x = 1)
2
x

2

2
y

2

2
z

Tương tự ta cũng có ½ (y + 9) ≤ 3y +
½ (z + 9) ≤ 3z +

(1)

(2)

(3)
Cộng (1),(2) và (3) vế theo vế cuối cùng ta có: ½ (x2 + y2 + z2 + 27)  P
Vậy minP = 15  x = y = z = 1
VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

12


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
Câu 13:Cho x, y, z là các số không âm thỏa mãn x  y  z 

3
.
2

Tìm giá trị nhỏ nhất của: P  x3  y3  z3  x2 y 2 z 2 .
Trƣờng THPT Chuyên Nguyễn Huệ – Lần 1
Lời giải tham khảo

 1



▪ Giả sử x  min  x; y; z suy ra x  0; 
2
Ta có:




x3  y 3  z 3  3xyz   x  y  z  x 2  y 2  z 2  xy  yz  zx



2
 x3  y 3  z 3  3xyz   x  y  z   x  y  z   3  xy  yz  zx  


27 9  xy  yz  zx 
 3xyz 

8
2

Ta có:

P  x3  y 3  z 3  x 2 y 2 z 2  x 2 y 2z 2  3xyz 

27 9
  xy  yz  zx 
8 2

2

1
1 13
27 9


  xyz     xyz 
  xy  yz  zx 
8  64 4
8 2

215 9
 9 13 

  xy  zx   yz   x 
64 2
2 4 
2

9 13
 1
 9 13 
 y  z   9 13 
Vì 0;    x  0   yz   x    
   x
2 4
 2
2 4 
 2  2 4 
2

215 9  3
 13
  9 13 
Suy ra P 

 x  x    x   x
64 2  2
 4 2
 2 4 
2

215 9  3
 13
  9 13 
 1
Xét f  x  
 x   x     x    x  , x  0; 
64 2  2
 4 2
 2 4 
 2
 1
 1  25
Hàm số f  x  nghịch biến trên 0;   f  x   f   
 2
 2  64
1
25
Vậy GTLN của P bằng
đạt khi x  y  z  .
2
64






Câu 14:Cho x, y, z  0 và 5 x2  y 2  z 2  9  xy  2 yz  zx  .
Tìm giá trị lớn nhất của biểu thức P 

x
y z
2

2



1

 x  y  z 3

.

Trƣờng THPT Chuyên Nguyễn Huệ – Lần 2
VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

13


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
Lời giải tham khảo
Đặt y  z  t  t  0  ; y 2  z 2 






t2
t2
; yz 
2
4

5 x 2  y 2  z 2  9  xy  2 yz  xz    x 2  5  y  z   9 x  y  z   28 yz
2

 5 x 2  5t 2  9 xt  7t 2   5 x  t  x  2t   0  x  2t

P

2x



1

với t  0
27t 3
4
1
f  t    2  4
t

9t
 f  t   0
1
t 

6
 t 0

t

2

1
1
Lập bảng biến thiên suy ra GTLN của P bằng 16 đạt được tại x  ; y  z 
3
12

Câu 15: Cho các số dương x, y, z thỏa mãn x  y;  x  z  y  z   1 .
Tìm giá trị nhỏ nhất của biểu thức: P 

1

 x  y

2



4


x  z

2



4

 y  z

2

Trƣờng THPT Chuyên Sơn La – Lần 1
Lời giải tham khảo

1
a  x  z y  z .
a
1
x  y x z  y  z a a 1
a

x  y  x  z  ( y  z) 

a2  1
a

Thay v|o P được:


P

P

a

a

a2
2

 1



2

 3a 2 

a2
2

 1

Xét f (t ) 

4
 4a 2
2
a


2

t

 t  1

2

4
a2
2

a

 3a 2  4
2
2
2
a
 a  1

 3t  4 ; t  a 2  1

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

14


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com


TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
f '(t ) 

t  1

 t  1

T

3

 3; f '(t )  0 

3t 3  9t 2  8t  4

 t  1

f’

0

-

 0  t  2; (t  1)



2


1

3

+

F
12

Min f (t ) 12 . Vậy Min P 12 khi x  z  2; y  z  x  y  1 .
t 1
2

x, y 

Câu 16: Cho
P  x4  y 4 

 2 y  x 2
thỏa mãn 
. Tìm giá trị nhỏ nhất của biểu thức:
2
 y  2 x  3 x

2

 x  y

2


Trƣờng THPT Chuyên Vĩnh Phúc – Lần 1
Lời giải tham khảo
Từ giả thiết ta có y  0 và

2
x2
6
 2 x 2  3x  0  x  và x 2  y 2  x 2   2 x 2  3x   2 x 2  2 x 2  6 x  5
2
5

 6
Xét hàm số f ( x)  2 x 2  2 x 2  6 x  5  ; x  0;  ta được Max f(x) = 2  x 2  y 2  2
 6
 5
 0; 
 5

P  x  y
2



2 2

 2x y 
2

2


Đặt t  x 2  y 2  P 

2

 x  y

 x  y
2

2



2 2

x


2

 y2 
2

2



2
x  y2
2


t2 2
 ,0t 2
2 t

Xét hàm số:

g (t ) 

t2 2
 , t   0; 2
2 t

g '(t )  t 

1 t3  2
 2 ; g '(t )  0  t  3 2
2
t
t

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

15


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
Lập bảng biến thiên ta có Min P 


6
33 4
16
khi x  y 
2
2

Câu 17:Cho a, b, c l| độ dài ba cạnh của một tam giác có chu vi bằng 1 . Tìm giá trị lớn nhất của
biểu thức :

T

4
4
4
1 1 1


  
ab bc ca a b c
Trƣờng THPT Chuyên Vĩnh Phúc – Lần 2
Lời giải tham khảo

T

4
4
4
1 1 1 5a  1 5b  1 5c  1



   


1  a 1  b 1  c a b c a  a 2 b  b2 c  c2

 1
Vì a, b, c l| độ dài ba cạnh của một tam giác có chu vi bằng 1  a, b, c   0; 
 2

 3a  1  2a 1  0 , a   0; 1 
5a  1
Ta có
 18a  3 


2
aa
a  a2
 2
2

Từ đó suy ra :

5a  1
 1
 18a  3, a   0; 
2
aa

 2

Ta cũng có 2 bất đẳng thức tương tự:

5b  1
5c  1
 1
 1
 18b  3, b   0;  và
 18c  3, c   0; 
2
2
bb
cc
 2
 2
Cộng các bất đẳng thức này lại với nhau ta có :

T

5a  1 5b  1 5c  1


 18  a  b  c   9  9 .
a  a 2 b  b2 c  c 2

Dấu đẳng thức xẩy ra khi a  b  c 

1
1

 Tmax  9 đạt được  a  b  c 
3
3

Vậy Cho a, b, c l| độ dài ba cạnh của một tam giác có chu vi bằng 1 , thì giá trị lớn nhất của biểu
thức :

T

4
4
4
1 1 1
1


   bằng 9 v| đạt được khi và chỉ khi a  b  c 
3
ab bc ca a b c

Chú ý: Để có được bất đẳng thức

5a  1
 1
 18a  3, a   0;  ta đã sử dụng phương ph{p tiếp
2
aa
 2

tuyến

Câu 18: Cho các số thực dương x, y thỏa mãn điều kiện x  y  2016 .Tìm giá trị nhỏ nhất của
2
2
2
2
2
2
2
2
biểu thức : P  5 x  xy  3 y  3x  xy  5 y  x  xy  2 y  2 x  xy  y

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

16


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
Trƣờng THPT Chuyên Vĩnh Phúc – Lần 3
Lời giải tham khảo
P  A B .

Trong đó A  5 x 2  xy  3 y 2  3x 2  xy  5 y 2

và B  x 2  xy  2 y 2  2 x 2  xy  y 2

 A  3  x  y   3  2016  6048 * dấu đẳng thức xẩy ra khi và chỉ khi x  y  1008

6 A  180 x 2  36 xy  108 y 2  108 x 2  36 xy  180 y 2




11x  7 y 

2

 59  x  y  
2

11y  7 x 

2

 59  y  x 

 11x  7 y   11y  7 x   18  x  y 

2

 B  2  x  y   2  2016  4032 ** dấu đẳng thức xẩy ra khi và chỉ khi x  y  1008

4 B  16 x 2  16 xy  32 y 2  32 x 2  16 xy  16 y 2



 3x  5 y 

2


 7 x  y 

 3 y  5x 

2

2

 7  y  x

  3x  5 y    3 y  5 x   8  x  y 

2

Từ * và  ** ta đươc P  A  B  6048  4032  10080 , dấu đẳng thức xẩy ra khi và chỉ khi

x  y  1008 . Vậy Pmin  10080  x  y  1008
2

abc
Câu 19: Cho a, b, c là các số thực dương thỏa mãn 
  4abc.
 2016 
Tìm giá trị lớn nhất của biểu thức P 

a
a  bc




b
b  ca



c
c  ab

.

Trƣờng THPT Chuyên Hạ Long – Lần 2
Lời giải tham khảo
Theo bất đẳng thức Cô-si, ta có

a

P



2 a bc

b
2 b ca



1 1
1
1 

 


.
4
4
4
2
ab
bc
ca


2 c ab
c

Với các số thực x, y , z , ta có ( x  y)2  ( y  z)2  ( z  x)2  0  xy  yz  zx  x 2  y 2  z 2 .
Do đó

1 1
1
1 


4

2  ab 4 bc 4 ca 

abc
ab  bc  ca

1 1
1
1 
.


. Suy ra P 


2 a
2 abc
b
c
2 abc

Từ giả thiết, ta có a  b  c  4032 abc . Do đó P  2016
Với a  b  c 

1
, ta có P  2016 . Vậy giá trị lớn nhất của P bằng 2016.
1344 2

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

17


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016

Câu 20:Cho hai số dương x, y ph}n biệt thỏa mãn: x 2  2y  12 .
Tìm giá trị nhỏ nhất của biểu thức P 

4
4
5
.
 4
4
x
y 8  x  y 2

Trƣờng THPT Chuyên Long An – Lần 1
Lời giải tham khảo
Từ điều kiện, dùng bất đẳng thức côsi suy ra: 0  xy  8 .
Đ{nh gi{ P 

Đặt t 

1  x 2 y2  5
1
. 2  2   .
16  y
x  64 x y
 2
y x

x y
1
5 1

  t  2  . Khi đó P  . t 2  2  .
y x
16
64 t  2





1 2 5 1
1
.t  .
 (với t > 2)
16
64 t  2 8
Tính đạo hàm, vẽ bảng biến thiên, tìm được:
Xét hàm số f (t ) 
5

27

min f (t)  f  2   64
 2; 

 

Tìm được giá trị nhỏ nhất của P là

27
khi x = 2 và y = 4

64



Câu 21: Cho 3 số thực không âm a, b, c thỏa 5 a  b  c
Tìm giá trị lớn nhất của biểu thức P 

2

2

2

  6  ab  bc  ca 

2  a  b  c    b2  c 2 
Trƣờng THPT Chuyên Nguyễn Tất Thành– Lần 1

Lời giải tham khảo
Từ điều kiện suy ra a  b  c  2  b  c 

1
3
1
P  2t  t 4 , t  b  c maxP  , a  1, c  b 
2
2
2
Câu 22: Cho a, b, c là các số thực không âm thỏa mãn 8(a2 + b2 + c2) = 3(a + b + c)2.
Tìm giá trị lớn nhất của biểu thức P = a(1 – a3) + b(1 – b3) + c.

Trƣờng THPT Đa Phúc – Hà Nội – Lần 1
Lời giải tham khảo
+) Từ giả thiết ta có: 5c2 – 6 (a+b)c + (a+b)2  0 

1
( a  b)  c  a  b .
5

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

18


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
1
1
+) Ta có a 4  b4  (a  b)4 a, b => P  2(a  b)  (a  b)4
8
8
+) Xét f (t )  2t 

t4
8

(t  0), f '(t )  2 

t3
; f '(t )  0  t  3 4

2

+) BBT:<
T

3

0

+

4

f’(t)
+

0

-

33 4
2

f(t)
34

a

b


33 4


+) MaxP =
2 .
2

3
c  4

Câu 23:Cho ba số thực dương a, b, c thỏa mãn
Tìm giá trị nhỏ nhất của biểu thức P 

a 2  b2  c 2  4 .

3a
3b
3c


.
b2  c 2 c 2  a 2 a 2  b2
Trƣờng THPT Đa Phúc – Hà Nội – Lần 2
Lời giải tham khảo

a 2  b 2  c 2  4
Từ giả thiết 
 a, b, c   0; 2 và a2  b2  c2  4  b2  c2  4  a2 <
 a , b, c  0
Do đó P 


3a
3b
3c
3a
3b
3c
3a 2
3b2
3c 2








b2  c 2 c 2  a 2 a 2  b2 4  a 2 4  b2 4  c 2 4a  a 3 4b  b3 4c  c 3

Vì a, b, c  0 .
Xét hàm số f  x   4 x  x 3 với x   0;2  . Có

f '  x   4  3x 2  f '  x   0  x 

2 3
, f (0)  0, f (2)  0 .
3

Ta có bảng biến thiên của hàm số f  x  trên  0; 2  là


VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

19


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016

3

2 3
2 3  2 3  16 3
f 
 
  4
 
3
9
 3 
 3 

Từ bảng biến thiên ta có 0  f ( x) 

16 3
, x   0; 2  .
9

Tức 0  4 x  x3 


16 3
1
9
3x 2
9 3x 2




, x   0; 2  .
9
4 x  x3 16 3
4 x  x3 16 3

Dấu ‚=‛ khi x 

2 3
.
3

Áp dụng ta có

3a 2
9 3a 2 9a 2
3b2
9 3b2 9b2
3c 2
9 3c 2 9c 2



;


;


, (a, b, c   0; 2 )
4a  a3 16 3
16 4b  b3 16 3
16 4c  c3 16 3
16
Cộng theo vế 3 bất đẳng thức trên ta được

P

9a 2 9b2 9c 2 9 2 2 2
9


 a  b  c   .
16 16 16 16
4

Và dấu ‚=‛ xảy ra  a  b  c 
Vậy min P 

2 3
.
3


2 3
9
đạt được, khi và chỉ khi a  b  c 
.
3
4

Câu 24: Cho a, b, c l| độ dài ba cạnh của một tam giác thỏa mãn 2c  b  abc.
Tìm giá trị nhỏ nhất của biểu thức S 

3
4
5


bca a cb a bc
Trƣờng THPT Phƣớc Bình- Bình Phƣớc – Lần 1
Lời giải tham khảo

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

20


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
Áp dụng bất đẳng thức


S

1 1
4
 
, x  0, y  0.
x y x y

1
1
1
1
1
1

 


 2


  3

bca a cb
bca a bc a cb a bc 

suy ra S 

2 4 6
  .

c b a

Từ giả thiết ta có

2 4 6
3
1 2
1 2 3

  a, nên    2      2  a    4 3.
c b a
a
c b
c b a


Vậy giá trị nhỏ nhất của S bằng 4 3 . Dấu bằng xảy ra khi a  b  c  3.
Câu 25: Cho a, b, c là các số thực không âm thỏa mãn a2b2  c2b2  1  3b . Tìm giá trị nhỏ nhất của biểu
thức

P

1

 a  1

2




4b 2

1  2b 



2

8

 c  3

2

Trƣờng THPT Phƣớc Bình- Bình Phƣớc – Lần 2
Lời giải tham khảo
- Ta có: P 

- Đặt d 

1

 a  1

2

4b2




1  2b 

2



8

 c  3

2



1

 a  1

2



1
 1

  1
 2b 

2




8

 c  3

2

1
, khi đó ta có: a2b2  c2b2  1  3b trở thành a2  c2  d 2  3d
b

Mặt khác: P 



1

 a  1

2



1
d 
  1
2 

64

d


 a   c  5
2



2



2



8

 c  3

2



8
d


 a   2
2




2



8

 c  3

2

256

 2a  d  2c  10 

2

- Mà: 2a  4d  2c  a2  1  d 2  4  c2  1  a2  d 2  c2  6  3d  6
Suy ra: 2a  d  2c  6
- Do đó: P  1 nên GTNN của P bằng 1 khi a  1, c  1, b 

1
2

Câu 26: Cho a, b, c là các số thực dương.
Tìm giá trị nhỏ nhất của biểu thức P 

1

4
1


.
4a  2b  4 2bc 8  a  2b  3c 4  b  2c

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

21


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
Trƣờng THPT Phƣớc Bình- Bình Phƣớc – Lần 3
Lời giải tham khảo
Ta có 2 2bc  b  2c 


1
1

4a  2b  4 2bc 4a  4b  4c

4
1
1



8  a  2b  3c 4  a  b  c 4  b  2c

Suy ra P 

1
1

, Đặt t  a  b  c, t  0
4a  b  c 4  a  c  b

Xét f (t ) 

1
1
,

4t 4  t

T

0

F’

t  0,

4
-

0


f '(t )  

1
1
; f '(t )  0  t  4 .

2
2
4t
4  t 

+
+

f
-

1
16

b  2c
a  c  1
1

Suy ra giá trị nhỏ nhất của P bằng khi a  b  c  b  2c  
.
b

2

16

a  b  c  4


Câu 27: Cho a, b, c là các số thực dương.
Tìm giá trị nhỏ nhất của biểu thức: P 

a  3c
4b
8c


.
a  2b  c a  b  2c a  b  3c
Trƣờng THPT Phƣớc Bình- Bình Phƣớc – Lần 4
Lời giải tham khảo:

 x  a  2b  c
a   x  5 y  3 z


Đặt  y  a  b  2c  b  x  2 y  z
 z  a  b  3c
c   y  z



Do đó ta cần tìm giá trị nhỏ nhất của


P

 x  2 y 4 x  8 y  4 z 8 y  8 z  4 x 2 y   8 y 4 z 


 
      17
x
y
z
x   z
y 
 y

P2

4x 2 y
8 y 4z
.
2
.  17  12 2  17;
y x
z y

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

22


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com


TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016









Đẳng thức xảy ra khi b  1  2 a, c  4  3 2 a
Vậy GTNN của P là 12 2  17.
Câu 28:Cho các số thực dương a, b, c thỏa mãn ab  1 ; c  a  b  c   3 .
Tìm giá trị nhỏ nhất của biểu thức P 

b  2c a  2c

 6ln(a  b  2c) .
1 a
1 b
Trƣờng THPT Phƣớc Bình – Bình Phƣớc – Lần 5
Lời giải tham khảo

a  b  2c  1 a  b  2c  1

 6ln(a  b  2c)
1 a
1 b
1 

 1
  a  b  2c  1 

  6ln(a  b  2c)
1 a 1 b 
P2

Ta chứng minh được c{c BĐT quen thuộc sau:

)

1
1
2
(1)


1  a 1  b 1  ab

) ab 

ab  1
(2)
2

Thật vậy,

)








a b

) ab 
Do đó,





1
1
2


  2  a  b  1  ab  2 1  a 1  b 
1  a 1  b 1  ab


2



ab  1  0 luôn đúng vì ab  1 . Dầu ‚=‛ khi a=b hoặc ab=1

ab  1


2





2

ab  1  0 . Dấu ‚=‛ khi ab=1.

1
1
2
2
4




1  a 1  b 1  ab 1  ab  1 3  ab
2

4
4
16


2
ab  bc  ca  c

 a  c  b  c   a  b  2c 2

Đặt t  a  b  2c, t  0 ta có:

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

23


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
16  t  1
 6ln t , t  0;
t2
6 16  t  2  6t 2  16t  32  t  4  6t  8 
f '(t )  


t
t3
t3
t3

P  2  f (t ) 

BBT
t 0




4

f’(t)

-

0

+

f(t)
5+6ln4

Vậy, GTNN của P là +6ln4 khi a=b=c=1.
Câu 29: Cho a, b  0 thỏa mãn 2  a 2  b2   a 2b2 .
Tìm Min P, với P 

a
b
1
.


2
b 1 a 1
a  b2  1
Trƣờng THPT Hùng Vƣơng – Bình Phƣớc– Lần 1
Lời giải tham khảo


Ta có a 2b 2  2  a 2  b 2    a  b   ab  a  b
2

a 2  b 2  1   a  b   2ab  1   a  b   2  a  b   1   a  b  1
2

2

2

 a 2  b2  1  a  b  1

1
1 
1
 a
  b

 1
P
 1  
 1  2 
  a  b  1 

2
 2
2
2
 b 1   a 1 
 a 1 b 1 

a  b 1
a  b2  1
4
1
  a  b  1

2
a  b  2 a  b 1
Đặt t  a  b , ta có
Xét f  t  

 a  b

2

 2a  b
2

2

   ab 

2

 a  b

16

4


 a b  4

4  t  1
1
5

 2; t  4 ta được MinP  M inf  x   khi x  y  2
3
t2
t 1

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

24


Tìm tài liệu Toán ? Chuyện nhỏ - www.toanmath.com

TÀI LIỆU LUYỆN THI THPT QUỐC GIA 2016
Câu 30: Cho a,b,c
của biểu thức P

0 thỏa mãn a
a c 2
a b c
a b

2b
1


c và a 2 b 2
a b 1
a c a 2b

c2
c

ab

2

bc

ca . Tìm giá trị lớn nhất

.

Trƣờng THPT Hùng Vƣơng – Bình Phƣớc – Lần 2
Lời giải tham khảo

2

ab

bc

2 ab

a


a2

ca

ac

a

1

ac

1

a b

c

a

b

c a

2b

c

b a
1


Xét hàm số f t

a2

bc

2bc

ca

2 ab

c
a

b a

c

a
a b

a

t

1
b


t 2;t

a

b

a

0, f ' t

1

t

0

a

b

c

2

c

a

a
a


b

a

2t, f ' t

b

0

2



c

a

b

2
b

a

1

b


2

1

;t

a

0

b

0

1
2

t





1
4

2
2

b a

2

1
2

0

1
, khi a
4

a

1

2

1

f t 

Kết luận: MaxP

c

1

b

f ' t 


b a

2

b

1
2

a

1

c

2

2

1
b

ac

a b

2
1
a c a 2b c

4
a b 1
1
2
a b
c
a b

2
a

c2

ab
2

a b 1
c a 2b

Khi đó P

2

a

ab

a

b2


,b



c

2

2
2

Câu 31: Cho a, b là các số thực thỏa mãn : a  b  2 a  2  3 b  2014  2012 . Tìm giá trị lớn nhất
và nhỏ nhất của biểu thức : T   a  1   b  1 
2

2

2015  2ab a  b  1
a  b 1
Trƣờng THPT Đồng Xoài – Bình Phƣớc – Lần 1

VÌ CỘNG ĐỒNG - THẦY TÀI – 0977.413.341 – MINH CHÂU – YÊN MỸ - HƯNG YÊN

25


×