Tải bản đầy đủ (.pdf) (15 trang)

A comparative study on stability and functional properties of the proteins isolated from yellowfin tuna (Thunnus albacares) dark muscle by acidaided and alkalineaided processes

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (849.05 KB, 15 trang )

Seediscussions,stats,andauthorprofilesforthispublicationat: />
Acomparativestudyonstabilityandfunctional
propertiesoftheproteinsisolatedfrom
yellowfintuna(Thunnusalbacares...
Article·December2016
CITATIONS

READS

0

20

3authors,including:
AmirRezaShaviklo
AnimalScienceResearchInstituteofIran(ASRI)
39PUBLICATIONS145CITATIONS
SEEPROFILE

Someoftheauthorsofthispublicationarealsoworkingontheserelatedprojects:

Extractingproteinfromtunaprocessingby-productsusingpH-shiftmethodViewproject

AllcontentfollowingthispagewasuploadedbyAmirRezaShavikloon28December2016.

Theuserhasrequestedenhancementofthedownloadedfile.Allin-textreferencesunderlinedinblueareaddedtotheoriginaldocument
andarelinkedtopublicationsonResearchGate,lettingyouaccessandreadthemimmediately.


‫‪Iranian Food Science and Technology‬‬
‫‪Research Journal‬‬


‫‪Vol. 12, No. 4, Oct- Nov 2016, p. 463-476‬‬

‫ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺸﻬﺎي ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ اﯾﺮان‬

‫ﺟﻠﺪ ‪ ،12‬ﺷﻤﺎره ‪ ،4‬ﻣﻬﺮ‪ -‬آﺑﺎن ‪ ،1395‬ص‪463-476 .‬‬

‫ﻣﻘﺎﯾﺴﻪي وﯾﮋﮔﯽﻫﺎي ﮐﺎرﺑﺮدي ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺟﺪا ﺷﺪه از ﻋﻀﻠﻪي ﺗﯿﺮهي ﺗﻮن زردﺑﺎﻟﻪ‬
‫)‪ (Thunnus albacares‬ﺑﺎ اﺳﺘﻔﺎده ازﻓﺮآﯾﻨﺪﻫﺎي ﺗﻐﯿﯿﺮ ‪ pH‬اﺳﯿﺪي و ﻗﻠﯿﺎﯾﯽ‬
‫ﻧﺮﺟﺲ دﻣﺎوﻧﺪي ﮐﻤﺎﻟﯽ‪ ،1‬اﻣﯿﺮرﺿﺎ ﺷﻮﯾﮑﻠﻮ‪ ،2‬ﻋﻠﯽ ﻣﻌﺘﻤﺪزادﮔﺎن‬

‫‪3‬‬

‫ﺗﺎرﯾﺦ درﯾﺎﻓﺖ‪1393/07/26 :‬‬
‫ﺗﺎرﯾﺦ ﭘﺬﯾﺮش‪1394/10/13 :‬‬

‫ﭼﮑﯿﺪه‬
‫)‪ (Thunnusalbacares‬ﺑﻪ روش ﺗﻐﯿﯿﺮ ‪ ،pH‬از ﺳﻪ ﺗﯿﻤﺎر اﺳﯿﺪي ﺑﺎ ‪pH‬‬

‫در اﯾﻦ ﭘﮋوﻫﺶ‪ ،‬ﺑﺮاي اﺳﺘﺨﺮاج ﭘﺮوﺗﺌﯿﻦ از ﻋﻀﻠﻪي ﺗﯿﺮهي ﻣﺎﻫﯽ ﺗﻮن زرد ﺑﺎﻟﻪ‬
‫‪ 2/5 ،3 ،3/5‬و ﺳﻪ ﺗﯿﻤﺎر ﺑﺎزي ﺑﺎ ‪ 10/5 ،11 ،11/5 pH‬اﺳﺘﻔﺎده ﺷﺪ‪ .‬ﺳﭙﺲ اﺛﺮ اﯾﻦ ﺗﯿﻤﺎرﻫﺎ ﺑﺮ ﻣﯿﺰان ﺑﺎزدﻫﯽ ﭘﺮوﺗﺌﯿﻦ‪ ،‬اﮐﺴﺎﯾﺶ و وﯾﮋﮔﯽﻫﺎي ﮐﺎرﺑﺮدي‬
‫ﭘﺮوﺗﺌﯿﻦﻫﺎ ﺑﺮرﺳﯽ ﮔﺮدﯾﺪ‪ .‬ﺑﺮﻃﺒﻖ ﻧﺘﺎﯾﺞ ﺑﺪﺳﺖ آﻣﺪه ﺑﯿﺶ از ‪ %80‬ﭘﺮوﺗﺌﯿﻦﻫﺎ ﺑﺎزﯾﺎﻓﺖ ﺷﺪﻧﺪ‪ .‬در ﺑﯿﻦ دو ﮔﺮوه ﺗﯿﻤﺎر ﻣﻮرد ﺑﺮرﺳﯽ ﺑﯿﺶﺗﺮﯾﻦ ﺑﺎزﯾﺎﻓﺖ‬
‫ﭘﺮوﺗﺌﯿﻦﻫﺎ ﻣﺮﺑﻮط ﺑﻪ ﺗﯿﻤﺎرﻫﺎي ﻗﻠﯿﺎﯾﯽ ﺑﻮد‪ .‬در اﯾﻦ ﻓﺮآﯾﻨﺪﻫﺎ ﭼﺮﺑﯽ ﺑﯿﺶ از ‪ %70‬ﮐﺎﻫﺶ ﯾﺎﻓﺖ ﮐﻪ اﯾﻦ ﻣﯿﺰان در ﺗﯿﻤﺎرﻫﺎي ﻗﻠﯿﺎﯾﯽ ﺑﺎﻻﺗﺮ ﺑﻮد‪ .‬ﺑﻨﺎﺑﺮاﯾﻦ ﻣﯿﺰان‬
‫اﮐﺴﺎﯾﺶ در ﻧﻤﻮﻧﻪﻫﺎ ﻧﯿﺰ ﭘﺎﯾﯿﻦ ﺑﻮده اﺳﺖ‪ .‬در ﺑﯿﻦ ﺗﯿﻤﺎرﻫﺎ‪ ،‬ﺗﯿﻤﺎر اﺳﯿﺪي ﺑﺎ ‪ 3/5 pH‬ﺑﯿﺸﺘﺮﯾﻦ ﻇﺮﻓﯿﺖ ﻧﮕﻬﺪاري آب و ﺗﯿﻤﺎر ﻗﻠﯿﺎﯾﯽ ﺑﺎ ‪ 11 pH‬ﺑﯿﺸﺘﺮﯾﻦ‬
‫وﯾﺴﮑﻮزﯾﺘﻪ را دارا ﺑﻮدﻧﺪ‪ .‬ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺘﺎﯾﺞ ﻗﺪرت ژﻟﯽ و ﺷﺎﺧﺺﻫﺎي ﺑﺎﻓﺘﯽ‪ ،‬ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺑﺪﺳﺘﺂﻣﺪه از ﻋﻀﻠﻪي ﺗﯿﺮه‪ ،‬اﺣﺘﻤﺎﻻ ﺑﻪ دﻟﯿﻞ ﺗﻐﯿﯿﺮ ﻣﺎﻫﯿﺖ ﭘﺮوﺗﺌﯿﻦﻫﺎ‬
‫ﻫﻨﮕﺎم ﺟﺎﺑﻪﺟﺎﯾﯽ‪ ،‬ﻧﮕﻬﺪاري و ﻓﺮآوري ﻣﺎﻫﯽ ﺗﻮن‪ ،‬ژل ﻣﻄﻠﻮﺑﯽ ﺗﻮﻟﯿﺪ ﻧﮑﺮدﻧﺪ‪ .‬ﺑﺮ اﺳﺎس ﺗﺸﮑﯿﻞ ﺑﺎﻧﺪﻫﺎي ﭘﺮوﺗﺌﯿﻨﯽ در اﻟﮑﺘﺮوﻓﻮرز ﺷﺎﯾﺪ ﺑﺘﻮان ﻧﺘﯿﺠﻪ ﮔﺮﻓﺖ‬
‫ﮐﻪ ﭘﺎﯾﺪاري ﭘﺮوﺗﺌﯿﻦﻫﺎ ﻫﻨﮕﺎم ﺑﺎﻻ رﻓﺘﻦ ‪ pH‬ﻣﻨﺎﺳﺐ ﺑﻮده اﺳﺖ‪ .‬اﯾﻦ ﭘﮋوﻫﺶ اﻣﮑﺎن اﺳﺘﻔﺎده از اﯾﺰوﻟﻪي ﭘﺮوﺗﺌﯿﻦ ﺗﻮن در ﻓﺮﻣﻮﻻﺳﯿﻮن ﻣﻮاد ﺧﻮراﮐﯽ ﻣﺨﺘﻠﻒ‪،‬‬
‫ﺟﺎﯾﯽ ﮐﻪ ﻧﯿﺎز ﺑﻪ ﻗﺪرت ژﻟﯽ ﺑﺎﻻ ﻧﯿﺴﺖ‪ ،‬را ﻣﻮرد ﺗﺎﮐﯿﺪ ﻗﺮار داد و اﯾﻦ ﻣﻬﻢ ﻣﯽﺗﻮاﻧﺪ ﺿﻤﻦ اﻓﺰاﯾﺶ ﺑﻬﺮه وري ﻣﻮﺟﺐ اﯾﺠﺎد ارزش اﻓﺰوده در ﺻﻨﻌﺖ ﻓﺮآوري‬
‫آﺑﺰﯾﺎن ﺷﻮد‪.‬‬
‫واژه ﻫﺎي ﮐﻠﯿﺪي‪ :‬اﯾﺰوﻟﻪي ﭘﺮوﺗﺌﯿﻦ ﻣﺎﻫﯽ‪ ،‬ﺗﻮن زرد ﺑﺎﻟﻪ‪ ،‬ﻋﻀﻠﻪي ﺗﯿﺮه‪ ،‬ﺗﻐﯿﯿﺮ ‪pH‬‬


‫ﻣﻘﺪﻣﻪ‬

‫‪1‬‬

‫ﺑﺎ اﻓﺰاﯾﺶ آﮔﺎﻫﯽ و ﭘﯿﺸﺮﻓﺖ ﻋﻠﻮم و ﻧﯿﺰ اﻓـﺰاﯾﺶ ﻧﯿـﺎز ﺑـﻪ ﺗـﺎﻣﯿﻦ‬
‫ﻣﻨﺎﺑﻊ ﺟﺪﯾﺪ ﭘﺮوﺗﺌﯿﻨﯽ در ﺟﻬﺎن‪ ،‬ﺗﻼشﻫﺎي ﺑﺴﯿﺎري ﺑﺮاي ﺑﻬﺮهﺑـﺮداري‬
‫از ﻣﻨﺎﺑﻊ آﺑﺰي ﺷﺎﻣﻞ ﮔﻮﻧﻪﻫﺎي ﮐﻢارزش آﺑﺰﯾﺎن و ﯾﺎ ﻣﺎﻫﯿﺎن رﯾـﺰ و ﻧﯿـﺰ‬
‫ﺑﺎﻗﯽﻣﺎﻧﺪهي ﺣﺎﺻﻞ از ﻓﺮآورش آﺑﺰﯾﺎن )ﭘﺴـﻤﺎﻧﺪ ﯾـﺎ ﺿـﺎﯾﻌﺎت آﺑﺰﯾـﺎن(‪،‬‬
‫ﺻـﻮرت ﮔﺮﻓﺘـﻪ اﺳـﺖ )‪ .(Nolsøe & Undeland, 2009‬اﺳـﺘﻔﺎده از‬
‫ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺑﺎزﯾﺎﻓﺖﺷﺪهي ﻣﺎﻫﯽ ﺑﻪﻋﻨﻮان اﻓﺰودﻧﯽﻫـﺎي ﮐـﺎرﺑﺮدي در‬
‫ﻓﺮﻣﻮﻻﺳﯿﻮن ﻣﻮاد ﺧﻮراﮐﯽ‪ ،‬روش ﻣﻨﺎﺳﺒﯽ ﺑـﺮاي اﯾﺠـﺎد ارزش اﻓـﺰوده‪،‬‬
‫ﺑﺎﻻ ﺑـﺮدن ﺑﻬـﺮهوري ) ‪Aspmo et al, 2005; Ovissipour et al,‬‬
‫‪ (2009‬و اﻓـﺰاﯾﺶ ﺳـﺮاﻧﻪي ﻣﺼـﺮف ﻣـﺎﻫﯽ ﻣـﯽﺑﺎﺷـﺪ ) ‪Shaviklo,‬‬
‫‪ -١‬داﻧﺶآﻣﻮﺧﺘﻪ ﮐﺎرﺷﻨﺎﺳﯽ ارﺷﺪ‪ ،‬داﻧﺸﮑﺪه ﻋﻠﻮم درﯾﺎﯾﯽ‪ ،‬داﻧﺸﮕﺎه ﺗﺮﺑﯿﺖ ﻣﺪرس‬
‫‪ -2‬اﺳﺘﺎدﯾﺎر ﭘﮋوﻫﺸﯽ ﻣﻮﺳﺴﻪ ﺗﺤﻘﯿﻘﺎت ﻋﻠﻮم داﻣﯽ ﮐﺸﻮر‪ ،‬ﺳﺎزﻣﺎن ﺗﺤﻘﯿﻘﺎت و ﺗﺮوﯾﺞ‬
‫ﮐﺸﺎورزي‪ ،‬ﮐﺮج‪.‬‬
‫‪ -3‬داﻧﺸﯿﺎر‪ ،‬ﮔﺮوه ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ‪ ،‬داﻧﺸﮕﺎه ﻋﻠﻮم ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ‬
‫ﺳﺎري‪.‬‬
‫)* ‪ -‬ﻧﻮﯾﺴﻨﺪه ﻣﺴﺌﻮل‪(Email: :‬‬

‫‪ .(2008‬ﺗﻮن ﻣﺎﻫﯿﺎن ﯾﮑﯽ از ﺑﺎ ارزشﺗﺮﯾﻦ ﻣﺎﻫﯿـﺎن ﺻـﻨﻌﺘﯽ در ﺟﻬـﺎن‬
‫ﻣﺤﺴﻮب ﻣﯽﺷﻮﻧﺪ ﮐﻪ رﻗﻢ ﻗﺎﺑﻞ ﺗـﻮﺟﻬﯽ از ﺻـﯿﺪ ﺳـﺎﻻﻧﻪ را ﺑـﻪ ﺧـﻮد‬
‫اﺧﺘﺼﺎص ﻣﯽدﻫﻨﺪ‪ .‬ﯾﮑﯽ از ﻣﻬﻤﺘﺮﯾﻦ ﮔﻮﻧﻪﻫﺎي ﺗﻮنﻣﺎﻫﯿﺎن‪ ،‬ﻣﺎﻫﯽ ﺗﻮن‬
‫زردﺑﺎﻟﻪ )‪ (Thunnus albacares‬اﺳﺖ‪ .‬ﺑﺮ اﺳﺎس آﺧﺮﯾﻦ آﻣـﺎر رﺳـﻤﯽ‬
‫ﺳﺎزﻣﺎن ﺷﯿﻼت اﯾﺮان‪ ،‬درﺳﺎل ‪ 1392‬از ﺣﺪود ‪ 250‬ﻫﺰارﺗﻦ ﺻـﯿﺪ ﺗـﻮن‬
‫ﻣﺎﻫﯿﺎن رﻗﻤﯽ ﻣﻌﺎدل ‪ 45‬ﻫﺰار ﺗﻦ ﻣﺮﺑﻮط ﺑﻪ ﻣﺎﻫﯽ ﺗـﻮن زردﺑﺎﻟـﻪ ﺑـﻮده‬
‫اﺳﺖ )ﺳﺎزﻣﺎن ﺷﯿﻼت اﯾـﺮان‪ (1393 ،‬ﮐـﻪ ﺑﺨـﺶ ﻋﻤـﺪهاي از آن ﺑـﻪ‬
‫ﻣﺼﺮف ﺗﻮﻟﯿﺪ ﮐﻨﺴﺮو ﻣﺎﻫﯽ رﺳﯿﺪه اﺳﺖ‪ .‬ﻋﻀﻼت ﻣﺎﻫﯽ ﺷﺎﻣﻞ ﻋﻀﻠﻪي‬
‫ﺗﯿﺮه و روﺷﻦ ﻣﯽﺑﺎﺷﺪ‪ ،‬ﻋﻀﻠﻪي ﺗﯿﺮه ﺷﺎﻣﻞ ﻧﻮاري از ﺑﺎﻓـﺖﻫـﺎي ﺗﯿـﺮه‬
‫اﺳﺖ ﮐﻪ در زﯾﺮ ﭘﻮﺳﺖ در ﺳﺮاﺳﺮ ﺑﺪن ﮐﺸـﯿﺪه ﺷـﺪه اﺳـﺖ‪ .‬در ﻣـﺎﻫﯽ‬

‫ﺗﻮن‪ ،‬ﻋﻀﻠﻪي ﺗﯿﺮه ﻧﺰدﯾﮏ اﺳﺘﺨﻮان ﭘﺸﺘﯽ ﻧﯿﺰ وﺟﻮد دارد‪ .‬ﻫﺮ ﭼﻨﺪ ﮐـﻪ‬
‫ﺑﻄﻮر ﻣﻌﻤﻮل ﻧﺴﺒﺖ ﺑﯿﻦ ﻋﻀﻠﻪي ﺗﯿﺮه و روﺷﻦ ﺑﺴﺘﻪ ﺑﻪ ﻓﻌﺎﻟﯿﺖ ﻣـﺎﻫﯽ‬
‫ﻣﺘﻔﺎوت اﺳﺖ‪ ،‬ﻣﺎﻫﯿﺎن ﭼﺮب ﺣﺠﻢ ﻋﻀﻠﻪي ﺗﯿﺮه ﺑﺎﻻﺗﺮي دارﻧﺪ ﻣﺜﻼ در‬
‫ﺗﻮن زرد ﺑﺎﻟﻪ ﺑﻪ ‪ %48‬ﻫـﻢ ﻣـﯽرﺳـﺪ )‪Sánchez-Zapata & Pérez-‬‬
‫‪.(Alvarez, 2007‬‬
‫ﺑـﺎﻗﯽﻣﺎﻧــﺪهي ﻣـﻮاد ﺧــﺎم ﺣﺎﺻـﻞ از ﮐﻨﺴﺮوﺳــﺎزي ﺗـﻮن ﻣﺎﻫﯿــﺎن‬
‫ﺣﺪود‪ % 50-60‬ﺑﺮآورد ﻣﯽ ﺷﻮد ﮐﻪ از اﯾﻦ ﻣﻘـﺪار ‪ %10-20‬ﻣﺮﺑـﻮط ﺑـﻪ‬


‫‪ 464‬ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺸﻬﺎي ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ اﯾﺮان‪ ،‬ﺟﻠﺪ ‪ ،12‬ﺷﻤﺎره‪ ،4‬ﻣﻬﺮ ‪ -‬آﺑﺎن ‪1395‬‬

‫ﻋﻀﻠﻪ ي ﺗﯿﺮه اﺳﺖ ﮐﻪ در ﮐﻨﺴﺮوﺳﺎزي از ﮔﻮﺷﺖ روﺷـﻦ ﺟـﺪا ﺷـﺪه و‬
‫ﻫﻤﺮاه ﺑﺎ دﯾﮕﺮ ﺑﺨﺶﻫـﺎي ﺟـﺪا ﺷـﺪه از ﻣـﺎﻫﯽ )ﻣﺎﻧﻨـﺪ ﺳـﺮ و اﺣﺸـﺎ(‬
‫ﺑﻪﻋﻨﻮان ﺿﺎﯾﻌﺎت در اﺧﺘﯿﺎر واﺣﺪﻫﺎي ﻓﺮآوري ﭘﻮدر ﻣﺎﻫﯽ ﻗﺮار ﻣﯽﮔﯿـﺮد‬
‫)رﺿﻮي ﺷﯿﺮازي‪ .(1380 ،‬ﺗﺮﮐﯿﺒﺎت ﺷﯿﻤﯿﺎﯾﯽ ﻣﺘﻔـﺎوﺗﯽ در اﯾـﻦ دو ﻧـﻮع‬
‫ﻋﻀﻠﻪ وﺟﻮد دارد‪ ،‬اﻣﺎ ﻣﻬﻤﺘﺮﯾﻦ آﻧﻬﺎ ﺣﺠﻢ ﺑﺎﻻﺗﺮ ﭼﺮﺑﯽ و رﻧﮕﺪاﻧـﻪﻫـﺎي‬
‫ﻫ‪‬ﻢ‪1‬ﻣﻮﺟﻮد در ﻋﻀﻠﻪي ﺗﯿﺮه ﻣﯽﺑﺎﺷﺪ‪.‬‬
‫ﺑﺮاي ﺑﺎزﯾﺎﻓﺖ ﭘﺮوﺗﺌﯿﻦﻫﺎ از روشﻫﺎي ﻣﺨﺘﻠﻔﯽ ﻣـﯽﺗـﻮان اﺳـﺘﻔﺎده‬
‫ﮐــﺮد ﮐــﻪ روش ﺗﻐﯿﯿــﺮ ‪ 2pH‬ﯾﮑــﯽ از آنﻫﺎﺳــﺖ )‪.(Batista, 1999‬‬
‫ﭘﺮوﺗﺌﯿﻦ اﺳﺘﺨﺮاﺟﯽ ﺑـﺎ اﯾـﻦ روش اﯾﺰوﻟـﻪي ﭘـﺮوﺗﺌﯿﻦ ﻣـﺎﻫﯽ‪ 3‬ﻧﺎﻣﯿـﺪه‬
‫ﻣﯽﺷﻮد‪ .‬اﯾﺰوﻟﻪي ﭘﺮوﺗﺌﯿﻦ ﻣﺎﻫﯽ ﺑﻄـﻮر ﻣﺴـﺘﻘﯿﻢ ﻣـﻮرد اﺳـﺘﻔﺎده ﻗـﺮار‬
‫ﻧﻤﯽﮔﯿﺮد ﺑﻠﮑﻪ ﺑﻪﻋﻨـﻮان ﯾـﮏ ﻣـﺎده ﺧـﺎم در ﺻـﻨﺎﯾﻊ ﻏـﺬاﯾﯽ و ﺗﻮﻟﯿـﺪ‬
‫ﻓﺮآوردهﻫﺎي ﺑﺎ ارزش اﻓﺰوده ﺑﮑـﺎر ﻣـﯽرود )‪.(Shaviklo etal, 2012‬‬
‫اﺳﺘﻔﺎده از اﯾﺰوﻟﻪي ﭘﺮوﺗﺌﯿﻦ ﻣﺎﻫﯽ ﺑـﺮاي ﻏﻨـﯽﺳـﺎزي ﻓﯿﻠـﻪي ﻣـﺎﻫﯽ‪،‬‬
‫اﻓﺰاﯾﺶ ﻗﻮام ﻟﻌﺎب ﻓﺮآوردهﻫﺎي ﺳﻮﺧﺎري و ﮐﻤـﮏ ﺑـﻪ ﮐـﺎﻫﺶ ﺟـﺬب‬
‫روﻏــﻦ در ﻓــﺮآوردهﻫــﺎي ﺳــﺮخ ﺷــﺪه و ﻧﯿــﺰ ﺳــﺎﺧﺖ ﻓــﺮآوردهﻫــﺎي‬
‫ﻓﺮﻣﻮﻟﻪﺷﺪهي آﻣﺎدهي ﻣﺼﺮف ﮔﺰارش ﺷﺪه اﺳﺖ )‪.(Shaviklo, 2008‬‬
‫اﺳﺘﻔﺎده از اﺳﯿﺪ و ﻗﻠﯿﺎ ﺑﺮاي ﺑﺎزﯾﺎﻓﺖ ﭘﺮوﺗﺌﯿﻦﻫﺎ ﺳـﻪ ﻣﺰﯾـﺖ اﺻـﻠﯽ‬
‫دارد‪:‬‬
‫‪ -1‬ﻋﻀﻼت ﺑﻄﻮر ﻣﮑﺎﻧﯿﮑﯽ از اﺳﺘﺨﻮان ﯾﺎ ﭘﻮﺳﺖ ﺟﺪا ﻧﺸـﺪه و ﻣـﻮاد‬

‫ﺧﺎم ﺧﺮد ﺷﺪه ﯾﺎ ﭼﺮخ ﺷﺪه ﻣﯽﺗﻮاﻧـﺪ ﺑﻄـﻮر ﻣﺴـﺘﻘﯿﻢ در ﻣﻌـﺮض‬
‫اﺳﯿﺪ ﯾﺎ ﻗﻠﯿﺎ ﻗﺮار ﮔﯿﺮﻧﺪو ﺑﺮ اﺳﺎس ﭼﮕﺎﻟﯽ ﻣﺘﻔـﺎوت ﻣـﻮاد در ﻃـﯽ‬
‫ﺳﺎﻧﺘﺮﯾﻔﻮژ ﺟﺪا ﺷﻮﻧﺪ‪.‬‬
‫‪ -2‬ﭘــﺮوﺗﺌﯿﻦﻫــﺎي ﺳﺎرﮐﻮﭘﻼﺳــﻤﯽ ﺑﺎزﯾﺎﻓــﺖ ﺷــﺪه‪ ،‬ﺿــﻤﻦ ﺑﻬﺒــﻮد‬
‫وﯾﮋﮔﯽﻫﺎي ﮐﺎرﺑﺮدي ﭘﺮوﺗﺌﯿﻦﻫﺎي اﺳﺘﺨﺮاج ﺷﺪه‪ ،‬ﻣﻮﺟﺐ اﻓﺰاﯾﺶ‬
‫ﺑﺎزده ﻣﯽﺷﻮﻧﺪ‪.‬‬
‫‪ -3‬ﺣﺬف ﺣﺪاﮐﺜﺮي ﻟﯿﭙﯿـﺪﻫﺎ؛ ﮐـﻪ در اﯾـﻦ ﺻـﻮرت ﺧﻄـﺮ اﮐﺴـﺎﯾﺶ‬
‫ﭼﺮﺑﯽﻫـﺎ را ﺑـﻪ وﯾـﮋه در ﻃـﻮل اﻧﺒـﺎرش ﺑـﻪ ﺣـﺪاﻗﻞ ﻣـﯽرﺳـﺎﻧﺪ‬
‫)‪.(Nolsøe & Undeland, 2009‬‬
‫‪ Hultin‬و ﻫﻤﮑﺎران )‪ ،(2005‬ﻓﺮآﯾﻨﺪ اﺳﺘﻔﺎده از اﺳﯿﺪ وﻗﻠﯿـﺎ و روش‬
‫ﺳﻨﺘﯽ ﺑﺮﭘﺎﯾﻪي ﺷﺴﺘﺸﻮ )ﺗﻮﻟﯿﺪ ﺳﻮرﯾﻤﯽ‪ (4‬را ﺑﺎ ﻫﻢ ﻣﻘﺎﯾﺴﻪ ﮐﺮدﻧـﺪ و ﺑـﺎ‬
‫ارزﯾﺎﺑﯽ ﺷﺎﺧﺺﻫﺎﯾﯽ ﻣﺎﻧﻨﺪ ﮐﺎراﯾﯽ ﭘﺮوﺗﺌﯿﻦﻫﺎ‪ ،‬ﺗﻮاﻧﺎﯾﯽ ﺗﻮﻟﯿﺪ ژل‪ ،‬رﻧﮓ و‬
‫ﭘﺎﯾﺪاري در ﺑﺮاﺑﺮ اﮐﺴﺎﯾﺶ ﻟﯿﭙﯿﺪﻫﺎ ﻧﺘﯿﺠﻪﮔﯿﺮي ﮐﺮدﻧﺪ ﮐﻪ اﯾﺰوﻟﻪ ﭘﺮوﺗﺌﯿﻦ‬
‫ﻣﺎﻫﯽ و ﺳﻮرﯾﻤﯽ ﺷﺒﺎﻫﺖﻫﺎي ﺑﺴﯿﺎري ﺑﺎ ﻫﻢ داﺷﺘﻪ و ﺣﺘﯽ در ﺷﺮاﯾﻄﯽ‬
‫اﯾﺰوﻟﻪ ﭘﺮوﺗﺌﯿﻦ ﻣﺎﻫﯽ ﺑﺮ ﺳﻮرﯾﻤﯽ ﺑﺮﺗﺮي دارد‪ .‬ﺑـﺮ اﯾـﻦ اﺳـﺎس اﻣـﺮوزه‬
‫اﺳﺘﻔﺎده از ﭘﺮوﺗﺌﯿﻦ اﯾﺰوﻟﻪ ﺷﺪه ﻣﺎﻫﯽ رو ﺑﻪ ﮔﺴﺘﺮش اﺳﺖ ) ‪Shaviklo‬‬
‫‪ .(et al, 2012‬وﯾﮋﮔﯽﻫﺎي ﮐﯿﻔﯽ اﯾﺰوﻟﻪ ﭘـﺮوﺗﺌﯿﻦ ﻣـﺎﻫﯽ ﺑﺴـﺘﮕﯽ ﺑـﻪ‬
‫ﻓﺮآﯾﻨﺪﻫﺎي ﻣﻮرد اﺳﺘﻔﺎده )اﺳﯿﺪي ﯾﺎ ﻗﻠﯿﺎﯾﯽ(‪ ،‬ﮔﻮﻧﻪي ﻣﺎﻫﯽ و ﻧﻮع ﻣـﻮاد‬
‫‪1 Heme‬‬
‫‪2pH-shift‬‬
‫)‪3 Fish protein isolate (FPI‬‬
‫‪4 Surimi‬‬

‫ﺧــﺎم دارد )‪ .(Shaviklo, 2008‬ﺑــﺮ اﺳــﺎس ﭘﮋوﻫﺸــﯽ از ‪ Hultin‬و‬
‫‪ ،(2003) Kristinsson‬ﺗﯿﻤﺎر ﻗﻠﯿﺎﯾﯽ ﭘﺮوﺗﺌﯿﻦ ﻋﻀﻠﻪي ﮐـﺎد ) ‪Gadus‬‬
‫‪ (morhua‬ﺑﺎﻋﺚ ﺑﻬﺒﻮد وﯾﮋﮔﯽ ﻫـﺎي ﮐـﺎرﺑﺮدي )اﻣﻮﻟﺴـﯿﻮنﮐﻨﻨـﺪﮔﯽ و‬
‫ﻗﺪرت ژﻟﯽ( ﭘﺮوﺗﺌﯿﻦﻫﺎي ﻣﯿﻮﻓﯿﺒﺮﯾﻠﯽ و ﻣﯿﻮزﯾﻦ ﺷﺪه اﺳﺖ‪.‬‬
‫از ﻫﺪفﻫﺎي اﺻﻠﯽ اﯾﻦ ﭘﮋوﻫﺶ ﺑﺮرﺳﯽ اﻣﮑﺎن اﺳﺘﺨﺮاج ﭘـﺮوﺗﺌﯿﻦ‬
‫از ﺑﺎﻗﯽﻣﺎﻧﺪهي ﺣﺎﺻﻞ از ﻓﺮآورش ﺗﻮن زرد ﺑﺎﻟﻪ )ﻋﻀﻠﻪي ﺗﯿﺮه( و ﺗﻌﯿﯿﻦ‬
‫وﯾﮋﮔﯽﻫﺎي ﮐﯿﻔﯽ آن اﺳﺖ‪ .‬ﻫﺮﭼﻨﺪ اﻧﺠﺎم ﻣﻮﻓﻘﯿـﺖآﻣﯿـﺰ اﯾـﻦ ﭘـﺮوژه و‬

‫ﺗﻮﻟﯿﺪ ﻓﺮآورده اي ﺑﺎ ارزش اﻓﺰوده ﻣﻮﺟﺐ اﻓﺰاﯾﺶ ﺑﻬـﺮهوري در ﺻـﻨﺎﯾﻊ‬
‫ﺷﯿﻼﺗﯽ ﮐﺸﻮر ﺧﻮاﻫﺪ ﺷﺪ‪.‬‬

‫ﻣﻮاد و روش‬
‫ﮔﻮﺷــــﺖ ﺗﯿــــﺮهي ﻣﻨﺠﻤــــﺪ ﺷــــﺪهي ﺗــــﻮن زرد ﺑﺎﻟــــﻪ‬
‫)‪ 10) (Thunnusalbacares‬ﮐﯿﻠﻮﮔﺮم( از ﺷﺮﮐﺖ ﮐﻨﺴﺮوﺳﺎزي آذﯾـﻦ‬
‫ﻣﻬﺮ ﺧﺰر )ﺑﺎﺑﻠﺴﺮ‪ ،‬ﻣﺎزﻧﺪران( ﺗﻬﯿﻪ و در ﺟﻌﺒﻪﻫﺎي ﻋـﺎﯾﻖ ﺑـﻪ آزﻣﺎﯾﺸـﮕﺎه‬
‫ﻣﺮﮐﺰي واﻗﻊ در داﻧﺸﮑﺪه ﻋﻠﻮم درﯾﺎﯾﯽ و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ داﻧﺸﮕﺎه ﺗﺮﺑﯿـﺖ‬
‫ﻣﺪرس )ﻧﻮر‪ ،‬ﻣﺎزﻧﺪران( ﻣﻨﺘﻘﻞ ﺷﺪ‪ .‬در ﻃﻮل ﻣـﺪت اﻧﺠـﺎم آزﻣـﺎﯾﺶﻫـﺎ‪،‬‬
‫ﻋﻀﻠﻪي ﺗﯿﺮه در ﺳﺮدﺧﺎﻧﻪ آزﻣﺎﯾﺸﮕﺎه )دﻣﺎي ‪ (-20°C‬ﻧﮕﻬﺪاري ﺷﺪ‪.‬‬
‫ﻃﺮاﺣﯽ ﺗﯿﻤﺎرﻫﺎ ﺑﺮ اﺳﺎس ﭘﮋوﻫﺶﻫﺎي ﭘﯿﺸـﯿﻦ ) & ‪Davenport‬‬
‫;‪Kristinsson, 2011; Nolsoe & Undeland, 2009‬‬
‫‪ (Kristinsson et al, 2005‬ﺑﻮد‪ .‬از اﯾﻦرو ﺳﻪ ﺗﯿﻤـﺎر اﺳـﯿﺪي ﺑـﺎ ‪pH‬‬

‫‪2/5 ،3 ،3/5‬و ﺳﻪ ﺗﯿﻤﺎر ﺑﺎزي ﺑﺎ ‪ 10/5 ،11 ،11/5 pH‬اﻧﺘﺨـﺎب ﺷـﺪﻧﺪ‪.‬‬
‫در اﯾﻦ ﭘﮋوﻫﺶ ﺑﺮاي ﺗﻨﻈﯿﻢ ‪pH‬ﻫـﺎي ﻣﺨﺘﻠـﻒ ﺗﯿﻤﺎرﻫـﺎي اﺳـﯿﺪي و‬
‫ﻗﻠﯿﺎﯾﯽ از اﺳﯿﺪ ﮐﻠﺮﯾﺪرﯾﮏ ‪ 1‬ﻣﻮﻻر و ﺳﻮد ‪ 1‬ﻣﻮﻻر اﺳﺘﻔﺎده ﺷﺪ‪ .‬در اﺑﺘﺪا‬
‫ﻋﻀﻠﻪي ﺗﯿﺮهي ﻣﺎﻫﯽ ﺗﻮن زردﺑﺎﻟﻪ ﺑﺎ اﺳﺘﻔﺎده از ﭼـﺮخ ﮔﻮﺷـﺖ ) ‪saya,‬‬
‫‪ (Promeat, W1800, 5mm‬ﺑﺨﻮﺑﯽ ﭼﺮخ ﺷﺪه و ﺳﭙﺲ ﮔﻮﺷﺖ ﭼﺮخ‬
‫ﺷﺪهي ﻣﺎﻫﯽ ﺑﺎ ‪ 9‬ﻗﺴﻤﺖ آب ﻣﻘﻄـﺮ ﺳـﺮد‪ ،‬ﻣﺨﻠـﻮط ) ‪Hultin et al,‬‬
‫‪ (2005‬و ﺑـﺎ اﺳـﺘﻔﺎده از ﻫﻤـﺰن ﻣﮑـﺎﻧﯿﮑﯽ ‪IKA,RW 20 digital,‬‬
‫) ‪ (speed 50/ min, 1 min‬ﻫﻤﮕـﻦ ﮔﺮدﯾـﺪ‪ .‬ﺳـﭙﺲ ﺑـﺎ اﺳـﺘﻔﺎده از‬
‫ﻣﺤﻠﻮل ﻫﺎي ﯾﺎد ﺷﺪه‪ pH ،‬ﻣﺨﻠﻮط ﺑـﻪ ‪2/5 ،3 ،3/5‬و ‪10/5 ،11 ،11/5‬‬
‫رﺳﺎﻧﺪه ﺷﺪ )‪ .(Hultin & Kelleher, 2000‬در ﻣﺮﺣﻠﻪي ﺑﻌﺪ‪ ،‬ﺑﻤﻨﻈـﻮر‬
‫ﺟﺪاﺳﺎزي ﻣﻮاد ﻧﺎﻣﺤﻠﻮل از ﻣﻮاد ﺣﻞ ﺷـﺪه از ﺳـﺎﻧﺘﺮﯾﻔﻮژ آزﻣﺎﯾﺸـﮕﺎﻫﯽ‬
‫) ‪Hermle Labortechnik GmbH, Z36HK, Germany,‬‬
‫)‪ (8000×g, 25 min‬اﺳـــــﺘﻔﺎده ﺷـــــﺪ ) & ‪Park‬‬
‫‪ .(Thawornchinsombut, 2006‬ﭘﺲ از ﺳﺎﻧﺘﺮﯾﻔﻮژ ﮐﺮدن ﻧﻤﻮﻧﻪﻫـﺎ‪،‬‬
‫‪ 3‬ﻓﺎز ﺗﺸﮑﯿﻞ ﮔﺮدﯾﺪ‪ .‬ﯾﮏ ﻻﯾﻪ در ﭘﺎﯾﯿﻦ ﺷﺎﻣﻞ ﻧﺎﺧﺎﻟﺼﯽﻫﺎ‪ ،‬ﯾﮏ ﻻﯾﻪي‬
‫ژل ﻣﺎﻧﻨﺪ در ﺑﺎﻻ ﮐﻪ ﻣﺠﻤﻮﻋﻪﯾﯽ از ﻟﯿﭙﯿﺪﻫﺎ و ﯾـﮏ ﻻﯾـﻪ در وﺳـﻂ ﮐـﻪ‬

‫ﺷﺎﻣﻞ ﭘﺮوﺗﺌﯿﻦﻫﺎي ﻣﺤﻠﻮل ﺑﻮد‪ .‬در ﻣﺮﺣﻠﻪي ﺑﻌﺪ‪ pH ،‬ﻣﺤﻠﻮل ﺟﺪا ﺷﺪه‬
‫ﺑﺎ اﺳﺘﻔﺎده از اﺳﯿﺪ ﯾﺎ ﻗﻠﯿﺎ ﺑﻪ ‪ pH‬اﯾﺰواﻟﮑﺘﺮﯾﮏ‪ 5‬رﺳﺎﻧﺪه ﺷﺪ )‪ (5/5‬ﮐﻪ ﺑﻪ‬
‫ﻣﻮﺟﺐ آن ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺳﺎرﮐﻮﭘﻼﺳﻤﯽ و ﻣﯿﻮﻓﯿﺒﺮﯾﻠﯽ رﺳﻮب ﮐﺮدﻧﺪ‪ .‬در‬
‫‪5Isoelectric‬‬


‫ﻣﻘﺎﯾﺴﻪي وﯾﮋﮔﯽﻫﺎي ﮐﺎرﺑﺮدي ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺟﺪا ﺷﺪه از ﻋﻀﻠﻪي ﺗﯿﺮهي ﺗﻮن زردﺑﺎﻟﻪ‪465...‬‬
‫ﻣﺮﺣﻠﻪي ﭘﺎﯾﺎﻧﯽ‪ ،‬ﭘﺮوﺗﺌﯿﻦﻫﺎي رﺳﻮب ﮐﺮده ﺗﻮﺳﻂ ﺳﺎﻧﺘﺮﯾﻔﻮژ )‪،20 min‬‬
‫‪ (4000 ×g‬ﺟﺪا ﺷﺪه و رﻃﻮﺑﺖ اﯾﺰوﻟﻪﯾﭙـﺮوﺗﺌﯿﻦ ﺑـﺎ ﻓﺸـﺮدن دﺳـﺘﯽ در‬
‫ﭘﺎرﭼﻪ ﺻﺎﻓﯽ ﮐﺎﻫﺶ داده ﺷﺪ )‪ .(%70-72‬در اﯾﻦ ﻣﺮﺣﻠﻪ دﻗﺖ ﺷﺪ ﮐـﻪ‬
‫رﻃﻮﺑﺖ ﭘﺮوﺗﺌﯿﻦﻫـﺎي آﺑﮕﯿـﺮي ﺷـﺪه ﯾﮑﺴـﺎن ﺑﺎﺷـﻨﺪ‪ .‬ﭘـﺮوﺗﺌﯿﻦﻫـﺎي‬
‫اﺳﺘﺨﺮاج ﺷﺪه ﺑﻪ روش اﺳـﯿﺪي و ﻗﻠﯿـﺎﯾﯽ در ﮐﯿﺴـﻪﻫـﺎي زﯾـﭗدار در‬
‫ﻓﺮﯾﺰر )دﻣﺎي ‪ (-18°C‬ﻧﮕﻬﺪاري ﺷﺪه و آزﻣﻮنﻫﺎ ﻇﺮف ﯾﮏ ﻫﻔﺘـﻪ ﺑـﺮ‬
‫روي آﻧﻬﺎ اﻧﺠﺎم ﺷﺪ‪ .‬اﻧﺪازه ﮔﯿﺮي ﻣﻘﺎدﯾﺮ ﭘﺮوﺗﺌﯿﻦ ﺑﺎ اﺳﺘﻔﺎده از دﺳـﺘﮕﺎه‬
‫ﮐﻠﺪال‪ ،‬ﭼﺮﺑﯽ ﺑﺎ اﺳﺘﻔﺎده از دﺳﺘﮕﺎه ﺳﻮﮐﺴﻠﻪ‪ ،‬رﻃﻮﺑﺖ ﺑﺎ آون و ﺧﺎﮐﺴـﺘﺮ‬
‫ﺑﺎ ﮐﻮره ﻃﺒﻖ روش ‪ (1995) AOAC‬ﺑﺮ روي ﻋﻀﻠﻪي ﺗﯿﺮه و ﭘـﺮوﺗﺌﯿﻦ‬
‫اﺳﺘﺨﺮاج ﺷﺪه اﻧﺠﺎم ﺷﺪ‪ .‬اﻧﺪازه ﮔﯿﺮي ﺗﯿﻮﺑﺎرﺑﯿﺘﻮرﯾـﮏ اﺳـﯿﺪ‪ 1‬ﺑـﻪ روش‬
‫رﻧﮓﺳﻨﺠﯽ ﺻﻮرت ﮔﺮﻓﺖ‪ .‬ﻣﻘﺪار )‪ TBA‬ﻣﯿﻠﯽﮔـﺮم ﻣـﺎﻟﻮن آﻟﺪﺋﯿـﺪ در‬
‫ﮐﯿﻠﻮﮔﺮم( ﺑﺮ اﺳﺎس راﺑﻄﻪ روﺑـﺮو ﻣﺤﺎﺳـﺒﻪ ﮔﺮدﯾـﺪ ) ‪Natseba et al,‬‬
‫‪.(2005‬‬

‫)‪(1‬‬

‫×)‬

‫(‬

‫ = ‪TBA‬‬

‫‪ :As‬ﻣﻘﺪار ﺟﺬب ﻧﻤﻮﻧﻪ در ‪ 530‬ﻧﺎﻧﻮﻣﺘﺮ‬

‫‪ :Ab‬ﻣﻘﺪار ﺟﺬب ﺷﺎﻫﺪ )آب ﻣﻘﻄﺮ(‬
‫آﻣــﺎدهﺳــﺎزي ژل ﺷــﺎﻣﻞ ‪ 4‬ﻣﺮﺣﻠــﻪي ﺧــﺮد ﮐــﺮدن‪ ،‬ﭘﺮﮐــﺮدن‪،‬‬
‫ﺣﺮارتدﻫﯽ و ﺳﺮدﺳﺎزي ﺑﻮد‪ .‬ﺑﻪ اﯾﻦ ﺻـﻮرت ﮐـﻪ ﻧﻤﻮﻧـﻪﻫـﺎي اﯾﺰوﻟـﻪ‬
‫ﭘﺮوﺗﺌﯿﻦ ﺣﺎﺻﻞ از ﻫﺮ ﺗﯿﻤﺎر ﺑﺎ ‪ %3‬وزﻧﯽ ﻧﻤﮏ ﻣﺨﻠﻮط و ﺑﺎ آﺳﯿﺎب ﺑﺮﻗﯽ‬
‫)‪ (Vidas.VI-905‬ﺑﺨﻮﺑﯽ ﻫﻤﮕﻦ ﺷﺪﻧﺪ‪ .‬ﺳـﭙﺲ ﺑـﺎ ﻓﺸـﺎر زﯾـﺎد و ﺑـﻪ‬
‫ﺻﻮرت ﻣﺘﺮاﮐﻢ ﺑﺎ اﺳﺘﻔﺎده از ﻗﯿﻒ )ﻗﯿﻒ ﻗﻨﺎدي ﺑﻪ ﺷـﮑﻞ ﺳـﺮﻧﮓ( وارد‬
‫روﮐﺶ )روﮐﺶ ﺳﻮﺳﯿﺲ از ﻧﻮع ﭘﻠﯽ اﺗﯿﻠﻨﯽ ﺑﻪ ﻗﻄﺮ ‪ (15 mm‬ﺷﺪﻧﺪ‪ .‬در‬
‫اﯾﻦ ﻣﺮﺣﻠﻪ دﻗﺖ ﺷﺪ ﮐﻪ ﺣﺒﺎب ﻫﻮا در ﻧﻤﻮﻧﻪ و روﮐﺶ اﯾﺠﺎد ﻧﺸـﻮد‪ .‬دو‬
‫ﺳﺮ روﮐﺶ را ﺑﺎ ﻧﺦ‪ ،‬ﻣﺤﮑﻢ ﺑﺴﺘﻪ و ﺑﻪ ﻣﺪت ‪ 1‬ﺳﺎﻋﺖ در ﯾﺨﭽـﺎل ﻗـﺮار‬
‫ﮔﺮﻓﺖ‪ .‬ﺳﭙﺲ در دﻣـﺎي ‪ 85-90°C‬ﺑـﻪ ﻣـﺪت ‪ 30 min‬در ﺑـﻦﻣـﺎري‬
‫ﺣﺮارت داده ﺷﺪ‪ .‬ﭘﺲ از ﺣﺮارتدﻫﯽ‪ ،‬ﻧﻤﻮﻧﻪﻫﺎي اﯾﺰوﻟﻪ ﭘﺮوﺗﺌﯿﻦ روﮐﺶ‬
‫ﺷﺪه در ﻣﺨﻠﻮط آب و ﯾﺦ ﺧﻨـﮏ و ﺑـﻪ ﻣـﺪت ‪ 24‬ﺳـﺎﻋﺖ در ﯾﺨﭽـﺎل‬
‫ﻧﮕﻬﺪاري ﺷﺪﻧﺪ‪ .‬ﺳﭙﺲ ﺑﻪ ﻗﻄﻌﺎﺗﯽ ﺑﻪ ﻃﻮل‪ 15 mm‬ﺑـﺮش داده ﺷـﺪ و‬
‫‪2‬‬
‫آزﻣـﻮنﻫـﺎي ﻣﺮﺑـﻮط اﻧﺠـﺎم ﮔﺮدﯾــﺪ‪ .‬ﺑـﻪﻣﻨﻈـﻮر اﻧﺠـﺎم آزﻣـﻮن ﻧﻔــﻮذ‬
‫)‪ (Brookfield, USA‬از ﻣﯿﻠﻪ ﺳﺮ ﮐﺮوي ﺑـﻪ ﻗﻄـﺮ ‪ ،5 mm‬از ﺟـﻨﺲ‬
‫ﻓــﻮﻻد زﻧــﮓﻧــﺰن و ﺳــﺮﻋﺖ ﻧﻔــﻮذ ‪ 60mm/minute‬اﺳــﺘﻔﺎده ﺷــﺪ‬
‫)‪ .(FAO/WHO, 2005‬ﻣﯿـﺰان ﻧﯿـﺮوي ﺷﮑﺴـﺖ ﺑـﺮ ﺣﺴـﺐ ﮔـﺮم و‬
‫ﻓﺎﺻﻠﻪي ﺷﮑﺴﺖ ﺑﺮ ﺣﺴﺐ ﺳﺎﻧﺘﯽﻣﺘﺮ در اﯾﻦ آزﻣـﺎﯾﺶ ﺗﻌﯿـﯿﻦ ﺷـﺪه و‬
‫اﺳﺘﺤﮑﺎم ژل‪ 3‬ﺑﺮ ﻣﺒﻨﺎي اﯾﻦ دو ﭘﺎراﻣﺘﺮ ﻣﺤﺎﺳﺒﻪ ﮔﺮدﯾﺪ‪.‬‬
‫‪4‬‬
‫)‪ (2‬اﺳﺘﺤﮑﺎم ژل =ﻧﯿﺮوي ﺷﮑﺴﺖ )‪ ×(g‬ﺷﮑﺴﺖ ﻓﺎﺻﻠﻪ)‪(cm‬‬
‫آﻧﺎﻟﯿﺰ ﭘﺮوﻓﺎﯾﻞ ﺑﺎﻓﺖ‪ 5‬ﺑﺎ ﭘﺮوب آﻟﻮﻣﯿﻨﯿـﻮﻣﯽ )‪(Brookfield, USA‬‬
‫)‪1 Thiobarbituric acid (TBA‬‬
‫‪2Puncture test‬‬
‫‪3Gel strength‬‬
‫‪4breaking force‬‬
‫)‪5Textrure Profile Analysis (TPA‬‬

‫ﺑﻪ ﻗﻄﺮ ‪ 50 mm‬و ﻧﯿﺮوي وارده ﺑﻪ ﻣﯿـﺰان ‪ 25 kg‬و ﺳـﺮﻋﺖ ‪1 mm/s‬‬

‫اﻧﺠﺎم ﺷـﺪ )‪ .(FAO/WHO, 2005‬ﺑـﺮاي ﻣﺤﺎﺳـﺒﻪي ﺷـﺎﺧﺺﻫـﺎي‬
‫ﻣﺮﺗﺒﻂ ﺑﺎ اﯾﻦ آزﻣﻮن‪ ،‬ﻫﺮ ﻧﻤﻮﻧﻪ ‪ 2‬ﺑﺎر ﻓﺸﺮده و ﺳﺨﺘﯽ )ﻧﯿـﺮوي ﺑﯿﺸـﯿﻨﻪ‬
‫ﻃﯽ اوﻟﯿﻦ ﭼﺮﺧﻪ ﻓﺸﺮدن(‪ ،‬اﻻﺳﺘﯿﺴـﯿﺘﻪ )ارﺗﻔـﺎﻋﯽ ﮐـﻪ ﻧﻤﻮﻧـﻪ در ﺑـﺎزه‬
‫زﻣﺎﻧﯽ ﺑـﯿﻦ اﻧﺘﻬـﺎي ﮔـﺎز زدن اول و ﺷـﺮوع ﮔـﺎز زدن دوم ﺑـﻪ آن ﺑـﺎز‬
‫ﻣﯽﮔﺮدد(‪ ،‬ﭼﺴﺒﻨﺪﮔﯽ )ﻧﺎﺣﯿﻪ ﻧﯿﺮوي ﻣﻨﻔﯽ ﺣﺎﺻـﻞ از ﮔـﺎز زدن اول ﮐـﻪ‬
‫ﺑﯿﺎﻧﮕﺮ ﮐﺎر ﻻزم ﺟﻬﺖ ﮐﺸﯿﺪن ﭘﺮوب دﺳﺘﮕﺎه ﺑﻪ ﻋﻘﺐ از داﺧـﻞ ﻧﻤﻮﻧـﻪ‬
‫ﻣﯽﺑﺎﺷﺪ( و ﺑﻬﻢ ﭘﯿﻮﺳﺘﮕﯽ )ﻧﺴﺒﺖ ﻣﺴﺎﺣﺖ ﺳـﻄﺢ‪ 2‬ﺑـﻪ ﺳـﻄﺢ ‪ ( 1‬ژل‬
‫ﺳﻨﺠﯿﺪه ﺷﺪ‪.‬‬
‫ﺑﻤﻨﻈﻮر ارزﯾـﺎﺑﯽ رﻧـﮓ‪ ،‬ﺑـﺎ دﺳـﺘﮕﺎه رﻧـﮓﺳـﻨﺞ ) ‪Micromatch‬‬
‫‪ ،(plus,sheen, ASTM 2244‬ﻧﻤﻮﻧﻪﻫﺎ ﺑﻪ ﺿـﺨﺎﻣﺖ ‪ 15 mm‬ﺑـﺮش‬
‫داده ﺷﺪه و ﺷﺎﺧﺺﻫﺎي رﻧﮕﯽ ﻧﻤﻮﻧﻪﻫﺎ ﺷﺎﻣﻞ *‪) L‬ﻣﯿـﺰان روﺷـﻨﺎﯾﯽ(‪،‬‬
‫*‪) a‬ﻣﯿﺰان ﺗﻤﺎﯾﻞ ﺑﻪ رﻧﮓ ﻗﺮﻣﺰ( و *‪) b‬ﻣﯿـﺰان ﺗﻤﺎﯾـﻞ ﺑـﻪ رﻧـﮓ زرد(‬
‫اﻧﺪازهﮔﯿﺮي ﺷﺪ‪ .‬ﻣﯿﺰان ﺳﻔﯿﺪي ﻧﻤﻮﻧﻪﻫﺎ )‪ (Whiteness‬ﻃﺒﻖ راﺑﻄﻪ زﯾﺮ‬
‫ﻣﺸﺨﺺ ﮔﺮدﯾﺪ )‪.(FAO/WHO, 2005‬‬
‫)‪∗ ² + ∗ ² (3‬‬

‫‪Whiteness=100- (100 − L ∗) +‬‬

‫ﺑﻤﻨﻈﻮر اﻧﺪازهﮔﯿﺮي ﻗﺪرت ژﻟﯽ ﺑﻪ روش ﺣﺴـﯽ )‪ (Park, 2004‬از‬
‫آزﻣﻮن ﺗﺎ ﮐﺮدن ﺑﺎ دﺳﺖ‪ 6‬و ﮔﺎز زدن ﺑـﺎ دﻧـﺪاﻧﻬﺎي ﺟﻠـﻮ‪ 7‬ﮐـﻪ ﯾﮑـﯽ از‬
‫ﺳﺎدهﺗﺮﯾﻦ راهﻫﺎ ﺑﺮاي ﺳﻨﺠﺶ ﻗﺪرت ژﻟﯽ اﺳﺖ‪ ،‬اﺳﺘﻔﺎده ﺷﺪ‪ .‬آزﻣﻮن ﺗـﺎ‬
‫ﮐﺮدن ﺑﺎ ﺑﺮﺷﯽ از ﻧﻤﻮﻧﻪ ژل ﺑﻪ ﺿﺨﺎﻣﺖ ‪ 5 mm‬ﮐـﻪ ﺑـﯿﻦ دو اﻧﮕﺸـﺖ‬
‫اﺷﺎره و ﺷﺴﺖ ﺑﻪ آراﻣﯽ روي ﻫﻢ ﺗﺎ ﺷﺪﻧﺪ‪ ،‬اﻧﺠﺎم ﺷﺪ‪ .‬آزﻣﻮنﻫـﺎ ﺗﻮﺳـﻂ‬
‫ﺳﻪ ﻧﻔﺮ ﻓﺮد آﻣﻮزش دﯾﺪه اﻧﺠـﺎم و اﻣﺘﯿﺎزﺑﻨـﺪي ﺑـﺮ ﭘﺎﯾـﻪي ﺟـﺪول )‪(1‬‬
‫ﺻﻮرت ﮔﺮﻓﺖ‪.‬‬
‫ﺟﺪول ‪ -1‬اﻣﺘﯿﺎزﺑﻨﺪي در آزﻣﻮن ﺗﺎ ﮐﺮدن‬

‫ﻧﻮع ﺧﺼﻮﺻﯿﺖ‬
‫اﮔﺮ دو ﺑﺎر روي ﻫﻢ ﺗﺎ ﺷﻮد‪ ،‬ﺗﺮك ﻧﻤﯽﺧﻮرد‬
‫ﯾﮏ ﺑﺎر ﺗﺎ ﺷﻮد ﺗﺮك ﻧﻤﯽﺧﻮرد وﻟﯽ اﮔﺮ دو ﺑﺎر ﺗﺎ ﺷﻮد ﺗﺮك اﯾﺠﺎد ﻣﯽﺷﻮد‬

‫ﯾﮏ ﺑﺎر ﺗﺎ ﺷﻮد ﺗﺮك ﻧﻤﯽﺧﻮرد اﻣﺎ اﮔﺮ دو ﺑﺎر ﺗﺎ ﺷﻮد دو ﻧﯿﻢ ﻣﯽﺷﻮد‬
‫ﯾﮏ ﺑﺎر ﺗﺎ ﺷﻮد ﺗﺮك اﯾﺠﺎد ﻣﯽﺷﻮد‬
‫ﯾﮏ ﺑﺎر ﺗﺎ ﺷﻮد ﺑﻪ دو ﻧﯿﻢ ﺗﻘﺴﯿﻢ ﻣﯽﺷﻮد‬
‫)‪(FAO/WHO, 2005‬‬

‫اﻣﺘﯿﺎز‬
‫‪5‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1‬‬

‫آزﻣﻮن ﮔﺎز زدن ﻫﻢ )ﺗﻮﺳﻂ ﺳﻪ ﻧﻔﺮ ﻓﺮد آﻣﻮزش دﯾﺪه( ﺑﺎ ﺑﺮﺷـﯽ از‬
‫ﻧﻤﻮﻧﻪ ژل ﺑﻪ ﺿﺨﺎﻣﺖ ‪ 5 mm‬و ﺑﺎ دﻧـﺪانﻫـﺎي ﺟﻠـﻮ اﻧﺠـﺎم ﮔﺮﻓـﺖ و‬
‫ﻣﯿﺰان ارﺗﺠﺎﻋﯿﺖ و اﻻﺳﺘﯿﺴﯿﺘﻪ ﻣﺸﺨﺺ ﮔﺮدﯾﺪ‪ .‬اﻣﺘﯿﺎز ﺑﻨﺪي ﺑـﺮ ﻃﺒـﻖ‬
‫ﺟﺪول )‪ (2‬اﻧﺠﺎم ﺷﺪ‪.‬‬
‫ﺑﻤﻨﻈﻮر ﺳﻨﺠﺶ وﯾﺴﮑﻮزﯾﺘﻪ‪ ،‬ﻧﻤﻮﻧﻪﻫﺎي ﭘﺮوﺗﺌﯿﻦ ﺑﻪ ﻧﺴـﺒﺖ ‪ 1:5‬ﺑـﺎ‬
‫آب ﻣﻘﻄـﺮ و ﺑـﺎ اﺳـﺘﻔﺎده از ﻫﻤﻮژﻧـﺎﯾﺰر )‪WIGGEN HAUSER,D-‬‬
‫‪ ،(500,Germany, speed 10000/min, 1 min‬ﻫﻤﮕﻦ ﺷﺪﻧﺪ‪.‬‬
‫ﺳﭙﺲ ‪ 15‬ﻣﯿﻠﯽﻟﯿﺘﺮ از ﻣﺨﻠﻮط ﻫﻤﮕﻦ ﺷﺪه را وارد ﺳﯿﻠﻨﺪر‬
‫‪6FoldingTest‬‬
‫‪7BitingTest‬‬


‫‪ 466‬ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺸﻬﺎي ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ اﯾﺮان‪ ،‬ﺟﻠﺪ ‪ ،12‬ﺷﻤﺎره‪ ،4‬ﻣﻬﺮ ‪ -‬آﺑﺎن ‪1395‬‬

‫وﯾﺴﮑﻮﻣﺘﺮ ﮐﺮده )ﻧﻮع ﭘﺮوب ‪ (Spindle S-31‬و وﯾﺴﮑﻮزﯾﺘﻪ ﺑﺎ اﺳﺘﻔﺎده‬
‫از وﯾﺴﮑﻮﻣﺘﺮ ﺑﺮوﮐﻔﯿﻠﺪ )‪ (Brookfield,DV-II+Pro,U.S.A‬در دﻣﺎي‬
‫‪ 5°C‬ﺑﺎ ﺳﺮﻋﺖ ﭼﺮﺧﺶ ‪100 rpm‬ﺑﻪ ﻣﺪت ‪ 2‬دﻗﯿﻘﻪ اﻧﺪازهﮔﯿﺮي ﺷﺪ‬
‫)‪ .(Kristinsson etal, 2005‬در ﻃﻮل اﻧﺪازهﮔﯿﺮي ﺑﺎ ﮐﻤﮏ ﯾﺦ دﻣﺎي‬

‫ﺣﻤﺎم آب وﯾﺴﮑﻮﻣﺘﺮ در ‪ 5°C‬ﺛﺎﺑﺖ ﻧﮕﻪداﺷﺘﻪ ﺷﺪ‪ .‬آزﻣﻮن ﻇﺮﻓﯿﺖ‬
‫ﻧﮕﻬﺪاري آب ﺑﺎ اﺳﺘﻔﺎده از ﺳﺎﻧﺘﺮﯾﻔﻮژ )‪ (AOAC, 1995‬اﻧﺠﺎم ﺷﺪ‪ .‬ﺑﻪ‬
‫اﯾﻦ ﺻﻮرت ﮐﻪ ‪ 1-2‬ﮔﺮم از ﻧﻤﻮﻧﻪ در ﮐﺎﻏﺬ ﺻﺎﻓﯽ ﭘﯿﭽﯿﺪه و ﺑﺎ دور‬
‫‪ 1350rpm‬در دﻣﺎي ‪ 5°C‬ﺑﻪ ﻣﺪت ‪ 5‬دﻗﯿﻘﻪ ﺳﺎﻧﺘﺮﯾﻔﻮژ ) ‪Hermle‬‬
‫‪ (Labortechnik GmbH, Z36HK,Germany‬ﺷﺪ‪ .‬ﺗﻔﺎوت وزن‬
‫ﻧﻤﻮﻧﻪ ﻗﺒﻞ و ﺑﻌﺪ از ﺳﺎﻧﺘﺮﯾﻔﻮژ ﻣﺤﺎﺳﺒﻪ ﮔﺮدﯾﺪ و ﻇﺮﻓﯿﺖ ﻧﮕﻬﺪاري آب‬
‫ﻃﺒﻖ راﺑﻄﻪ زﯾﺮ ﺑﺪﺳﺖ آﻣﺪ‪.‬‬
‫= ‪WHC‬‬
‫‪× 100‬‬
‫)‪(4‬‬
‫‪ :Wwet‬وزن ﻧﻤﻮﻧﻪ ﻗﺒﻞ از ﺳﺎﻧﺘﺮﯾﻔﻮژ ﺑﻪ ﮔﺮم‬
‫‪ :Wdry‬وزن ﻧﻤﻮﻧﻪ ﺑﻌﺪ از ﺳﺎﻧﺘﺮﯾﻔﻮژ ﺑﻪ ﮔﺮم‬
‫ﺟﺪول ‪ -2‬اﻣﺘﯿﺎزﺑﻨﺪي در آزﻣﻮن ﮔﺎز زدن‬
‫اﻣﺘﯿﺎز‬
‫ﮐﯿﻔﯿﺖ ژل‬
‫‪10‬‬
‫ﻓﻮقاﻟﻌﺎده ﺳﺨﺖ‬
‫‪9‬‬
‫ﺧﯿﻠﯽ ﺳﺨﺖ‬
‫‪8‬‬
‫ﺳﺨﺖ‬
‫‪7‬‬
‫ﮐﻤﯽ ﺳﺨﺖ‬
‫‪6‬‬
‫ﻧﺴﺒﺘﺎ ﺧﻮب‬
‫‪5‬‬
‫ﮐﻤﯽ ﺿﻌﯿﻒ‬
‫‪4‬‬
‫ﺿﻌﯿﻒ‬
‫‪3‬‬

‫ﺧﯿﻠﯽ ﺿﻌﯿﻒ‬
‫‪2‬‬
‫ﻓﻮقاﻟﻌﺎده ﺿﻌﯿﻒ‬
‫‪1‬‬
‫ﻧﺎﺗﻮان در ﺗﺸﮑﯿﻞ ژل‬
‫)‪(FAO/WHO, 2005‬‬

‫ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺑﺪﺳﺖ آﻣﺪه از ﺗﯿﻤﺎرﻫﺎي اﺳﯿﺪي و ﻗﻠﯿـﺎﯾﯽ ﺑـﻪ روش‬
‫اﻟﮑﺘﺮوﻓﻮرز ﻋﻤﻮدي ﻣﻮرد ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞ ﻗﺮار ﮔﺮﻓﺘﻨـﺪ‪ .‬اﻟﮑﺘﺮوﻓـﻮرز ژل‬
‫ﺳﺪﯾﻢ دو دﺳﯿﻞ ﺳﻮﻟﻔﺎت ﭘﻠﯽ اﮐﺮﯾﻼﻣﯿﺪ‪ ،1‬ﺑﻪ روش ‪(1970) Laemelli‬‬
‫اﻧﺠﺎم ﺷﺪ‪ .‬ﻧﻤﻮﻧﻪي ﭘﺮوﺗﺌﯿﻦ ﭘﺲ از آﻣﺎدهﺳﺎزي ﺑﻪ ﻣﻘـﺪار ‪ 15µL‬در ژل‬
‫ﻣﻮرد ﻧﻈﺮ ﺑﺎرﮔﺬاري ﺷﺪ‪ .‬ژل ﭘﺲ از رﻧﮓ آﻣﯿﺰي‪ ،‬ﻋﮑﺲﺑﺮداري ﺷـﺪه و‬
‫ﺑﺎﻧﺪﻫﺎي ﺗﺸﮑﯿﻞ ﺷﺪه ﺑﺮرﺳﯽ ﺷﺪﻧﺪ‪ .‬وزن ﻣﻮﻟﮑـﻮﻟﯽ اﺳـﺘﺎﻧﺪارد ﺑـﻪ ﮐـﺎر‬
‫ﺑﺮده ﺷﺪه ‪ 14/4-116 kDa‬ﺑﻮد‪ .‬دراﯾﻦ روش از ﺗﻔﺎوت وزن ﻣﻮﻟﮑـﻮﻟﯽ‬
‫و ﺑﺎراﻟﮑﺘﺮﯾﮑﯽ ﭘﺮوﺗﺌﯿﻦﻫﺎ ﺑﻄﻮر ﻫﻤﺰﻣﺎن ﺑﺮاي ﺗﻔﮑﯿﮏ آﻧﻬـﺎ از ﯾﮑـﺪﯾﮕﺮ‬
‫اﺳﺘﻔﺎده ﺷﺪ‪ .‬ﻣﻘﺎدﯾﺮ دﻧﺎﺗﻮره ﺷﺪن ﭘﺮوﺗﺌﯿﻦﻫﺎ‪ ،‬ﻣﻘﺎدﯾﺮ اﮐﺘﯿﻦ و ﻣﯿﻮزﯾﻦ و‬
‫ﺗــﻮاﻟﯽ ﭘــﺮوﺗﺌﯿﻦﻫــﺎ ﺑــﺎ اﺳــﺘﻔﺎده از اﯾــﻦ روش ﻣﺸــﺨﺺ ﮔﺮدﯾــﺪ‬
‫)‪.(Kristinsson et al, 2005‬‬
‫‪Gel‬‬

‫‪Sulfate-Polyacrylamide‬‬

‫‪1Sodium‬‬
‫‪Dodecyl‬‬
‫‪Electrophoresis‬‬

‫ﺑﺮاي ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞ ﻧﺘﺎﯾﺞ از ﻧﺮماﻓـﺰار آﻣـﺎري ‪ SPSS‬ﻧﺴـﺨﻪ ‪16‬‬
‫)‪(Chicago, IL, U.S.A.windows, SPSS Inc.,SPSS 16.0 for‬‬
‫اﺳﺘﻔﺎده ﺷﺪ‪ .‬ﺟﻬﺖ ﺗﻌﯿﯿﻦ اﺧﺘﻼف ﻣﻌﻨﯽدار ﺑﯿﻦ ﺗﯿﻤﺎرﻫﺎ از روش آﻧـﺎﻟﯿﺰ‬
‫وارﯾﺎﻧﺲ ﯾﮏﻃﺮﻓﻪ‪ 2‬اﺳﺘﻔﺎده ﮔﺮدﯾﺪ‪ .‬ﺑﺮاي ﻣﻘﺎﯾﺴﻪ ﻣﯿﺎﻧﮕﯿﻦﻫﺎ در ﻣﻮاردي‬

‫ﮐﻪ اﺛﺮ ﮐﻠﯽ ﺗﯿﻤﺎرﻫﺎ ﻣﻌﻨﯽدار ﺑﻮد از آزﻣﻮن داﻧﮑﻦ اﺳﺘﻔﺎده ﺷﺪ‪ .‬ﻻزم ﺑـﻪ‬
‫ذﮐﺮ اﺳﺖ ﮐﻪ در ﺗﻤﺎﻣﯽ ﻣﺮاﺣﻞ ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿـﻞ ﺗﻤـﺎم اﺧـﺘﻼفﻫـﺎ در‬
‫ﺳﻄﺢ )‪ (p<0/05‬ﻣﻌﻨﯽداري در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻧﺪ‪.‬‬

‫ﻧﺘﺎﯾﺞ و ﺑﺤﺚ‬

‫ﻧﺘﺎﯾﺞ ﺣﺎﺻﻞ از ﺗﺠﺰﯾﻪي ﺗﻘﺮﯾﺒﯽ ﻋﻀﻠﻪي ﺗﯿﺮهي ﺗـﻮن زرد ﺑﺎﻟـﻪ و‬
‫ﭘﺮوﺗﺌﯿﻦﻫﺎي اﺳﺘﺨﺮاج ﺷﺪهي ﺣﺎﺻﻞ از ﺗﯿﻤﺎرﻫﺎي اﺳﯿﺪي و ﻗﻠﯿـﺎﯾﯽ در‬
‫ﺟﺪولﻫﺎي ‪ 3‬و ‪ 4‬ﻧﺸﺎن داده ﺷﺪه اﺳﺖ‪.‬‬
‫ﺟﺪول ‪ -3‬ﺗﺠﺰﯾﻪي ﺗﻘﺮﯾﺒﯽ ﻋﻀﻠﻪي ﺗﯿﺮهي ﺗﻮن زرد ﺑﺎﻟﻪ‬

‫رﻃﻮﺑﺖ )‪(%‬‬

‫ﭘﺮوﺗﺌﯿﻦ ﻣﺎده‬
‫ﺧﺸﮏ )‪(%‬‬

‫ﭼﺮﺑﯽ ﻣﺎده‬

‫ﺧﺎﮐﺴﺘﺮ ﻣﺎده‬

‫ﺧﺸﮏ )‪(%‬‬

‫ﺧﺸﮏ )‪(%‬‬

‫‪3/83±0/22‬‬
‫‪83/79±1/25‬‬
‫‪71/13±0/08‬‬
‫دادهﻫﺎ ﺑﻪ ﺻﻮرت ﻣﯿﺎﻧﮕﯿﻦ‪ ±‬اﻧﺤﺮاف ﻣﻌﯿﺎر ﮔﺰارش ﺷﺪهاﻧﺪ‪.‬‬

‫‪5/05±0/07‬‬


‫ﺟﺪول ‪ -4‬ﺗﺠﺰﯾﻪي ﺗﻘﺮﯾﺒﯽ ﭘﺮوﺗﺌﯿﻦ ﺑﺎزﯾﺎﻓﺘﯽ ﺣﺎﺻﻞ از ﺗﯿﻤﺎرﻫﺎي‬
‫اﺳﯿﺪي و ﻗﻠﯿﺎﯾﯽ‬
‫ﺗﯿﻤﺎر)‪(pH‬‬

‫رﻃﻮﺑﺖ )‪(%‬‬

‫ﭘﺮوﺗﺌﯿﻦ‬

‫ﭼﺮﺑﯽ‬

‫)ﺧﺸﮏ( )‪(%‬‬

‫)ﺧﺸﮏ( )‪(%‬‬

‫‪70/0±0/0c 76/00±0.56a‬‬
‫‪2/5‬‬
‫‪c‬‬
‫‪a‬‬
‫‪70/0±0/0‬‬
‫‪75/50±1.55‬‬
‫‪3‬‬
‫‪74/0±0/0a 71/66±0/51bc‬‬
‫‪3/5‬‬
‫‪74/0±0/0a 70/50±0/98c‬‬
‫‪10/5‬‬
‫‪72/0±0/0b 70/60±0/14c‬‬
‫‪11‬‬
‫‪c‬‬
‫‪b‬‬

‫‪70/0±0/0‬‬
‫‪72/61±0/82‬‬
‫‪11/5‬‬
‫دادهﻫﺎ ﺑﻪ ﺻﻮرت ﻣﯿﺎﻧﮕﯿﻦ‪ ±‬اﻧﺤﺮاف ﻣﻌﯿﺎر ﮔﺰارش ﺷﺪهاﻧﺪ‪.‬‬

‫‪4/22 ±0/38c‬‬
‫‪3/62 ±0/24c‬‬
‫‪8/21 ±0/26a‬‬
‫‪6/42 ±0/74b‬‬
‫‪1/79 ±0/29d‬‬
‫‪4/30 ±1/69c‬‬

‫ﺣﺮوف ﻣﺘﻔﺎوت در ﻫﺮ ﺳﺘﻮن ﻧﺸﺎندﻫﻨﺪه اﺧﺘﻼف آﻣﺎري ﻣﻌﻨﯽدار ﺑـﯿﻦ‬
‫ﻣﯿﺎﻧﮕﯿﻦﻫﺎ در ﺳﻄﺢ ) ‪ (p<0/05‬ﻣﯽﺑﺎﺷﺪ‪.‬‬
‫ﺑﻄﻮر ﻣﺘﻮﺳﻂ رﻃﻮﺑﺖ ﭘﺮوﺗﺌﯿﻦﻫـﺎي ﺑﺎزﯾـﺎﻓﺘﯽ ‪ %72‬ﺑـﻮد‪ .‬ﮐﻤﺘـﺮﯾﻦ‬
‫ﻣﻘﺪار رﻃﻮﺑﺖ )‪ (%70‬در ﺗﯿﻤﺎرﻫﺎي ﻗﻠﯿﺎﯾﯽ ﺑﺎ ‪ 10/5 pH‬و ‪ 11‬دﯾﺪه ﺷـﺪ‪.‬‬
‫ﻣﻘﺪار ﭼﺮﺑﯽ در ﺗﯿﻤﺎرﻫﺎي اﺳﯿﺪي ﺑﺎ ‪ 3 ،2/5 pH‬و ﺗﯿﻤﺎر ﻗﻠﯿﺎﯾﯽ ﺑـﺎ ‪pH‬‬
‫‪ 11/5‬ﯾﮑﺴﺎن ﺑﻮد )‪ .(p>0/05‬ﺗﯿﻤﺎرﻫﺎي اﺳـﯿﺪي ‪ 3/5‬و ﻗﻠﯿـﺎﯾﯽ ‪،10/5‬‬
‫ﺑﯿﺸﺘﺮﯾﻦ ﻣﻘﺪار ﭼﺮﺑﯽ را دارا ﺑﻮدﻧﺪ ﮐﻪ ﺑﺎ ﻫﻢ و ﺑﺎ دﯾﮕﺮ ﺗﯿﻤﺎرﻫﺎ اﺧـﺘﻼف‬
‫ﻣﻌﻨﯽداري داﺷﺘﻨﺪ‪ .‬ﻣﺘﻮﺳـﻂ وزن ﺧﺸـﮏ ﭘـﺮوﺗﺌﯿﻦ ﺣـﺪود ‪ %71‬ﺑـﻮد و‬
‫ﺗﯿﻤﺎرﻫﺎي ‪ 3/5‬و‪ ،10/5‬ﻣﻘـﺪار ﭘـﺮوﺗﺌﯿﻦ ﺑﯿﺸـﺘﺮي داﺷـﺘﻨﺪ )‪ (%74‬ﮐـﻪ‬
‫اﺧﺘﻼف آن ﺑﺎ دﯾﮕﺮ ﺗﯿﻤﺎرﻫﺎ ﻣﻌﻨﯽدار ﺑﻮد )‪.(p<0/05‬‬
‫در ﺷــﮑﻞ )‪ (1‬ﻣﯿــﺰان ﺗﯿﻮﺑﺎرﺑﯿﺘﻮرﯾــﮏ اﺳــﯿﺪ ﭘــﺮوﺗﺌﯿﻦ ﺣﺎﺻــﻞ از‬
‫‪2 One way ANOVA‬‬


‫ﻣﻘﺎﯾﺴﻪي وﯾﮋﮔﯽﻫﺎي ﮐﺎرﺑﺮدي ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺟﺪا ﺷﺪه از ﻋﻀﻠﻪي ﺗﯿﺮهي ﺗﻮن زردﺑﺎﻟﻪ‪467...‬‬
‫ﺗﯿﻤﺎرﻫــﺎ اﺧــﺘﻼف ﻣﻌﻨــﯽداري داﺷــﺘﻨﺪ )‪ .(p<0/05‬ﻧﺘــﺎﯾﺞ ﺣﺎﺻــﻞ از‬
‫اﻧﺪازهﮔﯿﺮي وﯾﺴﮑﻮزﯾﺘﻪ ﭘﺮوﺗﺌﯿﻦ اﺳﺘﺨﺮاج ﺷﺪه از ﺗﯿﻤﺎرﻫﺎي اﺳـﯿﺪي و‬
‫ﻗﻠﯿﺎﯾﯽ در ﺷﮑﻞ )‪ (2‬ﻧﺸﺎن داده ﺷﺪه اﺳﺖ‪.‬‬


‫ﺗﯿﻤﺎرﻫﺎي اﺳﯿﺪي و ﻗﻠﯿﺎﯾﯽ ﻧﺸﺎن داده ﺷﺪه اﺳﺖ‪.‬‬
‫ﺑﺮ ﻃﺒﻖ ﻧﻤﻮدار ﻣﻘﺎدﯾﺮ ﺷﺎﺧﺺ ‪ ،TBA‬ﺷـﺎﺧﺺ اﮐﺴـﺎﯾﺶ ﺛﺎﻧﻮﯾـﻪ‪،‬‬
‫ﺑﻄﻮر ﮐﻠﯽ ﭘﺎﯾﯿﻦ و اﯾﻦ ﻣﯿﺰان در ﺗﯿﻤﺎرﻫﺎي اﺳـﯿﺪي ﺑﻄـﻮر ﻣﻌﻨـﯽداري‬
‫ﮐﻤﺘﺮ از ﺗﯿﻤﺎرﻫﺎي ﻗﻠﯿﺎﯾﯽ ﺑﺎ ‪ 10/5 pH‬و ‪ 11‬و ﺑﺮاﺑﺮ ﺑﺎ ﺗﯿﻤﺎر ‪ 11/5‬ﺑـﻮد‪.‬‬
‫ﺗﯿﻤﺎرﻫﺎي ﻗﻠﯿﺎﯾﯽ ﺑﺎ ‪ 10/5 pH‬و ‪ 11‬ﺑﯿﺸﺘﺮﯾﻦ ﻣﻘﺪار اﮐﺴﺎﯾﺶ و ﺑﺎ دﯾﮕﺮ‬

‫ﺗﯿﻮﺑﺎرﺑﯿﺘﻮرﯾﮏ اﺳﯿﺪ)‪ mg‬ﻣﺎﻟﻮﻧﺎﻟﺪﻫﯿﺪ درﮐﯿﻠﻮﮔﺮم ﻧﻤﻮﻧﻪ(‬

‫‪0.2‬‬
‫‪0.16‬‬

‫‪a‬‬

‫‪0.12‬‬

‫‪a‬‬
‫‪a‬‬
‫‪a‬‬

‫‪a‬‬

‫‪0.08‬‬

‫‪a‬‬

‫‪0.04‬‬
‫‪0‬‬
‫‪11‬‬


‫‪11.5‬‬

‫‪3.5‬‬

‫‪10.5‬‬

‫ﺗﯿﻤﺎر )‪(pH‬‬

‫‪3‬‬

‫‪2.5‬‬

‫ﺷﮑﻞ ‪ -1‬ﻣﻘﺎدﯾﺮ ﺗﯿﻮﺑﺎرﺑﯿﺘﻮرﯾﮏ اﺳﯿﺪ ﺗﯿﻤﺎرﻫﺎي ﻣﺨﺘﻠﻒ ‪ mg) pH‬ﻣﺎﻟﻮنآﻟﺪﻫﯿﺪ در ‪ kg‬ﻧﻤﻮﻧﻪ(‬
‫ﺣﺮوف ﻧﺸﺎندﻫﻨﺪه ﻧﺪاﺷﺘﻦ اﺧﺘﻼف آﻣﺎري ﻣﻌﻨﯽدار ﺑﯿﻦ ﻣﯿﺎﻧﮕﯿﻦﻫﺎ در ﺳﻄﺢ ‪ p>0/05‬ﻣﯽﺑﺎﺷﺪ‪.‬‬

‫‪a‬‬
‫‪c‬‬

‫‪d‬‬

‫‪11‬‬

‫‪10.5‬‬

‫‪3.5‬‬

‫ﺗﯿﻤﺎر )‪(pH‬‬

‫‪d‬‬


‫‪d‬‬

‫‪3‬‬

‫‪2.5‬‬

‫وﯾﺴﮑﻮزﯾﺘﻪ )‪( Pa‬‬

‫‪11.5‬‬

‫‪b‬‬

‫‪4.5‬‬
‫‪4‬‬
‫‪3.5‬‬
‫‪3‬‬
‫‪2.5‬‬
‫‪2‬‬
‫‪1.5‬‬
‫‪1‬‬
‫‪0.5‬‬
‫‪0‬‬

‫ﺷﮑﻞ ‪ - 2‬ﻣﻘﺎدﯾﺮ وﯾﺴﮑﻮزﯾﺘﻪ ﭘﺮوﺗﺌﯿﻦ ﺑﺪﺳﺖ آﻣﺪه از ﺗﯿﻤﺎرﻫﺎي ﻣﺨﺘﻠﻒ ‪pH‬‬

‫ﺣﺮوف ﻣﺘﻔﺎوت ﻧﺸﺎندﻫﻨﺪه اﺧﺘﻼف آﻣﺎري ﻣﻌﻨﯽدار ﺑﯿﻦ ﻣﯿﺎﻧﮕﯿﻦﻫﺎ در ﺳﻄﺢ ‪ p<0/05‬ﻣﯽﺑﺎﺷﺪ‪.‬‬

‫در ﺑﯿﻦ ﺗﯿﻤﺎرﻫﺎ‪ ،‬ﺗﯿﻤﺎر ﻗﻠﯿﺎﯾﯽ ‪ 11‬ﺑﯿﺸـﺘﺮﯾﻦ وﯾﺴـﮑﻮزﯾﺘﻪ را داﺷـﺖ‪.‬‬
‫ﺗﯿﻤﺎرﻫﺎي اﺳﯿﺪي ﺑـﺎ ‪ 2/5 pH‬و‪ 3‬و ﺗﯿﻤـﺎر ﻗﻠﯿـﺎﯾﯽ ‪ 10/5‬وﯾﺴـﮑﻮزﯾﺘﻪ‬
‫ﮐﻤﺘﺮ و ﻣﺸﺎﺑﻪ داﺷﺘﻨﺪ و اﺧﺘﻼف آﻧﻬﺎ ﺑـﺎ دﯾﮕـﺮ ﺗﯿﻤﺎرﻫـﺎ ﻣﻌﻨـﯽدار ﺑـﻮد‪.‬‬


‫ﺗﯿﻤﺎرﻫﺎي ‪ 3/5‬و ‪ 11/5‬ﻧﯿﺰ ﺑﺎ ﻫﻢ و ﺑﺎ دﯾﮕﺮ ﺗﯿﻤﺎرﻫﺎ اﺧﺘﻼف ﻣﻌﻨﯽداري‬
‫داﺷﺘﻨﺪ )‪.(p<0/05‬‬
‫در ﺷﮑﻞ ‪ 3‬ﻣﻘﺎدﯾﺮ ﺣﺎﺻﻞ از اﻧـﺪازهﮔﯿـﺮي ﻇﺮﻓﯿـﺖ ﻧﮕﻬـﺪاري آب‬


‫‪ 468‬ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺸﻬﺎي ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ اﯾﺮان‪ ،‬ﺟﻠﺪ ‪ ،12‬ﺷﻤﺎره‪ ،4‬ﻣﻬﺮ ‪ -‬آﺑﺎن ‪1395‬‬

‫ﭘﺮوﺗﺌﯿﻦ اﺳﺘﺨﺮاج ﺷﺪه از ﺗﯿﻤﺎرﻫﺎي ﻣـﻮرد آزﻣـﺎﯾﺶ ﻧﺸـﺎن داده ﺷـﺪه‬
‫اﺳﺖ‪ .‬ﺑﻄﻮر ﮐﻠﯽ ﺗﻔﺎوت ﭼﺸﻤﮕﯿﺮي ﺑﯿﻦ ﺗﯿﻤﺎرﻫﺎي اﺳﯿﺪي و ﻗﻠﯿـﺎﯾﯽ از‬
‫ﻧﻈﺮ ﻇﺮﻓﯿﺖ ﻧﮕﻬﺪاري آب دﯾﺪه ﺷﺪ‪ .‬ﺗﯿﻤﺎر اﺳﯿﺪي ﺑﺎ ‪ 3/5 pH‬ﺑﯿﺸﺘﺮﯾﻦ‬

‫ﻇﺮﻓﯿﺖ ﻧﮕﻬﺪاري آب و ﺑﺎ ﺗﯿﻤﺎرﻫﺎي دﯾﮕﺮ اﺧﺘﻼف ﻣﻌﻨـﯽداري داﺷـﺖ‬
‫)‪.(p<0/05‬‬

‫‪25‬‬

‫‪a‬‬

‫‪20‬‬
‫‪b‬‬

‫‪c‬‬

‫‪3‬‬

‫‪2.5‬‬

‫‪10‬‬
‫‪5‬‬


‫ﻇﺮﻓﯿﺖ ﻧﮕﻬﺪاري آب )‪(%‬‬

‫‪b‬‬

‫‪b‬‬

‫‪b‬‬

‫‪15‬‬

‫‪0‬‬
‫‪11‬‬

‫‪11.5‬‬

‫‪10.5‬‬

‫‪3.5‬‬

‫ﺗﯿﻤﺎر )‪(pH‬‬

‫ﺷﮑﻞ ‪ -3‬ﻣﻘﺎدﯾﺮ ﻇﺮﻓﯿﺖ ﻧﮕﻬﺪاري آب ﭘﺮوﺗﺌﯿﻦ ﺣﺎﺻﻞ از ﺗﯿﻤﺎرﻫﺎي اﺳﯿﺪي و ﻗﻠﯿﺎﯾﯽ‬
‫ﺣﺮوف ﻣﺘﻔﺎوت ﻧﺸﺎندﻫﻨﺪه اﺧﺘﻼف آﻣﺎري ﻣﻌﻨﯽدار ﺑﯿﻦ ﻣﯿﺎﻧﮕﯿﻦﻫﺎ در ﺳﻄﺢ ‪ p<0/05‬ﻣﯽﺑﺎﺷﺪ‪.‬‬

‫ﻧﺘﺎﯾﺞ ﻣﺮﺑﻮط ﺑﻪ ﺳﻨﺠﺶ ﺷﺎﺧﺺﻫـﺎي رﻧﮕـﯽ و ﺳـﻔﯿﺪي ﺑـﺮ روي‬
‫ﻋﻀﻠﻪي ﺗﯿﺮهي ﺗﻮن زرد ﺑﺎﻟﻪ و ﻫﻤﯿﻨﻄﻮر ﺑﺮ روي ژل ﭘﺮوﺗﺌﯿﻦ ﺣﺎﺻﻞ از‬
‫ﺗﯿﻤﺎرﻫﺎي اﺳﯿﺪي و ﻗﻠﯿﺎﯾﯽ در ﺟﺪول ‪ 5‬ﻧﺸﺎن داده ﺷﺪه اﺳﺖ‪ .‬ﻫﻤﺎﻧﻄﻮر‬

‫ﮐﻪ از ﺟﺪول ﭘﯿﺪاﺳﺖ ﺑﻪ دﻟﯿﻞ ﺗﯿﺮه رﻧـﮓ ﺑـﻮدن ﻧﻤﻮﻧـﻪ اوﻟﯿـﻪ‪ ،‬ﻣﻘـﺎدﯾﺮ‬

‫ﺷﺎﺧﺺﻫـﺎي روﺷـﻨﺎﯾﯽ و ﺳـﻔﯿﺪي ﭘـﺎﯾﯿﻦ ﺑـﻮده و ﻃﺒﯿﻌـﯽ اﺳـﺖ ﮐـﻪ‬
‫ﺷﺎﺧﺺﻫﺎي ﻗﺮﻣﺰي و زردي ﻣﻘﺎدﯾﺮ ﺑﯿﺶﺗﺮي داﺷﺘﻪ ﺑﺎﺷﻨﺪ‪.‬‬

‫ﺟﺪول ‪ - 5‬ﻣﻘﺎدﯾﺮ ﺷﺎﺧﺺﻫﺎي رﻧﮕﯽ و ﺗﻌﯿﯿﻦ ﺳﻔﯿﺪي ﻋﻀﻠﻪي ﺗﯿﺮهي ﺗﻮن زرد ﺑﺎﻟﻪ و ژل ﭘﺮوﺗﺌﯿﻨﯽ ﺣﺎﺻﻞ از ﺗﯿﻤﺎرﻫﺎي ﻣﺨﺘﻠﻒ ‪pH‬‬
‫‪pH‬‬

‫*‪L‬‬

‫*‪a‬‬

‫*‪b‬‬

‫‪Whiteness‬‬

‫‪33/47±0/83a‬‬
‫‪30/63±0/09b‬‬
‫‪27/79±1/91c‬‬
‫‪32/66±0/74a‬‬
‫‪32/72±0/60a‬‬
‫‪29/82±0/53b‬‬
‫‪26/35±0/29‬‬

‫‪4/18±0/44ab‬‬
‫‪4/67±0/09a‬‬
‫‪4/17±0/60ab‬‬
‫‪3/37±0/18c‬‬
‫‪4/05±0/63b‬‬
‫‪3/37±0/20c‬‬
‫‪4/68±0/12‬‬


‫‪13/50±1/80a‬‬
‫‪12/95±0/59a‬‬
‫‪5/24±2/05b‬‬
‫‪13/9±0/28a‬‬
‫‪13/73±0/01a‬‬
‫‪6/09±0/01b‬‬
‫‪3/93±0/50‬‬

‫‪31/96 ±0/47a‬‬
‫‪29/27±0/00b‬‬
‫‪27/46±1/79c‬‬
‫‪31/16±0/67a‬‬
‫‪31/21±0/56a‬‬
‫‪29/47±0/52b‬‬
‫‪26/09±0/33‬‬

‫‪2/5‬‬
‫‪3‬‬
‫ﺗﯿﻤﺎر اﺳﯿﺪي‬
‫‪3/5‬‬
‫‪10/5‬‬
‫‪11‬‬
‫ﺗﯿﻤﺎر ﻗﻠﯿﺎﯾﯽ‬
‫‪11/5‬‬
‫ﻋﻀﻠﻪي ﺗﯿﺮه‬
‫دادهﻫﺎ ﺑﻪ ﺻﻮرت ﻣﯿﺎﻧﮕﯿﻦ‪ ±‬اﻧﺤﺮاف ﻣﻌﯿﺎر ﮔﺰارش ﺷﺪهاﻧﺪ‪.‬‬
‫ﺣﺮوف ﻣﺘﻔﺎوت در ﻫﺮ ﺳﺘﻮن ﻧﺸﺎندﻫﻨﺪه اﺧﺘﻼف آﻣﺎري ﻣﻌﻨﯽدار ﺑﯿﻦ ﻣﯿﺎﻧﮕﯿﻦﻫﺎ در ﺳﻄﺢ ‪ p<0/05‬ﻣﯽﺑﺎﺷﺪ‪.‬‬

‫ﺑﺮاي ﺷﻨﺎﺳﺎﯾﯽ اﺧﺘﻼف در وﺿﻌﯿﺖ ﭘﺮوﺗﺌﯿﻨﯽ اﯾﺰوﻟﻪﻫـﺎي ﭘـﺮوﺗﺌﯿﻦ‬
‫ﺗـﻮن از ‪ SDS-PAGE‬اﺳـﺘﻔﺎده ﺷــﺪ و ﻧﻤﻮﻧـﻪ ﯾــﺎ ﻧـﻮار اﺳــﺘﺎﻧﺪارد ﺑــﺎ‬

‫ﻧﺸﺎﻧﮕﺮﻫﺎي وزن ﻣﻮﻟﮑﻮﻟﯽ ﺑﺮاي ﺗﻌﯿﯿﻦ ﺣﻀﻮر ﭘﺮوﺗﺌﯿﻦﻫﺎي ﻣﺨﺘﻠﻒ ﯾـﺎ‬
‫ﻋﺪم ﺣﻀﻮر آنﻫﺎ ﺑﻪ ﮐﺎر ﺑـﺮده ﺷـﺪ‪ .‬ﻫﻤـﺎﻧﻄﻮر ﮐـﻪ در ﺷـﮑﻞ ‪ 4‬دﯾـﺪه‬
‫ﻣﯽﺷﻮد ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺷﻨﺎﺳﺎﯾﯽ ﺷﺪه در ‪pH‬ﻫـﺎي ﻣﺨﺘﻠـﻒ ﻋﺒﺎرﺗﻨـﺪ از‪:‬‬
‫‪ -α‬اﮐﺘﯿﻨﯿﻦ‪ ،1‬اﮐﺘﯿﻦ‪ ، 2‬دﺳﻤﯿﻦ‪ ،3‬ﺗﺮوﭘﻮﻣﯿـﻮزﯾﻦ‪ .4‬ﺑـﺎ ﻣﻘﺎﯾﺴـﻪ ﺑﺎﻧـﺪﻫﺎي‬
‫‪1 α-actinin‬‬
‫‪2Actin‬‬

‫ﺣﺎﺻﻞ در ‪ SDS-PAGE‬ﻣﺸﺎﻫﺪه ﺷﺪ ﮐﻪ ﺑﺎﻧﺪﻫﺎي اﺻﻠﯽ ﭘـﺮوﺗﺌﯿﻦ در‬
‫ﻧﻤﻮﻧﻪﻫﺎ وﺟﻮد دارﻧﺪ‪.‬‬
‫ﺳﻨﺠﺶ ﺑﺎﻓﺖ ﻧﻤﻮﻧﻪﻫﺎ ﺣﺎﮐﯽ از آن اﺳﺖ ﮐﻪ ﭘﺮوﺗﺌﯿﻦ اﯾﺰوﻟﻪي ﺗﻮن‬
‫از ﭼﺴﺒﻨﺪﮔﯽ‪ ،5‬ﺑﻬﻢﭘﯿﻮﺳﺘﮕﯽ‪1‬و ارﺗﺠﺎﻋﯿـﺖ‪ 2‬ﭘـﺎﯾﯿﻨﯽ ﺑﺮﺧـﻮردار ﻫﺴـﺘﻨﺪ‪.‬‬

‫‪3Desmin‬‬
‫‪4Trompomyosin‬‬
‫‪5Adhesiveness‬‬


‫ﻣﻘﺎﯾﺴﻪي وﯾﮋﮔﯽﻫﺎي ﮐﺎرﺑﺮدي ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺟﺪا ﺷﺪه از ﻋﻀﻠﻪي ﺗﯿﺮهي ﺗﻮن زردﺑﺎﻟﻪ‪469...‬‬
‫ﺟﺪول‪ 6‬ﻣﻘﺎدﯾﺮ ﺣﺎﺻﻞ ازآﻧﺎﻟﯿﺰ ﭘﺮوﻓﺎﯾﻞ ﺑﺎﻓﺖ را در ﺗﯿﻤﺎرﻫﺎي ﻣﺨﺘﻠـﻒ‪،‬‬
‫ﻧﺸﺎن ﻣﯽدﻫﺪ‪.‬‬
‫ﻣﻘﺎدﯾﺮ ﺣﺎﺻﻞ از آزﻣﻮن ﻧﻔﻮذ ﺗﯿﻤﺎرﻫﺎي ﻣﺨﺘﻠﻒ‪ ،‬در ﺟﺪول‪ 7‬ﻧﺸـﺎن‬
‫داده ﺷﺪه اﺳﺖ‪ .‬ﺗﻔﺎوت آﻣـﺎري ﻣﻌﻨـﯽدار در ﻗـﺪرت ژﻟـﯽ ﻧﻤﻮﻧـﻪﻫـﺎي‬
‫ﻓﺮآوري ﺷـﺪهي اﯾﺰوﻟـﻪ ﭘـﺮوﺗﺌﯿﻦ ﻣـﺎﻫﯽ در ‪pH‬ﻫـﺎي ﻣﺨﺘﻠـﻒ دﯾـﺪه‬
‫ﺷﺪ)‪ .(p<0/05‬ﺑﺎ اﻓﺰاﯾﺶ ‪ pH‬ﻣﻘﺪار ﻗﺪرت ژﻟﯽ ﻧﯿﺰ اﻓـﺰاﯾﺶ ﯾﺎﻓـﺖ‪ .‬در‬
‫ﻧﺘﯿﺠﻪ ﮐﻢﺗﺮﯾﻦ ﻗﺪرت ژﻟﯽ ﻣﺮﺑﻮط ﺑﻪ ﺗﯿﻤـﺎر ﺑـﺎ ‪ 2/5 pH‬و ﺑـﯿﺶﺗـﺮﯾﻦ‬
‫ﻣﻘﺪار ﻣﺮﺑﻮط ﺑﻪ ﺗﯿﻤﺎر ﺑﺎ ‪ 11/5 pH‬ﺑﻮد‪.‬‬
‫ﻧﺘﺎﯾﺞ آزﻣﻮنﻫﺎي ﺗﺎ ﮐﺮدن و ﮔﺎز زدن ﺑﺎ ﻧﺘﺎﯾﺞ ارزﯾﺎﺑﯽ ﻗـﺪرت ژﻟـﯽ‬
‫اﯾﺰوﻟﻪﻫﺎ در ﺟﺪول ‪ 7‬ﻣﻘﺎﯾﺴﻪ ﺷﺪه اﺳﺖ‪.‬‬

‫ﺷﮑﻞ ‪ -4‬ﺳﺪﯾﻢ دودﺳﯿﻞ ﺳﻮﻟﻔﺎت ﭘﻠﯽ اﮐﺮﯾﻞ آﻣﯿﺪ ژل اﻟﮑﺘﺮوﻓﻮرز‬


‫)‪ ،(SDS-PAGE‬ژل ‪ %4-20‬و ‪ 15µL‬ﺑﺎرﮔﺬاري‪ ،‬ﭘﺮوﺗﺌﯿﻦﻫﺎي رﺳﻮب‬
‫ﮐﺮده ﺣﺎﺻﻞ از ﺗﯿﻤﺎرﻫﺎي ﻣﺨﺘﻠﻒ ‪ pH‬در ﻣﺮﺣﻠﻪ دوم ﺳﺎﻧﺘﺮﯾﻔﻮژ‪(s) ،‬‬
‫ﻣﺸﺨﺺﮐﻨﻨﺪه ﻧﻮار اﺳﺘﺎﻧﺪارد )‪ 14/4-116‬ﮐﯿﻠﻮ داﻟﺘﻮن( و اﻋﺪاد‬
‫ﻧﺸﺎندﻫﻨﺪه ﺗﯿﻤﺎر ﻣﻮرد اﺳﺘﻔﺎده‬

‫اﻣﺘﯿﺎز ‪ ،1‬ﮐﻢﺗﺮﯾﻦ اﻣﺘﯿﺎز در آزﻣﻮن ﺗﺎ ﮐـﺮدن ﻣـﯽﺑﺎﺷـﺪ و ﺑـﻪ اﯾـﻦ‬
‫ﻣﻌﻨﺎﺳﺖ ﮐﻪ ژل ﻣﻮرد ﻧﻈﺮ ﺑﺎ ﯾﮏ ﺑﺎر ﺗـﺎ ﮐـﺮدن دو ﻧـﯿﻢ ﻣـﯽﺷـﻮد و در‬
‫اﻣﺘﯿﺎز ‪ 2‬ﺗﺮك ﺑﺮﻣﯽدارد‪ .‬در واﻗﻊ ﻧﻤﻮﻧﻪﻫﺎي ژل ﺗﻮﻟﯿﺪ ﺷـﺪه ﻗﺎﺑﻠﯿـﺖ ﺗـﺎ‬
‫ﺷﺪن ﻧﺪاﺷﺘﻨﺪ‪ .‬ﺑﺎ اﯾﻦ ﺣﺎل ﻧﻤﻮﻧﻪﻫﺎي ﻗﻠﯿﺎﯾﯽ اﻣﺘﯿﺎزﻫﺎي ﺑﻬﺘﺮي درﯾﺎﻓﺖ‬
‫ﮐﺮدﻧﺪ‪ .‬در آزﻣﻮن ﮔﺎز زدن ﻧﻤﻮﻧـﻪ ﺣﺎﺻـﻞ از ﺗﯿﻤـﺎر ﻗﻠﯿـﺎﯾﯽ ﺑـﺎ ‪11 pH‬‬
‫اﻣﺘﯿﺎز ﻧﺴﺒﺘﺎً ﺧﻮب را ﺑﺪﺳﺖ آورده اﺳﺖ و ﻧﻤﻮﻧﻪﻫﺎي دﯾﮕـﺮ از اﻣﺘﯿـﺎز ‪5‬‬
‫)ﮐﻤﯽ ﺿﻌﯿﻒ( ﺗﺎ اﻣﺘﯿﺎز ‪) 2‬ﻓﻮق اﻟﻌﺎده ﺿـﻌﯿﻒ( را ﺑـﻪ ﺧـﻮد اﺧﺘﺼـﺎص‬
‫دادﻧﺪ‪ .‬در ﺑﯿﻦ ﺗﯿﻤﺎرﻫﺎ‪ ،‬ﺗﯿﻤﺎر اﺳﯿﺪي ﺑﺎ ‪ 2/5 pH‬ﮐﻤﺘـﺮﯾﻦ ﻗﺎﺑﻠﯿـﺖ را در‬
‫آزﻣﻮن ﮔﺎز زدن داﺷﺖ‪ .‬از ﻧﺘﺎﯾﺞ آزﻣﻮنﻫﺎي ﺣﺴﯽ ﭘﯿﺪاﺳﺖ ﮐﻪ ﭘﺮوﺗﺌﯿﻦ‬

‫‪1 Cohesiveness‬‬
‫‪2Resilience‬‬

‫ﺑﺎزﯾﺎﻓﺘﯽ از ﻋﻀﻠﻪي ﺗﯿﺮه ﻗﺎﺑﻠﯿﺖ ﺗﺸﮑﯿﻞ ژل ﭘﺎﯾﯿﻨﯽ داﺷﺖ‪.‬‬
‫ﻋﻮاﻣﻞ زﯾﺎدي ﻣﺎﻧﻨﺪ ﻓﺼﻞ ﺻـﯿﺪ‪ ،‬ﻣﺤـﯿﻂ زﻧـﺪﮔﯽ‪ ،‬ﺳـﻦ و ﻣﺮاﺣـﻞ‬
‫ﻓﯿﺰﯾﻮﻟﻮژﯾﮑﯽ‪ ،‬در ﻣﻘﺪار ﺗﺠﺰﯾﻪي ﺗﻘﺮﯾﺒﯽ آﺑﺰﯾﺎن ﻣﺆﺛﺮ ﻫﺴﺘﻨﺪ‪ .‬از اﯾـﻦ رو‬
‫ﻣﻘﺎﯾﺴﻪ ﺗﺮﮐﯿﺒﺎت ﻋﻀﻼت ﻣﺎﻫﯿﺎن ﻣﺨﺘﻠﻒ ﻣﺸﮑﻞ اﺳﺖ‪ .‬ﺑـﺎ اﯾـﻦ ﺣـﺎل‬
‫آزﻣﻮن ﻫﺎي اﻧﺠﺎم ﺷﺪه ﺣﺎﮐﯽ از آن اﺳﺖ ﮐﻪ ﺗﺠﺰﯾﻪي ﺗﻘﺮﯾﺒﯽ ﻋﻀﻠﻪي‬
‫ﺗﯿﺮهي ﻣﺎﻫﯽ ﺗﻮن زردﺑﺎﻟﻪ ﺑﺎ دﯾﮕﺮ ﻣﺎﻫﯿـﺎن ﺗـﻮن‪ ،‬ﻣﺎﻧﻨـﺪ ﻣـﺎﻫﯽ ﺑﻮﻧﯿﺘـﻮ‬
‫)‪ (Emin-Erdem et al, 2009) (Sarda sarda‬و ﻫﻤﯿﻨﻄــﻮر‬
‫‪ (Nakamura et al, 2007) Thunnus orientalis‬ﯾﮑﺴﺎن ﻣﯽﺑﺎﺷﺪ‪.‬‬
‫ﻫﯿﭻ ﮔﺰارش ﻣﻨﺘﺸﺮ ﺷﺪهاﯾﯽ در ﺧﺼﻮص ﺗﺠﺰﯾﻪي ﺗﻘﺮﯾﺒﯽ اﯾﺰوﻟﻪي‬
‫ﭘﺮوﺗﺌﯿﻦ ﻣﺎﻫﯽ ﺗﻮن زردﺑﺎﻟﻪ ﺑﺮاي ﻣﻘﺎﯾﺴﻪ ﺑﺎ ﻧﺘﺎﯾﺞ اﯾـﻦ ﭘـﮋوﻫﺶ ﯾﺎﻓـﺖ‬
‫ﻧﺸﺪ‪ .‬ﻣﻘـﺪار رﻃﻮﺑـﺖ در اﯾﺰوﻟـﻪي ﭘـﺮوﺗﺌﯿﻦ ﻣـﺎﻫﯽ ﺑﺴـﺘﮕﯽ ﺑـﻪ روش‬

‫رﻃﻮﺑﺖﮔﯿﺮي و ﺗﻨﻈﯿﻢ آن دارد‪ .‬ﺑﺎ اﯾﻦ ﺣﺎل وﺟﻮد ﮔـﺮوهﻫـﺎي ﻓﻌـﺎل در‬
‫ﺳـﺎﺧﺘﺎر ﭘـﺮوﺗﺌﯿﻦﻫــﺎ ﺑﺎﻋـﺚ ﺟــﺬب و ﻧﮕﻬـﺪاري ﺑﯿﺸــﺘﺮ آب ﻣـﯽﺷــﻮد‬
‫)ﻣﻮﺳﻮيﻧﺴﺐ و ﻫﻤﮑﺎران‪ .(1390 ،‬ﮐﺎﻫﺶ ﭼﺮﺑﯽﻫﺎ ﻧﯿﺰ ﺑﻪ دﻟﯿﻞ ﺣـﺬف‬
‫آﻧﻬﺎ در ﭘﺎﯾﺎن ﺳﺎﻧﺘﺮﯾﻔﻮژ ﻣﺮﺣﻠﻪي ﻧﺨﺴﺖ اﺳﺖ‪ .‬ﺷﮑﺴﺘﻪ ﺷﺪن ﭼﺮﺑﯽﻫـﺎ‬
‫و اﻧﺤﻼل ﺑﯿﺸﺘﺮ آن در آب ﻣﯽﺗﻮاﻧﺪ دﻟﯿﻠﯽ ﺑﺮ ﮐﺎﻫﺶ ﺟﺪاﺳﺎزي ﭼﺮﺑﯽﻫﺎ‬
‫ﺑﺎ اﺳﺘﻔﺎده از روش اﺳﯿﺪي در ﻣﻘﺎﯾﺴﻪ ﺑﺎ روش ﺑﺎزي ﺑﺎﺷﺪ ) ‪Shaviklo,‬‬
‫‪2007‬؛ ﻣﻮﺳﻮي ﻧﺴﺐ و ﻫﻤﮑﺎران‪.(1390 ،‬‬
‫‪ Undeland‬و ﻫﻤﮑــﺎران )‪ (2002‬در ﻣﻄﺎﻟﻌــﻪ ﺑــﺮ روي ﻣـــﺎﻫﯽ‬
‫ﻫﺮﯾﻨﮓ‪ ،‬ﺑﻪ اﯾﻦ ﻧﺘﯿﺠﻪ رﺳﯿﺪﻧﺪ ﮐﻪ ﻧﻤﻮﻧﻪﻫﺎي ﭘـﺮوﺗﺌﯿﻦ اﯾﺰوﻟـﻪ ﺷـﺪهي‬
‫ﻣﺎﻫﯽ ﮐﻪ ﺑﻪ روش ﻗﻠﯿﺎﯾﯽ ﺗﻬﯿﻪ ﺷﺪه ﺑﻮدﻧﺪ ﻧﺴﺒﺖ ﺑﻪ ﻧﻤﻮﻧﻪﻫـﺎي اﯾﺰوﻟـﻪ‬
‫ﺑﻪ روش اﺳﯿﺪي‪ ،‬داراي ﻣﯿﺰان ﭼﺮﺑﯽ ﮐﻢﺗﺮي ﺑﻮدﻧﺪ‪.‬‬
‫ﮐﺎﻫﺶ ﺑﯿﺸﺘﺮ ﻟﯿﭙﯿﺪﻫﺎ در ﻓﺮآﯾﻨﺪﻫﺎي اﺳﯿﺪي و ﻗﻠﯿﺎﯾﯽ ﻣﻮرد اﻧﺘﻈـﺎر‬
‫اﺳﺖ ﭼﺮا ﮐﻪ در ‪ pH‬ﺑﺎﻻ و ﭘﺎﯾﯿﻦ‪ ،‬ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺣﻞ ﺷـﺪه از ﻟﯿﭙﯿـﺪﻫﺎي‬
‫ذﺧﯿﺮهاي و ﻓﺴﻔﻮﻟﯿﭙﯿﺪﻫﺎي ﻏﺸﺎﯾﯽ ﺟﺪا و در ﻣﺮﺣﻠﻪي ﺳـﺎﻧﺘﺮﯾﻔﻮژ اﯾـﻦ‬
‫ﺗﺮﮐﯿﺒﺎت ﺑـﺮ اﺳـﺎس ﺗﻔـﺎوت در داﻧﺴـﯿﺘﻪ و ﻗﺎﺑﻠﯿـﺖ ﺣـﻞ ﺷـﺪن ﻣﺠـﺰا‬
‫ﻣﯽﺷﻮﻧﺪ‪ .‬ﺑﯿﺸﺘﺮ ﭼﺮﺑﯽﻫﺎي ذﺧﯿﺮهاي و اﺳﯿﺪﻫﺎي ﭼﺮب اﺷﺒﺎع در ﻻﯾـﻪ‬
‫ﺑﺎﻻﯾﯽ وﺟﻮد دارﻧﺪ‪ ،‬و ﺣﺎل آﻧﮑﻪ اﮔﺮ ﺷﺮاﯾﻂ ﻣﺴﺎﻋﺪ ﺑﺎﺷﺪ‪ ،‬اﻧﺘﻈﺎر ﻣـﯽرود‬
‫ﻗﺴﻤﺖ اﻋﻈﻢ ﻓﺴـﻔﻮﻟﯿﭙﯿﺪﻫﺎي ﻏﺸـﺎﯾﯽ ﻏﯿﺮاﺷـﺒﺎع در ﺧـﻼل ﻣﺮﺣﻠـﻪي‬
‫ﻧﺨﺴﺖ ﺳﺎﻧﺘﺮﯾﻔﯿﻮژ دﯾﺪه ﺷﻮﻧﺪ )‪ .(Hultin, 2002‬از ﻃﺮف دﯾﮕﺮ ﮐﺎﻫﺶ‬
‫ﮐﻤﺘﺮ ﻟﯿﭙﯿﺪﻫﺎ در ﻓﺮآﯾﻨﺪﻫﺎي اﺳﯿﺪي و ﻗﻠﯿﺎﯾﯽ ﺗﻌﺠﺐ آور ﻧﯿﺴﺖ ﭼﺮا ﮐﻪ‬
‫در ﻣﺮﺣﻠﻪي رﺳﻮب اﯾﺰواﻟﮑﺘﺮﯾﮏ ﻟﯿﭙﯿﺪﻫﺎي ﻏﺸﺎﯾﯽ ﺣﻔـﻆ و ﻗﺴـﻤﺘﯽ از‬
‫ﻟﯿﭙﯿﺪﻫﺎي ذﺧﯿﺮهاي ﺑﺎ ﭘﺮوﺗﺌﯿﻦﻫﺎ ﻣﺘﺮاﮐﻢ ﻣﯽﺷﻮﻧﺪ ) ‪Davenport et al,‬‬
‫‪ .(2004‬در ﻣﻘﺎﯾﺴﻪ دو ﻓﺮآﯾﻨﺪ‪ ،‬ﺗﯿﻤﺎر ﻗﻠﯿﺎﯾﯽ ﻧﺴﺒﺖ ﺑﻪ ﺗﯿﻤﺎر اﺳـﯿﺪي در‬
‫ﮐﺎﻫﺶ ﭼﺮﺑﯽﻫﺎ ﻣﻮﻓﻖﺗﺮ ﺑﻮده اﺳﺖ )‪ .(Kristinsson et al, 2005‬در‬
‫ﺗﻮﺿﯿﺢ ‪ Kristinsson‬و ‪ (2003) Demir‬ﺑﺰرﮔﺘﺮﯾﻦ ﺗﻔﺎوت ﺑـﯿﻦ روش‬
‫ﺳﻨﺘﯽ ﺗﻮﻟﯿﺪ ﺳﻮرﯾﻤﯽ و ﻓﺮآﯾﻨـﺪﻫﺎي اﺳـﯿﺪي و ﻗﻠﯿـﺎﯾﯽ ﺑـﻪ ﺳـﺎﻧﺘﺮﯾﻔﻮژ‬
‫ﻣﺮﺣﻠﻪي ﻧﺨﺴﺖ ﻣﺮﺑﻮط اﺳﺖ‪ .‬در ﺗﺤﻘﯿﻖ ﺣﺎﺿـﺮ ﻧﯿـﺰ درﺻـﺪ ﮐـﺎﻫﺶ‬
‫ﭼﺮﺑﯽﻫﺎ در ﺗﯿﻤﺎر ﻗﻠﯿﺎﯾﯽ )‪ (%76/39‬ﺑﯿﺸﺘﺮ از ﺗﯿﻤـﺎر اﺳـﯿﺪي )‪(%73/44‬‬
‫ﺑﻮد‪ .‬ﮐﻤﺘﺮﯾﻦ ﮐﺎﻫﺶ ﭼﺮﺑﯽ در ﺗﯿﻤﺎر اﺳﯿﺪي ﺑﺎ ‪ 3/5 pH‬و ﺗﯿﻤﺎر ﻗﻠﯿـﺎﯾﯽ‬
‫ﺑﺎ ‪ 10/5 pH‬ﺑﻮد‪.‬‬



‫‪ 470‬ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺸﻬﺎي ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ اﯾﺮان‪ ،‬ﺟﻠﺪ ‪ ،12‬ﺷﻤﺎره‪ ،4‬ﻣﻬﺮ ‪ -‬آﺑﺎن ‪1395‬‬

‫ﺟﺪول ‪ -6‬ﻣﻘﺎدﯾﺮ ﺣﺎﺻﻞ از آﻧﺎﻟﯿﺰ ﭘﺮوﻓﺎﯾﻞ ﺑﺎﻓﺖ )‪(TPA‬‬
‫ﺗﯿﻤﺎر ) ‪(pH‬‬

‫ﺳﺨﺘﯽ )‪(g‬‬

‫ﺑﻬﻢﭘﯿﻮﺳﺘﮕﯽ‬

‫ﭼﺴﺒﻨﺪﮔﯽ )‪(mJ‬‬

‫‪2/5‬‬
‫‪3‬‬
‫‪3/5‬‬
‫‪10/5‬‬
‫‪11‬‬
‫‪11/5‬‬

‫‪2467±2/82f‬‬
‫‪9932±1/41b‬‬
‫‪3130±0/70e‬‬
‫‪6581±1/41c‬‬
‫‪6491±0/70d‬‬
‫‪10793±1/41a‬‬

‫‪0/12±0/00f‬‬
‫‪0/20±0/00d‬‬
‫‪0/12±0/01f‬‬

‫‪0/35±0/01c‬‬
‫‪0/64±0/00a‬‬
‫‪0/53±0/01b‬‬

‫‪0/0‬‬
‫‪0/15±0/07‬‬
‫‪0/0‬‬
‫‪0/15±0/07‬‬
‫‪0/0‬‬
‫‪0/0‬‬

‫ﺟﻬﻨﺪﮔﯽ‬

‫ﺣﺎﻟﺖ ارﺗﺠﺎﻋﯽ‬

‫‪0/50±0/00c‬‬
‫‪0/82±0/01b‬‬
‫‪0/46±0/02d‬‬
‫‪0/91±0/01a‬‬
‫‪0/91±0/00a‬‬
‫‪0/81±0/01b‬‬

‫‪0/05±0/00d‬‬
‫‪0/12±0/03c‬‬
‫‪0/07±0/00d‬‬
‫‪0/12±0/00c‬‬
‫‪0/31±0/01a‬‬
‫‪0/20±0/00b‬‬

‫ﺟﺪول‪ -7‬ﻣﻘﺎدﯾﺮ ﻗﺪرت ژﻟﯽ )آزﻣﻮن ﻧﻔﻮذ( و اﻣﺘﯿﺎزﻫﺎي داده ﺷﺪه در آزﻣﻮنﻫﺎي ﺗﺎ ﮐﺮدن )‪ 5‬ﺗﺎ ‪ (1‬و ﮔﺎز زدن )‪ 10‬ﺗﺎ ‪ (1‬ﺑﻪ ژل ﭘﺮوﺗﺌﯿﻨﯽ ﺣﺎﺻﻞ از‬

‫ﺗﯿﻤﺎرﻫﺎي ﻣﺨﺘﻠﻒ ‪pH‬‬

‫ﺗﯿﻤﺎر)‪(pH‬‬
‫ﺷﺎﺧﺺ‬
‫ﻗﺪرت‬

‫ژﻟﯽ )‪(g×cm‬‬

‫ﺗﺎ ﮐﺮدن‬

‫‪2/5‬‬
‫‪3/17±0/16f‬‬

‫‪3‬‬
‫‪37/51±0/48e‬‬

‫‪3/5‬‬
‫‪64/22±0/32d‬‬

‫‪10/5‬‬
‫‪97/36±0/36c‬‬

‫‪11‬‬
‫‪156/60±0/51b‬‬

‫‪11/5‬‬
‫‪325/80±0/43a‬‬

‫‪1±0/0b‬‬


‫‪1±0/0b‬‬

‫‪1±0/0b‬‬

‫‪2±0/0a‬‬

‫‪2±0/0a‬‬

‫‪1±0/0b‬‬

‫ﮔﺎز زدن‬
‫دادهﻫﺎ ﺑﻪ ﺻﻮرت ﻣﯿﺎﻧﮕﯿﻦ‪ ±‬اﻧﺤﺮاف ﻣﻌﯿﺎر ﮔﺰارش ﺷﺪهاﻧﺪ‪ .‬ﺣﺮوف ﻣﺘﻔﺎوت در ﻫﺮ ﺳﺘﻮن ﻧﺸﺎندﻫﻨﺪه اﺧﺘﻼف آﻣﺎري ﻣﻌﻨﯽدار ﺑﯿﻦ ﻣﯿﺎﻧﮕﯿﻦﻫﺎ در ﺳﻄﺢ ‪ p<0/05‬ﻣﯽﺑﺎﺷﺪ‪.‬‬
‫‪2±0/0e‬‬

‫‪4/33±0/57c‬‬

‫‪3/66±0/57d‬‬

‫رﻧﮕﺪاﻧﻪﻫﺎ و اﮐﺴﺎﯾﺶ ﻟﯿﭙﯿﺪﻫﺎ واﮐﻨﺶﻫﺎي اﺻﻠﯽ ﻣﺨﺮب در ﮔﻮﺷﺖ‬
‫ﻣﺎﻫﯽ و ﻓﺮآوردهﻫﺎي ﺷﯿﻼﺗﯽ در ﻃﯽ ذﺧﯿﺮهﺳـﺎزي و ﻣﺴـﺌﻮل ﮐـﺎﻫﺶ‬
‫ﻣﻌﻨﯽدار ﺧﺼﻮﺻﯿﺎت ﮐﯿﻔﯽ ﻧﻈﯿﺮ رﻧـﮓ‪ ،‬ﻃﻌـﻢ‪ ،‬ﺑﺎﻓـﺖ و ارزش ﻏـﺬاﯾﯽ‬
‫ﻫﺴﺘﻨﺪ )‪ .(Belitz et al, 2009‬ﻣﻘﺪار ﻣﯿﻮﮔﻠﻮﺑﯿﻦ ﻣﻮﺟـﻮد در ﻋﻀـﻠﻪي‬
‫ﺗﯿﺮهي ﻣﺎﻫﯽ ﺗﻮن )‪ (9650 mg/kg‬در ﻣﻘﺎﯾﺴﻪ ﺑﺎ دﯾﮕـﺮ ﻣﺎﻫﯿـﺎن داراي‬
‫ﻋﻀﻠﻪي ﺗﯿﺮه ﺑـﺎﻻ ﻣـﯽﺑﺎﺷـﺪ )‪ (Sánchez-Zapata et al, 2011‬ﺑـﻪ‬
‫ﻋﻨﻮان ﻣﺜﺎل اﯾﻦ ﻣﻘﺪار در ﻗﺒـﺎد ‪ 0/39 mg/g‬و در ﻧﯿـﺰه ﻣـﺎﻫﯽ ﺳـﯿﺎه‪،1‬‬
‫‪ 0/51 mg/g‬ﻣــﯽﺑﺎﺷــﺪ )‪ .(Sikorski et al, 1994‬اﯾــﻦ ﺣﺠــﻢ‬
‫ﻣﯿﻮﮔﻠﻮﺑﯿﻦ‪ ،‬ﻋﻀﻠﻪي ﻣﺎﻫﯽ ﺗﻮن را ﻣﺴﺘﻌﺪ اﮐﺴـﺎﯾﺶ ﻟﯿﭙﯿـﺪﻫﺎ ﻣـﯽﮐﻨـﺪ‬
‫)‪ .(Papadopoulos et al, 2003‬ﭘــﺮوﺗﺌﯿﻦﻫــﺎي "ﻫــﻢ" ﺑﻌﻨــﻮان‬
‫ﮐﺎﺗﺎﻟﯿﺰورﻫﺎي ﻋﻤﺪه ﯾﺎ واﺳﻄﻪﻫﺎي اﮐﺴﺎﯾﺶ در ﻋﻀﻼت ﻣﺎﻫﯿﺎن ﻫﺴﺘﻨﺪ‬
‫)‪ .(Kristinsson et al, 2005‬در ﻫﻨﮕﺎم اﮐﺴﺎﯾﺶ ﭼﺮﺑﯽ در ﻧﺘﯿﺠـﻪي‬

‫ﺗﺠﺰﯾﻪ اﺳـﯿﺪﻫﺎي ﭼـﺮب ﭼﻨـﺪ ﻏﯿﺮاﺷـﺒﺎﻋﯽ‪ ،‬ﻣـﺎﻟﻮن آﻟﺪﻫﯿـﺪ )ﺷـﺎﺧﺺ‬
‫اﮐﺴﺎﯾﺶ ﺛﺎﻧﻮﯾﻪ( ﺗﺸﮑﯿﻞ ﻣﯽﺷﻮد ﮐﻪ ﻧﺎﺷﯽ از وﺟﻮد ﻣﻮاد واﮐﻨﺶ دﻫﻨﺪه‬
‫ﺑــﺎ ﺗﺮﮐﯿﺒــﺎت ﺣﺎﺻــﻞ از ﻣﺮﺣﻠــﻪ دوم اﺗﻮاﮐﺴﯿﺪاﺳــﯿﻮن اﺳــﺖ‪ .‬ﻃــﯽ آن‬
‫ﭘﺮاﮐﺴﯿﺪﻫﺎ ﺑﻪ ﻣﻮادي ﭼـﻮن آﻟﺪﻫﯿـﺪﻫﺎ و ﮐﺘـﻮنﻫـﺎ ﺗﺒـﺪﯾﻞ ﻣـﯽﺷـﻮﻧﺪ‬
‫)‪ .(Lindasy, 1991‬در ﺗﺤﻘﯿﻖ ﺣﺎﺿﺮ ﺑﻤﻨﻈﻮر ﺑﺮرﺳﯽ ﻣﯿﺰان اﮐﺴـﺎﯾﺶ‬
‫ﺛﺎﻧﻮﯾﻪ ﺑﻌﺪ از اﻋﻤـﺎل ﻓﺮآﯾﻨـﺪﻫﺎي اﺳـﯿﺪي و ﻗﻠﯿـﺎﯾﯽ از ﺷـﺎﺧﺺ ‪TBA‬‬
‫اﺳــﺘﻔﺎده ﺷــﺪ‪ .‬ﺑ ـﻪ ﮔــﺰارش ‪ Sánchez-Zapata‬و ﻫﻤﮑــﺎران )‪(2011‬‬
‫ﺷﺎﺧﺺ ‪ TBA‬در ﻋﻀﻠﻪي ﺗﯿـﺮهي ﺗـﻮن زردﺑﺎﻟـﻪ )ﭘـﺲ از ﯾـﮏ ﻣـﺎه‬
‫ﻧﮕﻬﺪاري در ‪ 1/23 ،(-18°C‬ﻣﯿﻠﯽﮔﺮم ﻣﺎﻟﻮن آﻟﺪﻫﯿﺪ در ﮐﯿﻠﻮﮔﺮم ﻧﻤﻮﻧﻪ‬
‫‪1 Black Marlin‬‬

‫‪4/66±0/57c‬‬

‫‪6±0/0a‬‬

‫‪5/66±0/57b‬‬

‫ﺗﻌﯿﯿﻦ ﺷﺪه اﺳﺖ‪ Kristinsson .‬و ‪ (2003) Demir‬در ﻣﻄﺎﻟﻌـﻪاي ﺑـﺮ‬
‫روي ﭼﻨﺪﯾﻦ ﮔﻮﻧﻪ ﺑﻪ اﯾﻦ ﻧﺘﯿﺠﻪ رﺳـﯿﺪﻧﺪ ﮐـﻪ اﮐﺴـﺎﯾﺶ ﭼﺮﺑـﯽﻫـﺎ در‬
‫ﻓﺮآﯾﻨﺪ اﺳﯿﺪي ﺑﻄﻮر ﻣﻌﻨﯽداري ﻧﺴﺒﺖ ﺑﻪ ﻓﺮآﯾﻨﺪ ﻗﻠﯿﺎﯾﯽ ﺑﯿﺸﺘﺮ اﺳﺖ‪.‬‬
‫‪ Kristinsson‬و ﻫﻤﮑﺎران‪ ،2005 ،‬ﮔﺰارش ﮐﺮده اﻧـﺪ ﮐـﻪ ﺳـﻄﻮح‬
‫‪ TBA‬ﺗﺸﮑﯿﻞ ﺷﺪه ﺑﻌﺪ از ﻓﺮآﯾﻨﺪ ﺗﺎﺛﯿﺮ زﯾـﺎدي در ﭘﺎﯾـﺪاري اﮐﺴﺎﯾﺸـﯽ‬
‫ﺑﻌﺪي اﯾﺰوﻟﻪ در ﻃﻮل دوره ذﺧﯿـﺮه ﺳـﺎزي دارد؛ ﻣﻘـﺎدﯾﺮ ﺑـﺎﻻﺗﺮ ‪TBA‬‬
‫ﻣﻮﺟـﺐ اﻓـﺰاﯾﺶ ﺳـﺮﻋﺖ و ﺗﻮﺳـﻌﻪ اﮐﺴـﺎﯾﺶ ﻣـﯽﺷـﻮد ) & ‪Petty‬‬
‫‪ .(Kristinsson, 2004‬ﺣﻀﻮر رﻧﮕﺪاﻧﻪﻫﺎي ﺑﯿﺸـﺘﺮ در ﻋﻀـﻠﻪي ﺗﯿـﺮه‬
‫ﻣﻮﺟﺐ ﺗﺸﺪﯾﺪ اﮐﺴﺎﯾﺶ ﻣﯽﺷﻮد‪ .‬در ﻧﻤﻮﻧﻪﻫﺎي اﯾﺰوﻟﻪي ﭘﺮوﺗﺌﯿﻦ ﺣﺎﺻﻞ‬
‫از ﻋﻀﻠﻪي ﺗﯿﺮهي ﺗﻮن زردﺑﺎﻟﻪ اﮐﺴﺎﯾﺶ ﺑﻪ دﻟﯿـﻞ ﮐـﻢ ﺷـﺪن ﻟﯿﭙﯿـﺪﻫﺎ‬
‫ﭘﺎﯾﯿﻦ ﺑﻮده ﺑﺎ اﯾﻦ ﺣﺎل در ﺗﯿﻤﺎرﻫﺎي ﻗﻠﯿﺎﯾﯽ ﺑﺎ ‪ 10/5 pH‬و ‪ 11‬ﺑﯿﺸﺘﺮ از‬
‫دﯾﮕﺮ ﺗﯿﻤﺎرﻫﺎ ﺑﻮده وﻟﯽ ﻣﻌﻨﯽدار ﻧﺒـﻮده اﺳـﺖ‪ .‬ﯾﮑـﯽ از اﻫـﺪاف ﺗﻮﻟﯿـﺪ‬
‫اﯾﺰوﻟﻪي ﭘﺮوﺗﺌﯿﻦ‪ ،‬ﺟﺪاﺳﺎزي ﭘﺮوﺗﺌﯿﻦﻫﺎ از ﭼﺮﺑﯽﻫﺎي ﻏﺸﺎﯾﯽ ﻧـﺎﻣﻄﻠﻮب‬

‫اﺳﺖ )‪ (2002) Hultin .(Kristinsson et al, 2005‬ﮔـﺰارش ﮐـﺮده‬
‫اﺳﺖ ﮐﻪ وﯾﺴﮑﻮزﯾﺘﻪ ‪ 50 mPa‬ﯾﺎ ﮐﻢﺗﺮ ﺑﺮاي ﺧﺎرج ﮐﺮدن ﭼﺮﺑﯽﻫـﺎ در‬
‫ﻣﺮﺣﻠﻪي ﺳﺎﻧﺘﺮﯾﻔﻮژ )در ﺣﺎﻟﯽ ﮐﻪ ﭘﺮوﺗﺌﯿﻦﻫﺎ ﻣﺤﻠـﻮل ﺑـﺎﻗﯽ ﻣـﯽﻣﺎﻧﻨـﺪ(‬
‫ﻣﻄﻠﻮب اﺳﺖ‪ .‬ﺑﻨﻈﺮ ﻣﯽرﺳﺪ اﻓﺰاﯾﺶ در وﯾﺴﮑﻮزﯾﺘﻪ ﺑﺎ اﻓﺰاﯾﺶ و ﮐﺎﻫﺶ‬
‫‪ pH‬از ﺣﺎﻟﺖ ﺧﻨﺜﯽ در ﻧﺘﯿﺠﻪ ﺑﺎﻻ رﻓﺘﻦ داﻓﻌﻪ اﻟﮑﺘﺮواﺳﺘﺎﺗﯿﮏ و ﻇﺮﻓﯿﺖ‬
‫ﻫﯿﺪرودﯾﻨﺎﻣﯿﮏ ﭘـﺮوﺗﺌﯿﻦﻫـﺎي ﻣﺎﻫﯿﭽـﻪ ﺑﺎﺷـﺪ ) ‪Kristinsson et al,‬‬
‫‪ .(2005‬اﻓﺰاﯾﺶ ﺑﺎر ﭘﺮوﺗﺌﯿﻦ ﺑﻌﻨﻮان ﻋﺎﻣﻞ ﺗـﻮرم ﻗﺎﺑـﻞ ﻣﻼﺣﻈـﻪ آن در‬
‫ﻧﺘﯿﺠﻪ ﻧﯿـﺮوي داﻓﻌـﻪ ﺑـﯿﻦ ﭘـﺮوﺗﺌﯿﻦﻫـﺎ ﻣـﯽﺑﺎﺷـﺪ ) & ‪Kristinsson‬‬
‫‪ .(Hultin, 2003‬اﻋﺘﻘﺎد ﺑﺮ اﯾﻦ اﺳﺖ ﮐﻪ ﺗﻮرم ﯾﺎ رﺳﻮب و ﺑﻪ ﻫﻤﺮاه آن‬


‫ﻣﻘﺎﯾﺴﻪي وﯾﮋﮔﯽﻫﺎي ﮐﺎرﺑﺮدي ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺟﺪا ﺷﺪه از ﻋﻀﻠﻪي ﺗﯿﺮهي ﺗﻮن زردﺑﺎﻟﻪ‪471...‬‬
‫اﻓﺰاﯾﺶ وﯾﺴﮑﻮزﯾﺘﻪ ﻋﻤﺪﺗﺎ ﺑﻪ دﻟﯿﻞ وﺟﻮد ﭘﺮوﺗﺌﯿﻦﻫـﺎي ﻣﯿـﻮﻓﯿﺒﺮﯾﻠﯽ در‬
‫ﻣﺎﻫﯿﭽﻪ اﺳﺖ ﮐﻪ ﺑﯿﺸﺘﺮ ﻓﻀﺎي ﺳﻠﻮل را اﺷـﻐﺎل ﮐـﺮدهاﻧـﺪ و ﺑـﻪ ﻋﻠـﺖ‬
‫ﻣﺠﻤﻮﻋﻪ ﺳﺎﺧﺘﺎري و ﮐﺸـﯿﺪﮔﯽ ﺳـﺎﺧﺘﺎرﻫﺎ‪ ،‬ﻇﺮﻓﯿـﺖ ﻫﯿـﺪرودﯾﻨﺎﻣﯿﮑﯽ‬
‫ﺑﺎﻻﯾﯽ دارﻧﺪ و ﺑﻪ اﯾﻦ ﺗﺮﺗﯿﺐ ﻣﻮﺟﺐ اﻓﺰاﯾﺶ ﺑﺎر ﻣﯽﺷﻮﻧﺪ ) ‪Undeland‬‬
‫;‪.(et al, 2002Kristinsson, 2002‬‬
‫ﻇﺮﻓﯿﺖ ﻧﮕﻬﺪاري آب ﯾﮑﯽ از ﻣﻬﻤﺘﺮﯾﻦ ﺷﺎﺧﺺﻫﺎي ﮐﯿﻔﯽ ﮔﻮﺷﺖ‬
‫و ﻓﺮآوردهﻫﺎي ﺷﯿﻼﺗﯽ ﻣﯽﺑﺎﺷﺪ ﭼﺮا ﮐﻪ از دﺳـﺖ دادن وزن را در ﻃـﯽ‬
‫ﺧﺮد ﮐﺮدن و ذﺧﯿﺮه ﺳﺎزي ﮐﺎﻫﺶ ﻣـﯽدﻫـﺪ و ﺗﻮاﻧـﺎﯾﯽ ﮔﻮﺷـﺖ را ﺑـﻪ‬
‫ﻣﻨﻈﻮر ﺣﻔﻆ آب در ﻃﯽ ﻓﺮآوري ﺑﻬﺒﻮد ﻣﯽﺑﺨﺸﺪ )‪Sánchez-Zapata‬‬
‫و ﻫﻤﮑــﺎران‪ .(2011 ،‬ﺑــﻪ ﮔــﺰارش ‪ Sánchez-Zapata‬و ﻫﻤﮑــﺎران‬
‫)‪ (2011‬ﻇﺮﻓﯿﺖ ﻧﮕﻬﺪاري آب ﻋﻀﻠﻪي ﺗﯿﺮه در ﺣـﺪود ‪ 8/37‬ﮔـﺮم آب‬
‫در ﮔﺮم ﻧﻤﻮﻧﻪ ﻣﯽﺑﺎﺷﺪ و ﺑـﻪ اﯾـﻦ ﻣﻌﻨﺎﺳـﺖ ﮐـﻪ ﻋﻀـﻠﻪي ﺗﯿـﺮه ﻣﺎﻧﻨـﺪ‬
‫ﻋﻀــﻠﻪي روﺷــﻦ ﻗﺎﺑﻠﯿــﺖ اﺳــﺘﻔﺎده در ﻏــﺬاﻫﺎي اﻣﻮﻟﺴــﯿﻮن ﺷــﺪه ﯾــﺎ‬
‫ﻓﺮآوردهﻫﺎي ﭘﺨﺘﻪ ﺷﺪه را دارد ﭼﺮا ﮐﻪ ﻇﺮﻓﯿﺖ اﺗﺼﺎل اﻣﻮﻟﺴﯿﻮن ﻧﺘﯿﺠﻪ‬
‫دﻧﺎﺗﻮره ﺷﺪن و ﮐﺎﻫﺶ ﺣﻼﻟﯿـﺖ ﭘـﺮوﺗﺌﯿﻦﻫﺎﺳـﺖ ‪Sánchez-Zapata‬‬
‫)‪ .(etal, 2011‬ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺑﺎﻓﺖﻫـﺎي ﻋﻀـﻼت ﻣﺎﻫﯿـﺎن ﺑـﻪ ﻃـﻮر‬
‫ﻣﻌﻤــﻮل در ﺳــﻪ ﮔــﺮوه ﭘــﺮوﺗﺌﯿﻦﻫــﺎي ﺳﺎرﮐﻮﭘﻼﺳــﻤﯽ )‪،(%25-30‬‬
‫ﭘــﺮوﺗﺌﯿﻦﻫــﺎي ﻣﯿــﻮﻓﯿﺒﺮﯾﻠﯽ )‪ (%70-80‬و ﭘــﺮوﺗﺌﯿﻦﻫــﺎي اﺳــﺘﺮوﻣﺎ از‬

‫ﺑﺎﻓﺖﻫﺎي ﭘﯿﻮﻧﺪي )‪ (%3‬ﺟﺎي ﻣﯽﮔﯿﺮﻧﺪ )‪ .(Huss, 1998‬ﻋﻀﻼت ﺗﯿـﺮه‬
‫ﻧﺴﺒﺖ ﺑﻪ ﻋﻀﻼت روﺷﻦ ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺳﺎرﮐﻮﭘﻼﺳﻤﯽ ﺑﯿﺸـﺘﺮي دارﻧـﺪ‬
‫)‪ .(Hultin & Kelleher, 2000‬وﯾﮋﮔﯽﻫـﺎي ﮐـﺎرﺑﺮدي ﭘـﺮوﺗﺌﯿﻦﻫـﺎ‬
‫ﺗﺤﺖ ﺗﺎﺛﯿﺮ رواﺑﻂ ﻣﺘﻘﺎﺑﻞ آب و ﭘﺮوﺗﺌﯿﻦﻫﺎﺳﺖ و در ﻧﻬﺎﯾـﺖ واﺑﺴـﺘﻪ ﺑـﻪ‬
‫اﯾﻦ اﺳﺖ ﮐﻪ در ﯾﮏ ﻓﺮآورده ﺧـﻮراﮐﯽ ﭼﻄـﻮر ﯾـﮏ ﭘـﺮوﺗﺌﯿﻦ ﺑـﻪ آب‬
‫ﻣﺘﺼﻞ ﺷﺪه و آﻧﺮا ﺣﻔﻆ ﻣﯽﮐﻨﺪ )‪ .(Kristinsson & Rasco, 2000‬در‬
‫ﺗﻮﻟﯿﺪ اﯾﺰوﻟﻪي ﭘﺮوﺗﺌﯿﻦ‪ ،‬ﻗﺎﺑﻠﯿﺖ اﺗﺼﺎل ﺑﻪ آب ﭘﺮوﺗﺌﯿﻦ ﺑـﻪ دﻟﯿـﻞ ﺣﻔـﻆ‬
‫ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺳﺎرﮐﻮﭘﻼﺳﻤﯽ اﻓﺰاﯾﺶ ﻣﯽﯾﺎﺑﺪ‪ .‬در ﺗﺤﻘﯿﻖ ﺣﺎﺿﺮ ﻣﻘـﺎدﯾﺮ‬
‫ﻇﺮﻓﯿﺖ ﻧﮕﻬﺪاري آب ﺗﯿﻤﺎرﻫـﺎي اﺳـﯿﺪي و ﻗﻠﯿـﺎﯾﯽ ﻧﺰدﯾـﮏ ﺑـﻪ ﻫـﻢ‬
‫ﻣﯽﺑﺎﺷﺪ ﺑﺎ اﯾﻦ ﺣﺎل دﻟﯿﻞ اﺧﺘﻼف ﻣﻌﻨﯽدار ﺗﯿﻤﺎر اﺳﯿﺪي ‪ 3/5‬ﺑـﺎ دﯾﮕـﺮ‬
‫ﺗﯿﻤﺎرﻫﺎ را ﻣﯽﺗﻮان ﺑﻪ ﺑﺎزﯾﺎﻓﺖ ﺑﯿﺸﺘﺮ ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺳﺎرﮐﻮﭘﻼﺳﻤﯽ رﺑـﻂ‬
‫داد‪ ،pH .‬ﻧﻮع و ﻣﻘﺪار ﭘﺮوﺗﺌﯿﻦ و ﻧﯿﺰ ﻣﯿـﺰان ﺗﻐﯿﯿـﺮ ﻣﺎﻫﯿـﺖ ﯾـﺎ دﻧـﺎﺗﻮره‬
‫ﺷﺪن آﻧﻬـﺎ ﺑـﺮ ﻇﺮﻓﯿـﺖ ﻧﮕﻬـﺪاري آب اﺛﺮﮔـﺬار ﻫﺴـﺘﻨﺪ ) ‪Shaviklo,‬‬
‫‪.(2008‬‬
‫رﻧﮓ اﯾﺰوﻟﻪي ﭘﺮوﺗﺌﯿﻦ ﻣﺎﻫﯽ ﺑﺴﺘﮕﯽ ﺑﻪ ﻧـﻮع ﻣـﺎدهي ﺧـﺎم اوﻟﯿـﻪ‬
‫دارد‪ .‬ﺑﻨﺎﺑﺮاﯾﻦ ﻫﺮ ﭼﻪ ﻣﻘﺪار رﻧﮕﺪاﻧﻪﻫﺎ در ﻣـﺎدهي ﺧـﺎم ﺑـﯿﺶﺗـﺮ ﺑﺎﺷـﺪ‬
‫ﻓــﺮآوردهﯾــﯽ ﺗﯿــﺮهﺗــﺮ ﺗﻮﻟﯿــﺪ ﻣــﯽﺷــﻮد ) ‪Nolsqe & Undeland,‬‬
‫‪ Onyango.(2009‬و ﻫﻤﮑــﺎران )‪ (1998‬ﻣﻄﺎﻟﻌــﺎﺗﯽ ﺑــﺮ روي ﮔﻮﺷــﺖ‬
‫راﺳﺘﻪ‪1‬ﺟﺎﻧﻮران ﻣﺨﺘﻠﻒ اﻧﺠﺎم داده و ﻣﻘﺪار ﻣﯿﻮﮔﻠﻮﺑﯿﻦ ﻣﻮﺟﻮد در آﻧﻬـﺎ را‬
‫ﻣﺸﺨﺺ ﮐﺮدﻧﺪ‪ .‬ﻧﺘﺎﯾﺞ اﯾﻦ ﺗﺤﻘﯿﻖ ﻣﺸﺨﺺ ﮐﻨﻨﺪه راﺑﻄﻪاي ﺑﯿﻦ ﻣﻘـﺪار‬
‫ﻣﯿﻮﮔﻠﻮﺑﯿﻦ و ﺷﺎﺧﺺ روﺷﻨﺎﯾﯽ )*‪ (L‬ﻣـﯽﺑﺎﺷـﺪ ) ‪y= -2.24x + 51.2‬‬

‫ﮐﻪ در آن ‪ y‬ﺑﺮاﺑﺮ ﺑﺎ *‪ L‬و ‪ x‬ﺑﺮاﺑﺮ ﺑـﺎ ﺣﺠـﻢ ﻣﯿﻮﮔﻠـﻮﺑﯿﻦ )‪ .( (mg/g‬ﺑـﺮ‬
‫ﻃﺒﻖ اﯾﻦ راﺑﻄﻪ ﺣﺠﻢ ﻣﯿﻮﮔﻠﻮﺑﯿﻦ ﻣﻮﺟﻮد در ﻋﻀـﻼت ﺗـﻮن ‪ 3-14‬ﺑـﺎر‬
‫ﺑﯿﺸﺘﺮ از ﻣﺎﻫﯿﭽﻪﻫﺎي ﭘﺴﺘﺎﻧﺪاران اﺳﺖ‪ .‬اﯾﻦ ﻧﺘﺎﯾﺞ ﻣﻨﻄﺒـﻖ ﺑـﺎ ﺗﺤﻘﯿـﻖ‬
‫ﮔﺰارش ﺷﺪه ﺗﻮﺳﻂ ‪ Kanoh‬و ﻫﻤﮑﺎران )‪ (1986‬ﻧﯿﺰ ﻣﯽﺑﺎﺷـﺪ‪ .‬ﻣﻘـﺎدﯾﺮ‬
‫ﺑﺎﻻي ﺷﺎﺧﺺﻫـﺎي زردي و ﻗﺮﻣـﺰي در اﯾﺰوﻟـﻪي ﭘـﺮوﺗﺌﯿﻦ ﻧﻤﺎﯾـﺎﻧﮕﺮ‬
‫ﺣﻀﻮر رﻧﮕﺪاﻧﻪﻫﺎي ﻣﯿﻮﮔﻠﻮﺑﯿﻦ و ﻫﻤﻮﮔﻠﻮﺑﯿﻦ اﺳـﺖ ) ‪Choi & Park,‬‬
‫‪ .(2002‬ﺑﻨﺎﺑﺮاﯾﻦ ﻣﻘﺎدﯾﺮ ﺷﺎﺧﺺ روﺷﻨﺎﯾﯽ ﺑﻪ واﺳـﻄﻪ اﯾـﻦ رﻧﮕﺪاﻧـﻪﻫـﺎ‬
‫ﭘﺎﯾﯿﻦ ﻣﯽآﯾﺪ‪ .‬در ﺣﻘﯿﻘﺖ ﮐﺎﻫﺶ ﺷﺎﺧﺺ روﺷﻨﺎﯾﯽ ﻣﺮﺑـﻮط ﺑـﻪ ﺣﻀـﻮر‬

‫ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺳﺎرﮐﻮﭘﻼﺳﻤﯽ ﺑﻪ ﻧﺎم ﭘﺮوﺗﺌﯿﻦﻫـﺎي "ﻫـﻢ" در اﯾﺰوﻟـﻪي‬
‫ﭘﺮوﺗﺌﯿﻦ ﻣﯽﺑﺎﺷﺪ )‪ .(Kim et al, 2005‬ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻣﻄﺎﻟﺐ ﺑﯿـﺎن ﺷـﺪه‬
‫در ﺗﺤﻘﯿﻖ ﺣﺎﺿﺮ ﻧﯿـﺰ روﺷـﻨﺎﯾﯽ در ﻫﻤـﻪ ﺗﯿﻤﺎرﻫـﺎ ﭘـﺎﯾﯿﻦ ﺑـﻮد‪ .‬وﺟـﻮد‬
‫اﺧﺘﻼفﻫﺎي ﻣﻌﻨﯽدار ﺑﯿﻦ ﺗﯿﻤﺎرﻫﺎ‪ ،‬ﻣﯽﺗﻮاﻧﺪ ﻣﺮﺑﻮط ﺑﻪ ﻓﺮوﭘﺎﺷﯽ ﺑﯿﺸـﺘﺮ‬
‫ﯾﺎ ﮐﻤﺘﺮ رﻧﮕﺪاﻧﻪﻫﺎ در ﺗﯿﻤﺎرﻫﺎي اﺳﯿﺪي و ﻗﻠﯿﺎﯾﯽ و ﯾﺎ ﺑﻪ ﻋﺒﺎرﺗﯽ ﺣـﺬف‬
‫ﭘﺮوﺗﺌﯿﻦﻫﺎي "ﻫﻢ" و ﻫﻤﯿﻨﻄﻮر ﻣـﯽﺗﻮاﻧـﺪ ﻣـﺮﺗﺒﻂ ﺑـﺎ ﻣﯿـﺰان رﻃﻮﺑـﺖ‬
‫ﻧﻤﻮﻧﻪﻫﺎ ﺑﺎﺷﺪ )‪.(Nolsøe & Undeland, 2009‬‬
‫ﺗﺠﺰﯾــﻪ و ﺗﺤﻠﯿــﻞ ‪ SDS-PAGE‬ﺣﺎﺻــﻞ از ﺑﺎزﯾﺎﻓــﺖ ﺗﯿﻤﺎرﻫــﺎي‬
‫اﺳﯿﺪي و ﻗﻠﯿﺎﯾﯽ آﺷﮑﺎر ﻣﯽﺳﺎزد ﮐـﻪ ﭘـﺮوﺗﺌﯿﻦﻫـﺎي ﻣﺎﻫﯿﭽـﻪ )ﺷـﺎﻣﻞ‬
‫ﭘــﺮوﺗﺌﯿﻦﻫــﺎي ﻣﯿــﻮﻓﯿﺒﺮﯾﻠﯽ( ﺑﻌــﺪ از ﺳــﺎﻧﺘﺮﯾﻔﻮژ اول در ﻫــﺮ دو ﺗﯿﻤــﺎر‬
‫)ﻓﺮآﯾﻨـﺪﻫﺎي اﺳـﯿﺪي و ﻗﻠﯿـﺎﯾﯽ( وﺟـﻮد دارﻧـﺪ ) ‪Kristinsson et al,‬‬
‫‪ .(2005‬ﻫﻤﭽﻨﯿﻦ ﻣﻘﺎدﯾﺮ ﻗﺎﺑﻞ ﺗﻮﺟﻬﯽ از ﭘﺮوﺗﺌﯿﻦﻫـﺎي ﻣﯿـﻮﻓﯿﺒﺮﯾﻠﯽ در‬
‫رﺳﻮب ﻻﯾﻪ ﭘﺎﯾﯿﻨﯽ از دﺳﺖ ﻣﯽرود‪ .‬اﺗﻼف ﭘﺮوﺗﺌﯿﻦﻫـﺎ در اﯾـﻦ دو ﻓـﺎز‬
‫ﻣﻮﺟﺐ ﻣﯽﺷﻮد ﮐﻪ ﺣﺠﻢ زﯾﺎدي از ﭘﺮوﺗﺌﯿﻦ ﺑﺎزﯾﺎﻓﺖ ﻧﺸﻮد‪ .‬ﻗﺴﻤﺖ ﮐﻤﯽ‬
‫از ﭘﺮوﺗﺌﯿﻦ ﻫﻢ در ﺳﺎﻧﺘﺮﯾﻔﻮژ آﺧﺮ در ﺑﺨﺶ روﯾﯽ‪ 2‬از دﺳﺖ ﻣﯽرود‪ ،‬ﻫـﺮ‬
‫ﭼﻨﺪ ﮐﻪ ﻓﺮآﯾﻨﺪ ﻗﻠﯿـﺎﯾﯽ ﻧﺴـﺒﺖ ﺑـﻪ ﻓﺮآﯾﻨـﺪ اﺳـﯿﺪي ﻣﻨﺠـﺮ ﺑـﻪ اﺗـﻼف‬
‫ﭘﺮوﺗﺌﯿﻨﯽ ﺑﯿﺸﺘﺮي ﻣـﯽﺷـﻮد )‪ .(Kristinsson et al, 2005‬ﻣﻄﺎﻟﻌـﺎت‬
‫اﻟﮑﺘﺮوﻓﻮرز ﻧﻤﻮﻧﻪﻫﺎ ﻧﺸﺎن داد ﮐﻪ ﺷﺪت ﺑﺎﻧﺪﻫﺎي ﻣﺮﺑﻮط ﺑﻪ آﻟﻔﺎ اﮐﺘﯿﻨﯿﻦ‬
‫و اﮐﺘﯿﻦ در ﺗﯿﻤﺎرﻫﺎي اﺳﯿﺪي ﺑﺎ ‪ 2/5 pH‬و ‪ 3‬و ﻗﻠﯿﺎﯾﯽ ﺑـﺎ ‪ 10/5 pH‬و‬
‫‪ 11‬ﻗﻮيﺗﺮ از ﺗﯿﻤﺎرﻫﺎي ‪ 3/5‬و ‪ 11/5‬ﺑﻮد ﮐﻪ اﯾﻦ اﻣﺮ ﺑـﻪ دﻟﯿـﻞ اﻋﻤـﺎل‬
‫‪pH‬ﻫﺎي ﻣﺨﺘﻠﻒ و ﺳﭙﺲ رﺳﺎﻧﺪن ﺑﻪ ﻧﻘﻄﻪ اﯾﺰواﻟﮑﺘﺮﯾﮏ در ﻃﯽ ﺗﻮﻟﯿـﺪ‬
‫ﺑﻮده اﺳﺖ ﮐﻪ ﺳﺒﺐ ﺗﻐﻠﯿﻆ ﭘﺮوﺗﺌﯿﻦﻫﺎي ﻣﯿﻮﻓﯿﺒﺮﯾﻠﯽ ﻣﯽﺷـﻮد‪ .‬از ﺳـﻮي‬
‫دﯾﮕﺮ ﻫﻤﺎﻧﻄﻮر ﮐﻪ ﻣﺸﺎﻫﺪه ﻣﯽﺷﻮد ﺗﻔﺎوت ﭼﻨﺪاﻧﯽ در ﺷﺪت ﺑﺎﻧﺪ ﻣﺮﺑﻮط‬
‫ﺑﻪ زﻧﺠﯿﺮه ﺳﺒﮏ ﻣﯿﻮزﯾﻦ در ﻧﻤﻮﻧﻪﻫﺎ ﻣﺸﺎﻫﺪه ﻧﻤﯽﺷﻮد‪ .‬ﺑﺎ اﻓـﺰاﯾﺶ ‪pH‬‬
‫ﮐﺎﻫﺶ ﺧﺎﺻﯽ در ﺷﺪت ﺑﺎﻧﺪﻫﺎي اﺻﻠﯽ ﭘﺮوﺗﺌﯿﻨﯽ ﻣﻮﺟـﻮد در ﻧﻤﻮﻧـﻪﻫـﺎ‬
‫ﻣﺸﺎﻫﺪه ﻧﺸﺪ‪ .‬اﯾﻦ اﻣﺮ ﻧﺸﺎن ﻣﯽدﻫﺪ ﮐﻪ ﭘﺎﯾﺪاري اﯾﻦ ﭘﺮوﺗﺌﯿﻦﻫﺎ ﻫﻨﮕﺎم‬
‫ﺑﺎﻻرﻓﺘﻦ ‪ pH‬ﻣﻨﺎﺳﺐ ﺑﻮده اﺳﺖ‪ .‬ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺷﻨﺎﺳـﺎﯾﯽ ﭘـﺮوﺗﺌﯿﻦﻫـﺎ در‬
‫‪pH‬ﻫﺎي ﻣﺨﺘﻠﻒ اﺧﺘﻼف ﻣﻌﻨـﯽداري ﺑـﯿﻦ ﺗﯿﻤﺎرﻫـﺎي ‪ 3/5‬و ‪ 11/5‬ﺑـﺎ‬
‫دﯾﮕﺮ ﺗﯿﻤﺎرﻫﺎ دﯾﺪه ﺷﺪ‪ .‬اﯾﻦ در ﺣﺎﻟﯽ اﺳﺖ ﮐﻪ ﺑﯿﻦ ﻧﻤﻮﻧﻪ ﻫﺎي ﺣﺎﺻـﻞ‬
‫از ﺗﯿﻤﺎرﻫﺎي ‪ 3 ،2/5‬و ‪ ،11 ،10/5‬اﯾﻦ ﺗﻔﺎوت ﻣﻌﻨﯽدار ﻧﺒﻮد‪ .‬اﯾـﻦ ﻣﻬـﻢ‬

‫ﻣﯽﺗﻮاﻧﺪ ﺑﻪ دﻟﯿﻞ ﻣﻘـﺪار ﭘـﺮوﺗﺌﯿﻦ اﯾﺰوﻟـﻪ در ‪pH‬ﻫـﺎي ﻣﺨﺘﻠـﻒ و ﻧﯿـﺰ‬

‫‪1 loin‬‬

‫‪2supernatant‬‬


‫‪ 472‬ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺸﻬﺎي ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ اﯾﺮان‪ ،‬ﺟﻠﺪ ‪ ،12‬ﺷﻤﺎره‪ ،4‬ﻣﻬﺮ ‪ -‬آﺑﺎن ‪1395‬‬

‫دﻧﺎﺗﻮره ﺷﺪن ﭘﺮوﺗﺌﯿﻦﻫﺎ ﺑﻪ دﻟﯿﻞ ﺗﻐﯿﯿﺮات‪ pH‬ﺑﺎﺷﺪ ﮐﻪ ﺧـﻮد ﻣﻨﺠـﺮ ﺑـﻪ‬
‫ﺗﻔﺎوت وﯾﮋﮔﯽﻫﺎي ﮐﺎرﺑﺮدي ﭘﺮوﺗﺌﯿﻦﻫﺎي اﯾﺰوﻟﻪ ﻣﯽﺷـﻮد ) &‪Hultin‬‬
‫‪.(Kristinsson, 2004‬‬
‫ﺗﺸﮑﯿﻞ ژل ﺗﻮﺳﻂ ﭘﺮوﺗﺌﯿﻦﻫﺎي ﻣﺎﻫﯽ ﻣﻬﻢﺗﺮﯾﻦ ﮔﺎم در اﯾﺠﺎد ﯾﮏ‬
‫ﺑﺎﻓﺖ ﻣﻨﺎﺳﺐ در ﺑﺴﯿﺎري از ﻓﺮآوردهﻫﺎي ﺷﯿﻼﺗﯽ اﺳﺖ ) ‪Lanier et al,‬‬
‫‪ .(2005‬ﺑﻪ اﯾﻦ ﻣﻨﻈﻮر آزﻣﻮن‪ TPA‬ﺑﻪ ﺻﻮرت ﮔﺴﺘﺮدهاي ﺑﺮاي ﺑـﺮآورد‬
‫ﺗﺠﺮﺑﯽ ﮐﯿﻔﯿﺖ ﺑﺎﻓﺖ ﻏﺬاﻫﺎي ﭘﺮوﺗﺌﯿﻨﯽ اﺳﺘﻔﺎده ﻣﯽﺷـﻮد‪ .‬اﯾـﻦ آزﻣـﻮن‬
‫ﺷﺎﻣﻞ ﻓﺸﺮدن ﻧﻤﻮﻧﻪ ﺑﯿﻦ دو ﺻﻔﺤﻪي ﻣـﻮازي ﺑـﻮده و در اﯾـﻦ ﻓﺮآﯾﻨـﺪ‬
‫ﻣﻘﺎدﯾﺮ ﻧﯿﺮو در ﺑﺮاﺑﺮ ﺗﻐﯿﯿﺮ ﺷﮑﻞ ﺛﺒﺖ ﻣﯽﮔﺮدﻧﺪ‪ .‬ﺳﻨﺠﺶ ﺑﺎﻓﺖ ﻧﻤﻮﻧﻪﻫـﺎ‬
‫ﻧﺸﺎن داد ﮐﻪ ﭘﺮوﺗﺌﯿﻦ اﯾﺰوﻟـﻪي ﺗـﻮن از ﭼﺴـﺒﻨﺪﮔﯽ‪ ،‬ﺑﻬـﻢﭘﯿﻮﺳـﺘﮕﯽ و‬
‫ارﺗﺠﺎﻋﯿﺖ ﭘﺎﯾﯿﻨﯽ ﺑﺮﺧﻮردار ﻫﺴﺘﻨﺪ‪ .‬آزﻣﻮن ﻧﻔﻮذ و ارزﯾﺎﺑﯽ ﺣﺴـﯽ ﺑـﺮاي‬
‫ﺗﻌﯿﯿﻦ ﻗﺪرت ژﻟﯽ ﻧﻤﻮﻧﻪﻫﺎ ﻧﯿﺰ اﻣﺘﯿﺎز ﭘﺎﯾﯿﻨﯽ داﺷﺘﻨﺪ‪ .‬ﺑﻄـﻮر ﮐﻠـﯽ ﻗـﺪرت‬
‫ژﻟﯽ ﻧﻤﻮﻧﻪﻫﺎي اﯾﺰوﻟﻪي ﭘﺮوﺗﺌﯿﻦ ﺗـﻮن ﺿـﻌﯿﻒ ﺑـﻮده و در ﻣﻘﺎﯾﺴـﻪ ﺑـﺎ‬
‫ﻗﺪرت ژﻟﯽ اﯾﺰوﻟﻪي ﭘﺮوﺗﺌﯿﻦ ﺣﺎﺻﻞ از ﻓﯿﻠﻪ ﻣﺎﻫﯽ ﯾﺎ ﺑﺎﻗﯽ ﻣﺎﻧﺪهي ﻣﻮاد‬
‫ﺣﺎﺻﻞ از ﻓﺮآورش آﺑﺰﯾﺎن و ﻧﯿﺰ ﺳﻮرﯾﻤﯽ ﭘﺎﯾﯿﻦ ﻣﯽﺑﺎﺷﻨﺪ‪ .‬ﺑﺎ اﯾـﻦ ﺣـﺎل‬
‫ﻗﺪرت ژﻟﯽ ﺗﯿﻤﺎرﻫﺎي ‪ 2/5‬ﺗﺎ ‪ 11‬ﭘﺎﯾﯿﻦﺗﺮ از ﻗﺪرت ژﻟـﯽ ﮔـﺰارش ﺷـﺪه‬
‫ﺑﺮاي اﯾﺰوﻟﻪي ﻣﺎﻫﯽ ﺣﺎﺻﻞ از زاﺋﺪات ﻓﺮآوري ﻣﺎﻫﯽ ﮐﺎد )‪(274g×cm‬‬
‫و ﻣﺎﻫﯽ ﺳﯿﺚ )‪ (198g×cm‬ﺑﻮدﻧﺪ )‪ .(Shaviklo, 2007‬در ﻣﯿﺎن ﻫﻤـﻪ‬
‫ﻋﻮاﻣﻞ‪ ،‬ﻣﻬﻤﺘﺮﯾﻦ ﻋﺎﻣﻞﻫﺎي ﺗﺎﺛﯿﺮﮔﺬار در ﮐﯿﻔﯿﺖ ژل ﺣﺎﺻﻞ از اﯾﺰوﻟﻪي‬
‫ﭘﺮوﺗﺌﯿﻦ ﻣﺎﻫﯽ‪ ،‬ﮔﻮﻧﻪ و ﻧـﻮع ﻣـﺎدهي ﺧـﺎم‪ ،‬ﺗﻐﯿﯿـﺮات ﭘـﺲ از ﺻـﯿﺪ ﯾـﺎ‬
‫ﺑﺮداﺷﺖ و دﻣﺎي ﻣﻮرد اﺳﺘﻔﺎده در ﺟﺎﺑﻪﺟـﺎﯾﯽ و ﻃـﻮل دوره ﻓـﺮآورش و‬

‫‪ pH‬ﻣﯽﺑﺎﺷﺪ ) ‪Hultin et al, 2005; Choi & Park, 2002; Park‬‬
‫‪ .(et al, 2005; Park & Lanier, 2000‬ﺑﻪ ﻫﻤﯿﻦ دﻟﯿﻞ ﺳﺮد ﺳﺎزي‬
‫ﺳﺮﯾﻊ ﻣﻮاد ﺧﺎم ﭘﺲ از ﺻﯿﺪ اﻫﻤﯿﺖ زﯾﺎدي دارد ﭼﺮا ﮐﻪ ﭘـﺲ از ﻣـﺮگ‬
‫دﻣﺎي ﻋﻀﻼت ﻣـﺎﻫﯽ‪ ،‬ﺑـﻪ دﻟﯿـﻞ اداﻣـﻪ ﯾـﺎﻓﺘﻦ ﻣﺘﺎﺑﻮﻟﯿﺴـﻢ‪ ،‬در ﺣـﺪود‬
‫‪ ،5-10°C‬ﺗﻤﺎﯾﻞ ﺑﻪ ﺑﺎﻻ رﻓﺘﻦ دارد )‪ .(Lanier etal, 2005‬در ﻣـﺎﻫﯽ‬
‫ﺗﻮن اﯾﻦ ﻋﻮاﻣﻞ از ﺣﺴﺎﺳﯿﺖ ﺑﯿﺸﺘﺮي ﺑﺮﺧﻮردار اﺳﺖ‪.‬‬

‫ﺗﺎزﮔﯽ ﯾﮑﯽ از ﺷﺎﺧﺺﻫﺎي ﮐﻠﯿﺪي ﺗﺎﺛﯿﺮﮔﺬار در ﮐﯿﻔﯿـﺖ اﯾﺰوﻟـﻪي‬
‫ﭘﺮوﺗﺌﯿﻦ ﻣﺎﻫﯽ اﺳﺖ‪ Hultin .‬و ﻫﻤﮑﺎران )‪ (2005‬در ﻣﻄﺎﻟﻌـﻪ ﺑـﺮ روي‬
‫ﻗﺪرت ژﻟﯽ ﻣﺎﻫﯽ ﻫﺮﯾﻨﮓ ﺑﻪ اﯾﻦ ﻧﺘﯿﺠﻪ رﺳﯿﺪﻧﺪ ﮐﻪ اﯾﺰوﻟـﻪي ﭘـﺮوﺗﺌﯿﻦ‬
‫ﻫﺮﯾﻨﮓ ﺗﺎزه ﺑﯿﺶ ﺗﺮﯾﻦ ﻗﺪرت ژﻟﯽ )‪ (810g×cm‬و اﯾﺰوﻟـﻪي ﭘـﺮوﺗﺌﯿﻦ‬
‫ﻫﺮﯾﻨﮓ ﻧﮕﻬﺪاري ﺷﺪه در ﯾﺦ ﺑﻪ ﻣـﺪت ‪ 6‬روز ﮐـﻢﺗـﺮﯾﻦ ﻗـﺪرت ژﻟـﯽ‬
‫)‪ (287g×cm‬را داﺷﺘﻪ اﻧـﺪ‪ .‬ﻗـﺪرت ژﻟـﯽ اﯾﺰوﻟـﻪي ﭘـﺮوﺗﺌﯿﻦ ﻫﺮﯾﻨـﮓ‬
‫ﻣﻨﺠﻤﺪ ﻧﯿﺰ ﺑﻪ ‪ 287 g×cm‬ﮐﺎﻫﺶ ﯾﺎﻓﺘﻪ اﺳﺖ‪ .‬ﺑﻨﺎﺑﺮاﯾﻦ ﺗﺎزﮔﯽ و اﻧﺠﻤﺎد‬
‫ﻣﺎﻫﯽ ﻣﯽﺗﻮاﻧﺪ ﮐﯿﻔﯿﺖ اﯾﺰوﻟﻪي ﭘﺮوﺗﺌﯿﻦ ﻣﺎﻫﯽ را ﺗﺤﺖ ﺗﺎﺛﯿﺮ ﻗﺮار دﻫﻨﺪ‪.‬‬
‫ﺗﻮنﻣﺎﻫﯿﺎن در ﮐﺸﻮر ﻣﺎ ﻣﻌﻤﻮﻻ ﺑﻪ ﺷﮑﻞ ﺷﮑﻢ ﭘﺮ و ﺑـﺎ اﺳـﺘﻔﺎده از‬
‫ﯾﺦ ﺟﺎﺑﻪﺟﺎ ﻣﯽﺷﻮﻧﺪ؛ ﻫﺮ ﭼﻨﺪ ﺑﺨﺸﯽ از ﺻﯿﺪ در ﺷـﻨﺎورﻫﺎي ﻣﺠﻬـﺰ ﺑـﻪ‬
‫ﺳﺮدﺧﺎﻧﻪ ﻣﻨﺠﻤﺪ ﺷﺪه و ﺑﻪ اﯾﻦ ﺷﮑﻞ ﺑﻪ ﺳﺎﺣﻞ ﺣﻤﻞ ﻣﯽﺷﻮﻧﺪ‪ .‬ﻃﻮﻻﻧﯽ‬
‫ﺑﻮدن زﻣﺎن ﺻﯿﺪ ﺗﺎ ﺗﺨﻠﯿﻪ و ﻧﯿﺰ اﻧﺘﻘﺎل ﺻﯿﺪ ﺑـﻪ ﺳـﺮدﺧﺎﻧﻪ و ﺳـﭙﺲ ﺑـﻪ‬
‫ﮐﺎرﺧﺎﻧﻪﻫﺎي ﮐﻨﺴﺮوﺳﺎزي ﻣﻨﺠﺮ ﺑﻪ اﻓﺖ ﮐﯿﻔﯿﺖ ﻣﺎﻫﯽ ﻣﯽﺷﻮد‪ .‬از ﺳﻮي‬
‫دﯾﮕﺮ ﻧﻮﺳﺎن دﻣﺎ در ﺳﺮدﺧﺎﻧﻪﻫﺎ و در ﻫﻨﮕﺎم ﺣﻤﻞ و ﻧﻘﻞ ﻣﻮﺟﺐ ﺻـﺪﻣﻪ‬
‫دﯾﺪن ﭘﺮوﺗﺌﯿﻦﻫﺎي ﮔﻮﺷﺖ و ﺗﻐﯿﯿﺮ ﻣﺎﻫﯿﺖ آنﻫـﺎ ﻣـﯽﺷـﻮد‪ .‬در ﻧﺘﯿﺠـﻪ‬
‫ﭘﺮوﺗﺌﯿﻦ اﺳﺘﺨﺮاج ﺷﺪه از ﭼﻨﯿﻦ ﻣﺎدهي ﺧﺎﻣﯽ داراي ﻗﺪرت ژﻟﯽ ﻣﻨﺎﺳﺒﯽ‬
‫ﻧﺨﻮاﻫﺪ ﺑﻮد‪ .‬ﺑﺎ اﯾﻦ ﺣﺎل ﻣﯽﺗﻮان ﺑﺮاي اﺳﺘﺤﮑﺎم ژل و اﻓـﺰاﯾﺶ ﻗـﺪرت‬
‫ژﻟﯽ از اﻓﺰودﻧﯽﻫﺎي ﭘﺮوﺗﺌﯿﻨـﯽ اﺳـﺘﻔﺎده ﮐـﺮد‪ .‬ﻫـﺮ ﭼﻨـﺪ ﮐـﻪ از ﭼﻨـﯿﻦ‬
‫ﻓﺮآوردهﯾﯽ ﻧﻤﯽﺗﻮان ﻓﺮآوردهﻫﺎي ژﻟﯽ ﻣﺎﻫﯽ ﺗﻮﻟﯿﺪ ﮐﺮد وﻟﯽ اﯾﻦ ﻣﺎده را‬
‫ﻣﯽ ﺗـﻮان ﺑـﻪ دﻟﯿـﻞ داﺷـﺘﻦ ﭘـﺮوﺗﺌﯿﻦ ﺑـﺎﻻ در ﺳـﺎﺧﺖ و ﻏﻨـﯽﺳـﺎزي‬
‫ﻓﺮآوردهﻫﺎي ﺧﻮراﮐﯽ ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار داد )‪.(Shaviklo, 2011‬‬

‫ﻗﺪرداﻧﯽ‬


‫از ﭘﺸـﺘﯿﺒﺎﻧﯽﻫـﺎي داﻧﺸـﮕﺎه ﺗﺮﺑﯿـﺖ ﻣـﺪرس‪ ،‬ﺻـﻨﺪوق ﺣﻤﺎﯾــﺖ از‬
‫ﭘﮋوﻫﺸﮕﺮان و ﻓﻨﺎوران ﮐﺸﻮر‪ ،‬ﻣﺮﮐﺰ رﺷﺪ واﺣﺪﻫﺎي ﻓﻨﺎوري ﻃﺒﺮﺳـﺘﺎن‪،‬‬
‫ﺷﺮﮐﺖ آذﯾﻦ ﻣﻬﺮﺧﺰر در اﺟﺮاي اﯾﻦ ﭘﺰوژه ﺳﭙﺎﺳﮕﺰاري ﻣﯽﺷﻮد‪.‬‬

‫ﻣﻨﺎﺑﻊ‬
‫رﺿﻮي ﺷﯿﺮازي‪ ،‬ح ‪ ،1380 ،.‬ﺗﮑﻨﻮﻟﻮژي ﻓﺮآورده ﻫﺎي درﯾﺎﯾﯽ‪ :‬ﻋﻠﻢ ﻓﺮآوري )‪ ،(2‬ﺗﻬﺮان‪ :‬اﻧﺘﺸﺎرات ﻧﻘﺶ ﻣﻬﺮ‪ ،‬ص‪.255 .‬‬
‫ﺳﺎزﻣﺎن ﺷﯿﻼت اﯾﺮان‪ ،1393 ،‬ﺳﺎﻟﻨﺎﻣﻪي آﻣﺎري ﺳﺎزﻣﺎن ﺷﯿﻼت اﯾﺮان ‪ ،1382-1392‬دﻓﺘﺮ ﺑﺮﻧﺎﻣﻪ و ﺑﻮدﺟﻪ ﺳﺎزﻣﺎن ﺷﯿﻼت اﯾﺮان‪ ،‬ﺗﻬﺮان‪.‬‬
‫ﻣﻮﺳﻮي ﻧﺴﺐ‪ ،‬م‪ ،.‬آزادﯾﺎن‪ ،‬م‪ .‬و ﯾﻮﺳﻔﯽ‪ ،‬ع‪ ،1390،.‬ﺗﻮﻟﯿﺪ ﺳﻮرﯾﻤﯽ و ﭘﺮوﺗﺌﯿﻦ اﯾﺰوﻟﻪ از ﻣﺎﻫﯽ ﮐﭙﻮر ﻧﻘـﺮه اي)‪(Hypophthalmichthys molitrix‬‬
‫و ﺑﺮرﺳﯽ ﺗﻐﯿﯿﺮات ﻣﺆﻟﻔﻪﻫﺎي رﻧﮕﯽ و ﺷﯿﻤﯿﺎﯾﯽ ﻧﻤﻮﻧﻪﻫﺎي ژل و ﭘﻮدر ﺗﻮﻟﯿﺪي از آﻧﻬﺎ‪ ،‬ﻣﺠﻠﻪ ﻋﻠﻤﯽ ﺷﯿﻼت اﯾﺮان‪.1-10 ،(3)20 ،‬‬
‫‪AOAC., 1995, Official methods of analysis, Washington, DC: Association of Official Analytical Chemists.‬‬
‫‪Aspmo, S.I., Horn, S.J. & Eijsink, V.G.H., 2005, Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera.‬‬
‫‪Process Biochemistry. 40, 1957-1966.‬‬
‫‪Batista, I., 1999, Recovery of proteins from fish waste products by alkaline extraction. European Food Research and‬‬
‫‪Technology. 210, 84-89.‬‬
‫‪Belitz, H.D., Grosch, W. & Schieberle, P., 2009, Food chemistry, 4rd Edition, springer publishers, Berlin Heidelberg,‬‬
‫‪43.‬‬
‫‪Choi, Y.J. & Park J.W., 2002, Acid-Aided Protein Recovery from Enzyme-rich Pacific whiting. Journal of Food‬‬
‫‪Science. 67, 2962-2967.‬‬
‫‪Davenport, M., Theodore, A.E. & Kristinsson H.G., 2004, Influence of insoluble muscle components on the gelation‬‬


473...‫ﻣﻘﺎﯾﺴﻪي وﯾﮋﮔﯽﻫﺎي ﮐﺎرﺑﺮدي ﭘﺮوﺗﺌﯿﻦﻫﺎي ﺟﺪا ﺷﺪه از ﻋﻀﻠﻪي ﺗﯿﺮهي ﺗﻮن زردﺑﺎﻟﻪ‬
properties of catfish protein isolates made with acid and alkali-aided processing. Abstract 83A-21, IFT Annual
Meeting; Las Vegas, Nev.; Chicago, Ill. Institute of Food Technologists.
Davenport, M. & Kristinsson H.G., 2011, Channel Catfish (Ictalurus punctatus) muscle protein isolate performance
processed under different acid and alkali pH values. Journal of Food Science. 76(3), 240-247.
Emin-Erdem, M., Kakayci, F., Avni-Duyar, H. & Samsun S., 2009, Shelf Life and Biochemical Composition of Bonito
Fish (Sarda Sarda Bloch 1758) Stored at 4°C and Fishing with Different Fishing Tools. Journal of Muscle Foods.
20(2), 242-253.

FAO/WHO, 2005, Codex code for frozen surimi, In: Park J.W., editor, Surimi and Surimi Sea Food.Boca Raton, Taylor
and Francis Group.869-885.
Hultin, H.O. & Kelleher, S.D., 2000, Surimi processing from dark muscle fish. In: Park J.W., editor, Surimi and surimi
seafood, New York, Marcel Dekker. 59–77.
Hultin, H.O., 2002, Recent advances in surimi technology. In: Fingerman M., Nagabhushanam R., editors, Recent
advances in marine biotechnology. Enfield, N.H. Science Publishers.7, 241–51.
Hultin, H. O. & Kelleher S. D., 2002, Protein composition and process for isolating a protein composition from a
muscle source.Patent US6451975.
Hultin, H.O., Kristinsson, H.G., Lanier, T.C. & Park J.W., 2005, Process for Recovery of Functional Proteins by pHshifts. In: Park J.W., editor, Surimi and Surimi Seafood. Taylor and Francis Group. Boca Raton, 107-139.
Huss, H. H., 1998, Fresh Fish: Its Quality and Quality Changes. Food and Agricultural Organization, Rome.
Kanoh, S., Suzuki, T., Maeyama, K., Takewa, T., Watabe, S. & Hashimoto K., 1986, Comparative Studies on Ordinary
and Dark Muscle of Tuna Fish. Bulletin of the Japanese Society of Fisheries Oceanography. 52(10), 1807-1816.
Kim, Y.S., Atdigul, J.Y., Park, J.W. & Thawornchinsombut S., 2005, Characteristics of sarcoplasmic proteins and their
interaction with myofibrillar proteins. Journal of Food Biochemistry. 29, 517–532.
Kristinsson, H.G. & Rasco, B.A. 2000, Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties.
Critical Reviews in Food Science and Nutrition. 40(1), 43-81.
Kristinsson, H.G., 2002, Conformational and functional changes of hemoglobin and myosin induced by pH: Functional
role in fish quality [DPhil dissertation].Amherst, Mass, Univ. of Massachusetts.
Kristinsson, H.G. & Demir, N., 2003, Functional Fish Protein Ingredients from Fish Species of warm and Temperate
Waters: Comparison of Acid and Alkali-Aided Processing Vs. Conventional Surimi Processing. Advances in
Seafood By products, Fairbanks, AK; Alaska Sea Grant College Program.
Kristinsson, H.G. & Hultin, H.O., 2003, Changes in Conformation and Subunit Assembly of Cod Myosin at Low and
High pH and after Subsequent Refolding. Journal of Agriculture and Food Chemistry. 51, 7187-7196.
Kristinsson, H.G. & Hultin, H.O., 2003, Changes in Conformation and Subunit Assembly of Cod Myosin at Low and
High pH and after Subsequent Refolding. Journal of Agriculture and Food Chemistry. 51, 7187-7196.
Kristinsson, H.G., Theodore, A.E., Demir, N. & Ingadottir B., 2005, A comparative study between acid and alkali-aided
processing and surimi processing for the recovery of proteins from channel catfish muscle. Journal of Food Science.
70(4), 298-306.
Laemmli, U.K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:
680–5.

Lanier, T., Carvajal, P. & Yongsawatdigul J., 2005, Surimi gelation chemistry, In Park J. W. (Ed.), Surimi and surimi
seafood. Boca Raton. CRC, 435–477.
Lindsay, R.C., 1991, Flavour of fish, Paper presented at 8th World Congress of Food Science and Technology.Toronto,
Canada.
Nakamura, Y. N., Ando, M., Seoka, M., Kawasaki, K. & Tsukamasa Y., 2007, Changes of Proximate and Fatty Acid
Compositions of the Dorsal and Ventral Ordinary Muscles of the Full-cycle Cultured Pacific Bluefin Tuna Thunnus
Orientalis with the Growth. Food Chemistry. 103(1), 234-241.
Natseba, A., Lwalinda, I., Kakura, E., Muyanja, C.K. & Muyonga J.H., 2005, Effect of pre-freezing icing duration on
quality changes in frozen Nile perch (Lates niloticus). Food Research International. 38(4), 469-474.
Nolsøe, H. & Undeland I., 2009, The Acid and Alkaline Solubilization Process for the Isolation of Muscle Proteins,
State of the Art. Food Bioprocess Technology. 2, 1-27.
Onyango, C. A., Izumimoto, M. & Kutima P. P, 1998, Comparison of Some Physical and Chemical Properties of
Selected Game Meats.Meat Science. 49(1), 117-125.
Ovissipour, M.R., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R. & Shahiri H., 2009, The effect of enzymatic
hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser
persicus) viscera. Journal of Food Chemistry. 115, 238-242.
Papadopoulos, V., Chouliara, I., Badeka, A., Savvaidis, I. N. & Kontominas M. G., 2003, Effect of Gutting on
Microbiological, Chemical, and Sensory Properties of Aquacultured Sea Bass (Dicentrarchus labrax) Stored in Ice.
Food Microbiology. 20(4), 411-420.
Park, J. W. & Lanier, T. C., 2000, Processing of Surimi and Surimi Seafood. In Marine Freshwater Products
Handbook; R. E. Martin, Ed., Technomic Publishing Company: Lancaster, NH.


1395 ‫ آﺑﺎن‬- ‫ ﻣﻬﺮ‬،4‫ ﺷﻤﺎره‬،12 ‫ ﺟﻠﺪ‬،‫ ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺸﻬﺎي ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ اﯾﺮان‬474

Park, J.W., 2004, Surimi Gel preparation and texture analysis for better quality control, In: Sakaguch`i M., editor, More
efficient of fish and fisheries products. Hardbound, 333-341.
Park, J.W., Yongsawatdigul, J. & Lin T.M., 2005, Surimi: Manufacturing and evaluation. In: Park J.W., editor. Surimi
and surimi sea food, Boca Raton: Taylor and Francis Group, 33-106.
Petty, H. & Kristinsson, H. G., 2004, Impact of antioxidants on lipid oxidation during acid and alkali processing of

Spanish mackerel. 2004 IFT Annual Meeting 49B-7, Las Vegas, NV, IFT, 7-12-2004, Conference Proceeding.
Sánchez-Zapata, E. & Pérez-Alvarez, J. A., 2007, The Color in Different Fish Species. Alimentación, Equipos y
Tecnología. 219, 39-43.
Sánchez-Zapata, E., Amensour, M., Oliver, R., Fuentes-Zaragoza, E., Navarro, C., Fernández-López, J., Sendra, E.,
Sayas, E. & Pérez-Alvarez J.A., 2011, Quality Characteristics of Dark Muscle from Yellowfin Tuna (Thunnus
albacores) to Its Potential Application in the Food Industry. Food and Nutrition Sciences. 2, 22-30.
Shaviklo, G.R., 2007, Quality assessment of fish protein isolates using surimi standard methods, PDF E-Book, United
Nations
UniversityFisheries
Training
Programme,
Reykjavik, Iceland. Book
URL
[ />Shaviklo, G.R., 2008, Fish protein isolate; a new source of protein ingredient.INFOFISH International. 4, 45-48.
Shaviklo, G.R., 2011, Using product development approach for increasing fish consumption in the Near East region.
INFOFISH International. 4, 47-52.
Shaviklo, A.R., Thorkelsson, G. & Arason S., 2012, Quality Changes of Fresh and Frozen Protein Solutions Extracted
from Atlantic Cod (Gadus morhua) Trim as Affected by Salt, Cryoprotectants and Storage Time. Turkish Journal of
Fish Aquatic Science. 12, 41-51.
Sikorski, E., Kolakowska, A. & Sun-Pan B., 1994, Nutrient Composition of the Major Groups of Marine Food
Organisms. In: Sikorski E., Ed., Technology seafood: Resources, Nutritional Composition and Preservation, Acribia,
Zaragoza, Spain. 41-70.
Thawornchinsombut, S. & Park, J.W., 2006, Frozen Stability of Fish Protein Isolate under Various Storage Conditions.
Journal of Food Science. 71, 227-230.
Undeland, I.A., Kelleher, S.D. & Hultin H.O., 2002, Recovery of Functional Proteins from Herring (Clupea Harengus)
Light Muscle by an Acid or Alkaline Solubilization Process.Journal of Agricultural and Food Chemistry. 50, 73717379.


Iranian Food Science and Technology
Research Journal

Vol. 12, No. 4, Oct- Nov 2016, p. 463-476

‫ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺸﻬﺎي ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ اﯾﺮان‬

463-476 .‫ ص‬،1395 ‫ آﺑﺎن‬-‫ ﻣﻬﺮ‬،4 ‫ ﺷﻤﺎره‬،12 ‫ﺟﻠﺪ‬

A comparative study on stability and functional properties of the proteins
isolated from yellowfin tuna (Thunnus albacares) dark muscle by acid-aided and
alkaline-aided processes
N. Kamali-Damavandi1, A. R. Shaviklo2*, A. Motamedzadegan3
Received: 2014.10.18
Accepted: 2015.01.13

Introduction: At least 60% of the estimated 300,000 metric tons of tuna that are processed in Iran arebyproducts which arebeingwasted and converted to non-human products as fish meal or fertilizers. Therefore, a
major challenge facing the tuna canning industry is to find the new processes to utilize tuna processing byproducts (mainly dark muscle) into valuable foods. The characteristics of tuna dark meat (TDM) make it not
acceptable for these industries. Therefore, the isolation of proteins from TDM for food application would be a
more responsible way of using a nutritious and abundant rest raw material.
The pH-shift technology for recovering fish proteins involves the solubilisation of chopped and homogenized
fish flesh either in an aqueous acidic or alkaline solution. The protein rich solution is separated from solids
(insoluble proteins, skin, bones, and scales) and neutral lipids by centrifugation. The soluble proteins are then
recovered by isoelectric precipitation by adjusting the pH to 5.5 and the precipitated proteins are removed by
centrifugation. This method can be potentially applied with any white/ dark muscle fish or fish by-products. No
evidence can be foundon isolation of protein from TDM. Therefore, this study was carried out to investigate
stability and functional properties of proteins recovered from TDM.
Materials and methods: The ground TDM was homogenized for 1 min (speed 50) with 9 volumes of icecold distilled water. The proteins in the homogenate were solubilized by dropwise addition of 1 N HCl or 1 N
NaOH until the intended pH (2.5, 3.0 and 3.5or10.5,11.0 and 11.5) was reached. The protein suspension was
centrifuged. The soluble proteins were precipitated by adjusting the pHs to 5.5 using 1 N NaOH or 1 N HCl.
Precipitated proteins were collected via a second centrifugation. Proximate analysis of tuna protein isolates (TPI)
was carried out. TBARS, pH, viscosity, water holding capacity (WHC), gel strength, biting and folding tests,
texture profile analyses (TPA), and color were measured. Qualitative protein analysis was carried out using

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
Results and discussion: The protein, fat and moisture contents of the acid-aided protein isolates were
found to be 28.65, 5.35 and 74.36% respectively. While alkaline-aided protein isolates contained 29.57%
protein, 4.17% fat and 71.23% moisture. A significant difference was found in TBARS level between the
isolated products. The lowest TBARS value was found in acid-aided isolate and isolate treated at pH 11.5. The
TBARS value of isolates extracted at pH 10.5 and 11 was 0.15 mg malondialdehyde / kg, which was below the
border line recommended for fish products. Lipid oxidation in fish protein isolates has been reported during pHshift process. The lipid content of TPI samples and activating of haem proteins as prooxidants at different pH
may describe lipid oxidation in TPI samples.
The average viscosity of TPIs was 3.81 cP (Centipoise). The highest viscosity scores were observed for the
isolates prepared at pH 11.0 followed by the isolates made at pH 3.5 and 11.5. The isolates treated at pH of 2.5,
3.0 and 10.5 had the same level of viscosity. Low viscosity might be due to low cross linking degree of protein
molecules. The low viscosity of the prototypes may possibly be explained by decreasing interaction between
proteins and the surrounding medium. Therefore, denaturation and modification of protein conformation in tuna
protein samples may have affected the viscosity.
The WHC of the samples (12-16%) was similar to the proteins isolated from the other fish by-products. The
highest value of WHC among TPIs was found for the isolates prepared at pH 3.5. The rest samples had the same
1- Department of seafood processing, Faculty of Marine Science, Tarbiat Modares University, Iran
2- Department of Animal Products Processing, Animal Science Research Institute of Iran, Agricultural Research,
Education and Extension Organization (AREEO), Karaj, Iran.
3- Department of Food Science, Agricultural Sciences and Natural Resources University of Sari, Iran
(*-Corresponding Author Email: )


1395 ‫ آﺑﺎن‬- ‫ ﻣﻬﺮ‬،4‫ ﺷﻤﺎره‬،12 ‫ ﺟﻠﺪ‬،‫ ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺸﻬﺎي ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ اﯾﺮان‬476

value of viscosity. The WHC can be defined as the ability of a protein gel to retain water against a gravitational
force. The level of water retained in a gel is affected by the same factors that affect the formation of a good
protein gel ‘i.e.’ moisture, pH and salt. Furthermore, the WHC usually reflects the extent of denaturation of the
protein and water contents. It has been reported that WHC is closely related to fish species, amount of salt,
different processing method and the interaction between these factors.

The highest scores for gel strength, biting and folding tests and TPA (hardness, cohesiveness, springiness and
resilience) were observed in TPIs treated at alkaline pH. The muscle proteins being particularly responsible for
gelation are myosin and actomyosin. It has been reported that alkali-aided protein extraction caused less
denaturation than an acid-aided process. This lower denaturation of proteins leads to products with enhanced
texture. Hardness and cohesiveness were found to be maximum for samples prepared at pH of 11.5. The increase
in hardness may also be due to the stronger gel network formed by the concentrated myofibrillar proteins in the
protein isolates. The difference between TPA parameters of the recovered proteins andthe TDM mightbe due to
the difference in lipid and collagen content.
The alkali-aided process recovered proteins of higher whiteness than the acid-aided process possibly due to
high removal amount of myoglobin and haemoglobin during leaching. The electrophoretic patterns revealed the
stability of proteins in alkaline pH. The lowest reduction in band intensity of myosin (myosin heavy chain) and
actin was found when the alkaline-aided process was applied. Accordingly the highest band intensity of myosin
and actin proteins was observed at the high pH (11). The weak bands of protein among acid-aided samples have
possibly been due to the hydrolysis effect of enzyme activity.
Keywords: Tuna protein isolates, Yellow fin tuna, Dark muscle, pH-shift

View publication stats



×