Tải bản đầy đủ (.doc) (3 trang)

tim gia tri lon nhat, gia tri nho nhat bang pp dao ham

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (60.74 KB, 3 trang )

Tìm giá trị lớn nhất, giá trị nhỏ nhất
của hàm số
Các bài toán về tìm giá trị lớn nhất, giá trị nhỏ nhất (GTLN, GTNN) của
hàm số liên quan chặt chẽ tới các bài toán bất đẳng thức. Tất cả các bài toán
bất đẳng thức mà có dấu = xảy ra đều có thể thay đổi câu hỏi để đa về các
bài toán tìm GTLN, GTNN của hàm số. Sự phân chia ở đây chỉ mang tính hình
thức.
- Chứng minh bất đẳng thức là dạng toán cho trớc cận đánh giá. Tức là
bài toán bất đẳng thức yêu cầu chứng minh
( ) ( ( ) )f x m f x M
còn đối với
bài toán tìm GTLN, GTNN thì số
,m M
đợc giấu đi.
- Tìm GTLN, GTNN của hàm số là dạng toán giấu cận đánh giá.
Vì vậy các phơng pháp để chứng minh bất đẳng thức cũng là phơng pháp
tìm GTLN, GTNN.
Khảo sát trực tiếp
Ta thực hiện theo các bớc:
- Tìm tập xác định;
- Tính đạo hàm
'( )f x
,rồi giải phơng trình
'( ) 0f x =
;
- Lập bảng biến thiên;
- Kết luận dựa vào bảng biến thiên.
Nếu hàm số
( )f x
xác định trên
[ ; ]a b


thì ngoài cách trên ta có thể làm theo
cách sau:
- Tính đạo hàm
'( )f x
;
- Tìm các điểm tới hạn
1 2 3
, , , ...,
n
x x x x
của
( )f x
trên đoạn
[ ; ]a b
;
- Tính
1 2 3
( ), ( ), ( ), ( ), ..., ( ), ( );
n
f a f x f x f x f x f b
- Tìm số lớn nhất M và số nhỏ nhất m trong các số trên.
Ví dụ 1: Cho hàm số
= +( ) sin cos
n n
f x x x
với
n
là số tự nhiên,
3n


(0; )
2
x


. Tìm

(0; )
2
min ( )f x
.
( ĐHBK Hà Nội - 1999 )
Giải:
Ta có :

=
1 1
'( ) sin cos cos sin
n n
f x n x x n x x

=
2 2
sin cos (sin cos ).
n n
n x x x x x
Khi đó

= =
2 2

'( ) 0 sin cos (sin cos ) 0
n n
f x n x x x x x
2
tan 1 tan 1 .
4
n
x x x


= = =
Ta có bảng biến thiên
x
0
/ 4

/ 2

'( )f x
- 0 +
( )f x
1 1

( )
4
f

Vậy




= = =
2
2
(0; )
2
2
min ( ) ( ) 2( ) 2
4 2
n
n
f x f
đạt đợc khi
4
x

=
.
Ví dụ 2: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau

sin
( )
2 cos
x
y f x
x
= =
+
với


[0; ].x
Giải:
Xét hàm số trên D =

[0; ].
Đạo hàm:
+ + +
= =
+ +
2
2 2
cos (2 cos ) sin 1 2cos
' .
(2 cos ) (2 cos )
x x x x
y
x x
Khi đó

+
= = = =
+
2
1 2cos 1 2
' 0 0 cos .
(2 cos ) 2 3
x
y x x
x
Ta cã

π
π
= = =
2 1
(0) 0, ( ) , ( ) 0.
3
3
f f f
VËy
1 1
max max{0; }
3 3
x D
y

= =
®¹t ®îc khi
π
=
2
.
3
x


= =
1
min min{0; } 0
3
x D

y
®¹t ®îc khi
0x =
hoÆc
π
= .x

×