ThS. on Vng Nguyờn
CHUYấN
H PHNG TRèNH I XNG LOI (KIU) I
TểM TT GIO KHOA V PHNG PHP GII TON
I. H i xng loi (kiu) I cú dng tng quỏt:
f(x, y) = 0
g(x, y) = 0
ỡ
ù
ù
ớ
ù
ù
ợ
, trong ú
f(x, y) = f(y, x)
g(x, y) = g(y, x)
ỡ
ù
ù
ớ
ù
ù
ợ
Phng phỏp gii chung:
i) Bc 1: t iu kin (nu cú).
ii) Bc 2: t S = x + y, P = xy vi iu kin ca S, P v
2
S 4P
.
iii) Bc 3: Thay x, y bi S, P vo h phng trỡnh. Gii h tỡm S, P ri dựng Viet o tỡm x, y.
Chỳ ý:
i) Cn nh: x
2
+ y
2
= S
2
2P, x
3
+ y
3
= S
3
3SP.
ii) ụi khi ta phi t n ph u = u(x), v = v(x) v S = u + v, P = uv.
iii) Cú nhng h phng trỡnh tr thnh i xng loi I sau khi t n ph.
Vớ d 1. Gii h phng trỡnh
2 2
3 3
x y xy 30
x y 35
ỡ
ù + =
ù
ớ
ù
+ =
ù
ợ
.
GII
t
S x y, P xy= + =
, iu kin
2
S 4P
. H phng trỡnh tr thnh:
2
2
30
P
SP 30
S
90
S(S 3P) 35
S S 35
S
ỡ
ù
ù
=
ỡ
ù
=
ù
ù
ù ù
ớ ớ
ổ ử
ù ù
- =
ữ
ỗ
ù ù
- =
ợ
ữ
ỗ
ù
ữ
ữ
ỗ
ù
ố ứ
ù
ợ
S 5 x y 5 x 2 x 3
P 6 xy 6 y 3 y 2
ỡ ỡ ỡ ỡ
= + = = =
ù ù ù ù
ù ù ù ù
ớ ớ ớ ớ
ù ù ù ù
= = = =
ù ù ù ù
ợ ợ ợ ợ
.
Vớ d 2. Gii h phng trỡnh
3 3
xy(x y) 2
x y 2
ỡ
- = -
ù
ù
ớ
ù
- =
ù
ợ
.
GII
t
t y, S x t, P xt= - = + =
, iu kin
2
S 4P.
H phng trỡnh tr thnh:
3 3 3
xt(x t) 2 SP 2
x t 2 S 3SP 2
ỡ ỡ
+ = =
ù ù
ù ù
ớ ớ
ù ù
+ = - =
ù ù
ợ ợ
S 2 x 1 x 1
P 1 t 1 y 1
ỡ ỡ ỡ
= = =
ù ù ù
ù ù ù
ớ ớ ớ
ù ù ù
= = = -
ù ù ù
ợ ợ ợ
.
Vớ d 3. Gii h phng trỡnh
2 2
2 2
1 1
x y 4
x y
1 1
x y 4
x y
ỡ
ù
ù
+ + + =
ù
ù
ù
ớ
ù
ù
+ + + =
ù
ù
ù
ợ
.
GII
Trang
1
ThS. on Vng Nguyờn
iu kin
x 0,y 0ạ ạ
.
H phng trỡnh tng ng vi:
2 2
1 1
x y 4
x y
1 1
x y 8
x y
ỡ ổ ử ổ ử
ù
ữ ữ
ỗ ỗ
ù
+ + + =
ữ ữ
ỗ ỗ
ù
ữ ữ
ữ ữ
ỗ ỗ
ù
ố ứ ố ứ
ù
ớ
ù
ổ ử ổ ử
ù
ữ ữ
ỗ ỗ
+ + + =
ữ ữ
ù
ỗ ỗ
ữ ữ
ù
ữ ữ
ỗ ỗ
ố ứ ố ứ
ù
ợ
t
2
1 1 1 1
S x y ,P x y ,S 4P
x y x y
ổ ử ổ ử ổ ửổ ử
ữ ữ ữ ữ
ỗ ỗ ỗ ỗ
= + + + = + +
ữ ữ ữ ữ
ỗ ỗ ỗ ỗ
ữ ữ ữ ữ
ữ ữ ữ ữ
ỗ ỗ ỗ ỗ
ố ứ ố ứ ố ứố ứ
ta cú:
2
1 1
x y 4
S 4
S 4
x y
P 4 1 1
S 2P 8
x y 4
x y
ỡ ổ ử ổ ử
ù
ữ ữ
ỗ ỗ
ù
+ + + =
ữ ữ
ỗ ỗ
ù
ỡ
ỡ
ữ ữ
=
=ù
ù
ữ ữ
ỗ ỗ
ù
ố ứ ố ứ
ù ù ù
ớ ớ ớ
ổ ửổ ử
ù ù ù
=
- =
ữ ữ
ỗ ỗ
ù ù ù
ợ
ợ
+ + =
ữ ữ
ỗ ỗ
ù
ữ ữ
ữ ữ
ỗ ỗ
ù
ố ứố ứ
ù
ợ
1
x 2
x 1
x
1
y 1
y 2
y
ỡ
ù
ù
+ =
ỡ
ù
=
ù
ù
ù ù
ớ ớ
ù ù
=
ù ù
ợ
+ =
ù
ù
ù
ợ
.
Vớ d 4. Gii h phng trỡnh
2 2
x y 2xy 8 2 (1)
x y 4 (2)
ỡ
ù
+ + =
ù
ù
ớ
ù
+ =
ù
ù
ợ
.
GII
iu kin
x,y 0
. t
t xy 0=
, ta cú:
2
xy t=
v
(2) x y 16 2tị + = -
.
Th vo (1), ta c:
2
t 32t 128 8 t t 4- + = - =
Suy ra:
xy 16 x 4
x y 8 y 4
ỡ ỡ
= =
ù ù
ù ù
ớ ớ
ù ù
+ = =
ù ù
ợ ợ
.
II. iu kin tham s h i xng loi (kiu) I cú nghim
Phng phỏp gii chung:
i) Bc 1: t iu kin (nu cú).
ii) Bc 2: t S = x + y, P = xy vi iu kin ca S, P v
2
S 4P
(*).
iii) Bc 3: Thay x, y bi S, P vo h phng trỡnh. Gii h tỡm S, P theo m ri t iu kin (*) tỡm m.
Chỳ ý:
Khi ta t n ph u = u(x), v = v(x) v S = u + v, P = uv thỡ nh tỡm chớnh xỏc iu kin u, v.
Vớ d 1 (trớch thi H khi D 2004). Tỡm iu kin m h phng trỡnh sau cú nghim thc:
x y 1
x x y y 1 3m
ỡ
ù
+ =
ù
ù
ớ
ù
+ = -
ù
ù
ợ
.
GII
Trang
2
ThS. Đoàn Vương Nguyên
Điều kiện
x,y 0³
ta có:
3 3
x y 1 x y 1
x x y y 1 3m ( x) ( y) 1 3m
ì ì
ï ï
+ = + =
ï ï
ï ï
Û
í í
ï ï
+ = - + = -
ï ï
ï ï
î î
Đặt
S x y 0,P xy 0= + ³ = ³
,
2
S 4P.³
Hệ phương trình trở thành:
2
S 1
S 1
P m
S 3SP 1 3m
ì
ì
=
=
ï ï
ï ï
Û
í í
ï ï
=
- = -
ï ï
î
î
.
Từ điều kiện
2
S 0,P 0,S 4P³ ³ ³
ta có
1
0 m
4
£ £
.
Ví dụ 2. Tìm điều kiện m để hệ phương trình
2 2
x y xy m
x y xy 3m 9
ì
+ + =
ï
ï
í
ï
+ = -
ï
î
có nghiệm thực.
GIẢI
2 2
x y xy m
(x y) xy m
xy(x y) 3m 9
x y xy 3m 9
ì
ì
+ + =
+ + =
ï ï
ï ï
Û
í í
ï ï
+ = -
+ = -
ï ï
î
î
.
Đặt S = x + y, P = xy,
2
S 4P.³
Hệ phương trình trở thành:
S P m
SP 3m 9
ì
+ =
ï
ï
í
ï
= -
ï
î
.
Suy ra S và P là nghiệm của phương trình
2
t mt 3m 9 0- + - =
S 3 S m 3
P m 3 P 3
ì ì
= = -
ï ï
ï ï
Þ Ú
í í
ï ï
= - =
ï ï
î î
.
Từ điều kiện ta suy ra hệ có nghiệm
2
2
3 4(m 3)
21
m m 3 2 3
(m 3) 12
4
é
³ -
ê
Û Û £ Ú ³ +
ê
- ³
ê
ë
.
Ví dụ 3. Tìm điều kiện m để hệ phương trình
x 4 y 1 4
x y 3m
ì
ï
- + - =
ï
í
ï
+ =
ï
î
có nghiệm.
GIẢI
Đặt
u x 4 0,v y 1 0= - ³ = - ³
hệ trở thành:
2 2
u v 4
u v 4
21 3m
u v 3m 5
uv
2
ì
+ =
ï
ì
ï
+ =
ï
ï
ï
Û
í í
-
ï ï
+ = -
=
ï ï
î
ï
î
.
Suy ra u, v là nghiệm (không âm) của
2
21 3m
t 4t 0
2
-
- + =
(*).
Hệ có nghiệm
Û
(*) có 2 nghiệm không âm
/
3m 13
0
0
13
2
S 0 m 7
21 3m
3
0
P 0
2
ì
ì
-
ï
ï
D ³
ï
ï
³
ï
ï
ï
ï
Û ³ Û Û £ £
í í
ï ï
-
ï ï
³
³
ï ï
ï ï
î
î
.
Trang
3
ThS. Đoàn Vương Nguyên
Ví dụ 4. Tìm điều kiện m để hệ phương trình
2 2
x y 4x 4y 10
xy(x 4)(y 4) m
ì
ï + + + =
ï
í
ï
+ + =
ï
î
có nghiệm thực.
GIẢI
2 2
2 2
2 2
(x 4x) (y 4y) 10
x y 4x 4y 10
xy(x 4)(y 4) m (x 4x)(y 4y) m
ìì
ï + + + =
ï + + + =
ï ï
Û
í í
ï ï
+ + = + + =
ï ï
î î
.
Đặt
2 2
u (x 2) 0,v (y 2) 0= + ³ = + ³
. Hệ phương trình trở thành:
u v 10 S 10
uv 4(u v) m 16 P m 24
ì ì
+ = =
ï ï
ï ï
Û
í í
ï ï
- + = - = +
ï ï
î î
(S = u + v, P = uv).
Điều kiện
2
S 4P
S 0 24 m 1
P 0
ì
ï
³
ï
ï
ï
³ Û - £ £
í
ï
ï
³
ï
ï
î
.
BÀI TẬP
Giải các hệ phương trình sau
1.
2 2
x y xy 5
x y xy 7
ì
+ + =
ï
ï
í
ï
+ + =
ï
î
. Đáp số:
x 1 x 2
y 2 y 1
ì ì
= =
ï ï
ï ï
Ú
í í
ï ï
= =
ï ï
î î
.
2.
2 2
x xy y 3
2x xy 2y 3
ì
ï + + =
ï
í
ï
+ + = -
ï
î
. Đáp số:
x 1 x 3 x 3
y 1
y 3 y 3
ì ì
ì
ï ï
= - = = -
ï
ï ï
ï ï ï
Ú Ú
í í í
ï ï ï
= -
= - =
ï ï ï
î
ï ï
î î
.
3.
3 3
x y 2xy 2
x y 8
ì
+ + =
ï
ï
í
ï
+ =
ï
î
. Đáp số:
x 2 x 0
y 0 y 2
ì ì
= =
ï ï
ï ï
Ú
í í
ï ï
= =
ï ï
î î
.
4.
3 3
x y 7
xy(x y) 2
ì
ï - =
ï
í
ï
- =
ï
î
. Đáp số:
x 1 x 2
y 2 y 1
ì ì
= - =
ï ï
ï ï
Ú
í í
ï ï
= - =
ï ï
î î
.
5.
2 2
x y 2xy 5
x y xy 7
ì
- + =
ï
ï
í
ï
+ + =
ï
î
. Đáp số:
1 37 1 37
x x
x 2 x 1
4 4
y 1 y 2
1 37 1 37
y y
4 4
ì ì
ï ï
- +
ï ï
= =
ï ï
ì ì
= = -
ï ï
ï ï
ï ï ï ï
Ú Ú Ú
í í í í
ï ï ï ï
= = -
- - - +
ï ï ï ï
î î
= =
ï ï
ï ï
ï ï
î î
.
6.
2 2
2 2
1
(x y)(1 ) 5
xy
1
(x y )(1 ) 49
x y
ì
ï
ï
+ + =
ï
ï
ï
í
ï
ï
+ + =
ï
ï
ï
î
. Đáp số:
x 1 x 1
7 3 5 7 3 5
x x
2 2
7 3 5 7 3 5
y y
y 1 y 1
2 2
ì ì ì ì
= - = -
ï ï ï ï
- +
ï ï ï ï
= =
ï ï ï ï
ï ï ï ï
Ú Ú Ú
í í í í
- +
ï ï ï ï
= =
ï ï ï ï
= - = -
ï ï ï ï
ï ï ï ï
î î î î
.
Trang
4
ThS. on Vng Nguyờn
7.
x y y x 30
x x y y 35
ỡ
ù
+ =
ù
ù
ớ
ù
+ =
ù
ù
ợ
. ỏp s:
x 4 x 9
y 9 y 4
ỡ ỡ
= =
ù ù
ù ù
ớ ớ
ù ù
= =
ù ù
ợ ợ
.
8.
x y 7
1
y x
xy
x xy y xy 78
ỡ
ù
ù
+ = +
ù
ù
ớ
ù
ù
+ =
ù
ù
ợ
(chỳ ý iu kin x, y > 0). ỏp s:
x 4 x 9
y 9 y 4
ỡ ỡ
= =
ù ù
ù ù
ớ ớ
ù ù
= =
ù ù
ợ ợ
.
9.
( )
2 2
3 3
3
3
2(x y) 3 x y xy
x y 6
ỡ
ù
+ = +
ù
ù
ớ
ù
+ =
ù
ù
ợ
. ỏp s:
x 8 x 64
y 64 y 8
ỡ ỡ
= =
ù ù
ù ù
ớ ớ
ù ù
= =
ù ù
ợ ợ
.
10. Cho x, y, z l nghim ca h phng trỡnh
2 2 2
x y z 8
xy yz zx 4
ỡ
ù + + =
ù
ớ
ù
+ + =
ù
ợ
. Chng minh
8 8
x,y,z
3 3
- Ê Ê
.
HNG DN GII
H phng trỡnh
2 2 2 2 2
x y 8 z (x y) 2xy 8 z
xy z(x y) 4 xy z(x y) 4
ỡ ỡ
ù + = - ù + - = -
ù ù
ớ ớ
ù ù
+ + = + + =
ù ù
ợ ợ
2 2
(x y) 2[4 z(x y)] 8 z
xy z(x y) 4
ỡ
ù + - - + = -
ù
ớ
ù
+ + =
ù
ợ
2 2
(x y) 2z(x y) (z 16) 0
xy z(x y) 4
ỡ
ù + + + + - =
ù
ớ
ù
+ + =
ù
ợ
2 2
x y 4 z x y 4 z
xy (z 2) xy (z 2)
ỡ ỡ
+ = - + = - -
ù ù
ù ù
ớ ớ
ù ù
= - = +
ù ù
ợ ợ
.
Do x, y, z l nghim ca h nờn:
2 2
2
2 2
(4 z) 4(z 2)
8 8
(x y) 4xy z
( 4 z) 4(z 2)
3 3
ộ
- -
ờ
+ - Ê Ê
ờ
- - +
ờ
ở
.
i vai trũ x, y, z ta c
8 8
x,y,z
3 3
- Ê Ê
.
11.
x y
1 1 1
16 16 2
x y 1
ỡ
ù
ổ ử ổ ử
ù
ữ ữ
ỗ ỗ
ù
+ =
ữ ữ
ỗ ỗ
ù
ữ ữ
ữ ữ
ỗ ỗ
ớ
ố ứ ố ứ
ù
ù
+ =
ù
ù
ợ
. ỏp s:
1
x
2
1
y
2
ỡ
ù
ù
=
ù
ù
ớ
ù
ù
=
ù
ù
ợ
.
12.
sin (x y)
2 2
2 1
2(x y ) 1
p +
ỡ
ù =
ù
ớ
ù
+ =
ù
ợ
HNG DN GII
Cỏch 1:
sin (x y)
2 2 2 2
2 2
sin (x y) 0 x y (1)
2 1
2(x y ) 1 2(x y ) 1 (2)2(x y ) 1
p +
ỡ ỡ ỡ
p + = + ẻ
ù =
ù ù
ù ù ù
ớ ớ ớ
ù ù ù
+ = + =+ =
ù ù ù
ợ ợợ
Z
2
2 2
2
1 2 2
x x
1
2 2 2
(2) x y 2 x y 2
1
2
2 2
y
y
2
2 2
ỡ
ỡ
ù
ù
ù
ù
Ê - Ê Ê
ù
ù
ù
ù
ù
+ = ị ị ị - Ê + Ê
ớ ớ
ù ù
ù ù
Ê
- Ê Ê
ù ù
ù ù
ợ
ù
ợ
.
x y 0
(1)
x y 1
ộ
+ =
ờ
ị
ờ
+ =
ờ
ở
th vo (2) gii.
Trang
5