A. ĐẶT VẤN ĐỀ.
I. MỞ ĐẦU:
Đất nước Việt Nam đang bước vào hội nhập và phát triển, trước xu thế
toàn cầu hoá kinh tế tri thức của thời đại, nghị quyết Đại hội Đảng lần thứ XI
đã đề ra nhiệm vụ: “Giáo dục và đào tạo có sứ mệnh nâng cao dân trí, phát
triển nguồn nhân lực, bồi dưỡng nhân tài, góp phần quan trọng phát triển đất
nước, xây dựng nền văn hoá và con người Việt Nam. Phát triển giáo dục và
đào tạo cùng với phát triển khoa học và công nghệ là quốc sách hàng đầu; đầu
tư cho giáo dục và đào tạo là đầu tư phát triển. Đổi mới căn bản và toàn diện
giáo dục và đào tạo theo nhu cầu phát triển của xã hội; nâng cao chất lượng
theo yêu cầu chuẩn hoá, hiện đại hoá, xã hội hoá, dân chủ hoá và hội nhập
quốc tế, phục vụ đắc lực sự nghiệp xây dựng và bảo vệ Tổ quốc. Đẩy mạnh
xõy dựng xó hội học tập, tạo cơ hội và điều kiện cho mọi công dân được học
tập suốt đời”. Mà "Giáo viên là nhân tố quyết định chất lượng Giáo dục - Đào
tạo" (Nghị quyết Trung ương 2 - Khoá VIII).
Do đó, trong quá trình dạy học nói riêng và giáo dục nói chung ngoài
mục đích giúp các em có được những kỹ năng kiến thức, việc dạy học còn
phải chú ý phát triển tư duy và bồi dưỡng phương pháp suy luận cho học sinh.
Ngay từ bậc Tiểu học lại càng phải quan tâm làm tốt điều này - Đặc biệt là ở
môn toán.
Để học sinh "học một biết mười" thì việc giải đúng một đề hoặc bài toán để
đạt điểm 10 (hoặc 20) cũng vẫn chưa đủ. Vì thế cần phải tập cho học sinh thói
quen:
Chưa tự bằng lòng mỗi khi giải quyết xong bài toán hoặc tìm đúng đáp
số, ngay cả trong trường hợp đã thử lại cẩn thận, soát lại đầy đủ. Điều đó có
nghĩa là: Các em cần tiếp tục suy nghĩ để tìm hiểu sâu hơn nhằm khai thác bài
toán đó theo một hướng, một cách làm độc đáo, hiệu quả hơn.
Vậy, làm thế nào để tất cả đối tượng học sinh (khá giỏi, trung bình, yếu)
không những ở thành phố mà cả ở những miền núi nơi mà có nhiều khó khăn
1
và sách tham khảo chưa được phong phú đa dạng phát huy được sự sáng tạo,
thông minh và khả năng suy nghĩ linh hoạt để khai thác bài toán có hiệu quả?
Đặc biệt là trong quá trình dạy học theo chuẩn KTKN như hiện nay để phân
loại được đối tượng nhằm dạy sát, phù hợp đối tượng học sinh mà nhất là
những học sinh có năng lực học toán để các em không nhàm chán và tránh
dạy theo kiểu “cào bằng”. Xuất phát từ những suy nghĩ trên, tôi đã chọn đề
tài: "Một số biện pháp nhằm giúp học sinh tự đặt được đề bài toán khi thay
đổi số liệu, đối tượng trong đề bài toán lớp 5" mà theo tôi, là cách giúp các
em phát triển tư duy và khai thác bài toán có hiệu quả rất tốt. Mặt khác, nhằm
góp phần nâng cao chất lượng học tập, để các em có điều kiện trở thành
những học sinh giỏi về môn toán, vật lý, về hoá học, về sinh học .v.v.. ở các
bậc phổ thông trung học và đại học sau này.
II.THỰC TRẠNG CỦA VẤN ĐỀ NGHIÊN CỨU:
1. Vài nét về nhà trường:
Trường Tiểu học Ngọc Khê 1 là một trường miền núi nằm ở phía tây
của Huyện Ngọc Lặc, là một xã có điều kiện kinh tế và môi trường dân số còn
gặp nhiều khó khăn. Về công tác giáo dục trong những năm gần đây đó được
sự giúp đỡ, quan tâm của Đảng uỷ, UBND Xã và Hội cha mẹ học sinh cho
nên phong trào học tập và chất lượng học tập ngày càng có nhiều chuyển biến
rõ rệt.
Ban giám hiệu nhà trường thường xuyên quan tâm, chăm và tạo điều
kiện thuận lợi về mọi mặt để giáo viên an tâm công tác nhất là công tác
chuyên môn nghiệp vụ.
Toàn trường có 20 lớp với 295 học sinh gồm 04 Điểm trường. Các em
học sinh đều ngoan, lễ phép, chuyên cần siêng năng trong học tập.
2. Thực trạng:
Đầu năm học khi được nhà trường phân công giảng dạy lớp 5A 3 với tổng
số học sinh 14 (nam 10, nữ 4). Sau khi nhận lớp tôi tiến hành khảo sát, qua
khảo sát thực tế tôi thấy rất nhiều học sinh còn yếu về kỹ năng tự đặt đề toán,
2
không biết cách thay đổi các số liệu đã cho, các đối tượng trong đề toán, tăng
đối tượng trong đề toán hay thay đổi câu hỏi của bài toán bằng câu hỏi khó
hơn hoặc đặt một đề toán ngược lại với đề toán đã cho....Đây cũng là điểm
yếu chung của học sinh vùng dân tộc miền núi vì các em còn có khó khăn,
hạn chế trong việc sử dụng ngôn ngữ Tiếng Việt. Khảo sát xong tôi bắt tay
vào việc lập kế hoạch để giúp các em khắc phục những thiếu sót trên, đồng
thời qua việc làm này tôi cũng nhằm mục đích dạy tăng cường Tiếng việt
trong học toán cho các em học sinh lớp tôi phụ trách.
Xuất phát từ yêu cầu học tập của các em và những trăn trở của bản thân đã
thôi thúc tôi tiến hành áp dụng cách làm này trong quá trình dạy học, đặc biệt là
khi dạy các dạng bài luyện tập, bài ôn tập nếu đối tượng học sinh khá giỏi không
được giao thêm nhiệm vụ ngoài các bài giải đơn thuần trong sách giáo khoa thì
các em làm xong thường ngồi chơi và nhanh chán, thiếu tư duy tích cực. Do
trường có nhiều Điểm trường lại cách khá xa nhau nên tôi chỉ chọn học sinh lớp
5A3 trường Tiểu học Ngọc Khê 1 do tôi chủ nhiệm làm đối tượng khảo sát và
nghiên cứu.
3. Kết quả của thực trạng:
Qua thực tế khảo sát đầu năm học, tôi thấy các em còn lúng túng nhiều
trong việc tự đặt đề toán cụ thể:
Đặt đề toán mới bằng cách
Thay đổi các số liệu đã cho
Thay đổi các đối tượng trong đề
toán
Thay đổi các quan hệ trong đề
toán
Tăng số đối tượng trong đề toán
Thay đổi câu hỏi của bài toán
bằng một câu hơi khó hơn
Số học sinh
đặt đề thành
thạo
SL
%
2
14,3
Số học
sinh biết
đặt đề
SL
%
3
21,4
Số học sinh
chưa đặt
được đề
SL
%
9
64,3
2
14,3
3
21,4
9
64,3
2
14,3
3
21,4
9
64,3
1
7,1
2
14,3
11
78,6
1
7,1
2
14,3
11
78,6
3
Đặt ra các bài toán ngược với bài
toán vừa giải
1
7,1
2
14,3
11
78,6
B. GIẢI QUYẾT VẤN ĐỀ.
I. CÁC GIẢI PHÁP THỰC HIỆN.
- Công tác nghiên cứu, tham khảo các tài liệu của giáo viên.
- Công tác tiến hành điều tra khảo sát, phân loại đối tượng học sinh.
- Tổ chức trao đổi, thảo luận với tổ chuyên môn, đồng nghiệp.
- Thực hiện đổi mới phương pháp dạy học theo chuẩn KTKN, dạy học sát
đối tượng để giúp học sinh: Biết tự lập đề toán là một biện pháp rất tốt để
nắm vững cách giải các bài toán cùng loại. Nhờ đó học sinh sẽ nắm vững hơn
mối quan hệ giữa các đại lượng và những quan hệ bản chất trong mỗi loại bài
toán. Chính vì vậy mà học sinh hiểu bài toán sâu sắc hơn rất nhiều.
- Hướng dẫn học sinh biết tự lập đề toán một biện pháp rất tốt để nắm
vững cách giải các bài toán cùng loại. Nhờ đó học sinh sẽ nắm vững hơn mối
quan hệ giữa các đại lượng và những quan hệ bản chất trong mỗi loại bài
toán. Chính vì vậy mà học sinh hiểu bài toán sâu sắc hơn rất nhiều. Trong
năm học qua, mỗi khi dạy học xong một dạng toán mới, tôi thường giao bài
tập cho học sinh tự ra các đề toán khác tương tự với bài toán vừa giải bằng
cách:
1. Thay đổi các số liệu đã cho trong đề toán.
2. Thay đổi các đối tượng trong đề toán.
3. Thay đổi các quan hệ trong đề toán .
4. Tăng số đối tượng trong đề toán.
5.Thay đổi câu hỏi của bài toán bằng một câu hỏi khó hơn.
6. Đặt các bài toán ngược với bài toán giải.
II. CÁC BIỆN PHÁP ĐỂ TỔ CHỨC THỰC HIỆN.
1. Thay đổi các số liệu đã cho trong đề toán.
4
Cách đặt đề toán dạng này có vai trò to lớn trong việc rèn luyện kỹ
năng, củng cố và khắc sâu kiến thức cho học sinh, giúp các em có khả năng
giải thành các thạo các dạng toán đã được học.
a. Các bước tiến hành:
Bước 1: Xác định các số liệu cơ bản của bài toán. (Giáo viên có thể cho
học sinh xác định các số liệu liên quan đến đề toán bằng cách gạch dưới các
số liệu đó).
Bước 2: Đưa số liệu mới vào thay số liệu cũ ban đầu.
Bước 3: Kiểm tra tính hợp lý và chính xác của số liệu mới thay.
b. Ví dụ:
"Một hộp bóng có
1
1
số bóng màu đỏ,
số bóng màu xanh còn lại là
2
3
bóng màu vàng. Tìm phân số chỉ số bóng màu vàng”
( Bài 3 trang 10; SGK Toán 5)
Trong bài toán này, học sinh thấy hai số liệu quan trọng là
Bây giờ các em thay (Chẳng hạn) hai phân số
mới là
1
1
và
2
3
1
1
và bằng hai phân số
2
3
2
1
và thì sẽ có đề toán:
3
5
"Một hộp bóng có
2
1
số bóng màu đỏ,
số bóng màu xanh còn lại là
3
5
bóng màu vàng. Tìm phân số chỉ số bóng màu vàng”.
Vậy là ta đã được bài toán mới.
Song, khi thay đổi các số liệu trong đề toán, học sinh thường dễ mắc sai
lầm ở chỗ: Không chú ý đến tính hợp lý của bài toán mà chỉ cốt làm sao bài
đặt ra và giải được bài toán. Cho nên, giáo viên cần gợi ý, nhắc nhở các em:
Trong khi thay đổi số liệu, không phải muốn thay đổi số liệu thế nào cũng
được. Chẳng hạn, xét 2 phân số trên ta thấy tổng của 2 phân số đó phải bé
hơn 1 vậy nên chỉ có thể thay các phân số
1
1
và trong đề toán ban đầu bằng
2
3
5
các phân số sao cho tổng của chúng bé hơn 1. Nếu khi ta thay bằng những
phân số mà tổng của chúng lớn hơn 1 thì bài toán sẽ vô lý ở chỗ: Tổng của số
bóng màu đỏ và số bóng màu xanh đã nhiều hơn toàn bộ số bóng có trong
hộp.
Điều mấu chốt ở đây là khi học sinh thay đổi các số liệu trong đề toán,
người giáo viên phải luôn lưu ý các em cần phải xem xét đến tính hợp lý các
dữ kiện trong bài toán để chúng không bị mâu thuẫn và đảm bảo tính hợp lý
và lô gích của chúng.
2. Thay đổi các đối tượng trong đề toán:
Việc thay đổi các đối tượng trong đề toán có phần nâng cao hơn và khó
hơn xong nó là một cách rất tốt giúp học sinh phát triển tư duy, óc sáng tạo
trong quá trình học toán và cách xác định dạng toán để giúp các em biết cách
đưa về các dạng toán cơ bản trong các bài toán khó sau này.
a. Các bước tiến hành.
Bước 1: Xác định các đối tượng ban đầu của đề toán.
Bước 2: Tìm các đối tượng mới cho đề toán.
Bước 3: Thay đối tượng cũ bằng đối tượng mới - Thay số liệu cũ bằng
số liệu mới (Nếu các đối tượng mới không phù hợp với số liệu cũ).
Bước 4: Kiểm tra sự chính xác, tính hợp lý các số liệu, đối tượng vừa
thay trong đề toán.
b. Ví dụ:
"Quãng đường AB dài 180 km. Một ô tô đi từ A đến B với vận tốc 54
km/ giờ, cùng lúc đó một xe máy đi từ B đến A với vận tốc 36 km/ giờ. Hỏi
kể tờ lúc bắt đầu đi sau mấy giờ ô tô gặp xe máy? (Bài 1a, trang 144 SGK
Toán 5).
Ở bài toán này, nếu học sinh đổi 2 đối tượng “ô tô" thành "xe đạp" "xe
máy" thành “Người đi bộ" thì sẽ có bài toán:
"Quãng đường AB dài 180 km. Một người đi xe đạp từ A đến B với vận tốc
54 km/ giờ, cùng lúc đó một người đi bộ từ B đến A với vận tốc 36 km/giờ.
6
Hỏi kể tờ lúc bắt đầu đi sau mấy giờ hai người gặp nhau ?
Tuy nhiên, xét các dữ kiện đề toán trên ta thấy chưa ổn vì:
+ Vận tốc của người đi xe đạp và đi bộ như vậy là quá nhanh.
Vì thế, giáo viên cần cho học sinh thay đổi cả số liệu đề toán cho hợp lý:
"Quãng đường AB dài 18 km. Một người đi xe đạp từ A đến B với vận
tốc 6km/giờ, cùng lúc đó một người đi bộ từ B đến A với vận tốc 3km/ giờ.
Hỏi kể từ lúc bắt đầu đi sau mấy giờ hai người gặp nhau ?”
Như vậy, bài toán mới đã được hoàn chỉnh.
Ta cũng có thể đổi “Quãng đường AB” thành một quãng đường nối hai
địa danh nào đó cụ thể mà các em biết để tạo ra một bài toán mới. Chẳng hạn:
"Xe máy và ô tô đi ngược chiều nhau cùng khởi hành một lúc từ Thành
phố Hà Nội và Thanh Hoá cách nhau 180 km. Vận tốc của xe máy đi từ Hà
Nội là 36 km/giờ, của ô tô đi từ Thanh Hoá là 54km/giờ. Hỏi sau mấy giờ thì
hai xe gặp nhau?".
* Bây giờ nếu đổi:
- Xe máy thành chiếc thuyền máy.
- Ô tô thành chiếu tàu đánh cá.
- "Đi ngược chiều gặp nhau" "thành tình huống" "chạy ngược chiều nhau'',
đồng thời sửa các số liệu một chút cho phù hợp với thực tế, ta có đề toán sau:
"Một chiếc tàu và một chiếc thuyền máy đi ngược chiều nhau cùng khởi
hành một lúc cách nhau 200 km. Vận tốc tàu chạy là 14 km/giờ, thuyền chạy
với vận tốc 11 km/giờ. Hỏi sau thời gian bao lâu thì chúng gặp nhau?”
Bài toán mới đặt đề như vậy là xong.
Với dạng toán tương đồng này thì giáo viên cần lưu ý các em, khi thay
đổi các đối tượng của đề toán, cũng phải chú ý đến số liệu trong bài làm sao
cho phù hợp và đảm bảo tính khoa học, lô gich.
3. Thay đổi các quan hệ trong đề toán:
Đây là dạng thay đổi ở mức độ khó hơn dành cho đối tượng học sinh
khá giỏi nên khi giáo viên cho các em đặt đề bài toán theo cách này nhằm
7
mục đích; giúp học sinh có dịp củng cố về tính chất của các phép tính, về
quan hệ giữa các đại lượng, mối tương quan của các dữ kiện trong bài toán.
Từ đó, các em sẽ nắm vững hơn cấu trúc của bài toán, dạng toán giúp các em
giải được nhiều dạng toán có mức độ khó hơn.
a. Các bước tiến hành:
Bước 1: Tìm quan hệ mấu chốt trong bài toán đã cho.
Bước 2: Thay quan hệ khác ngược lại với quan hệ cũ.
Bước 3: Kiểm tra mức độ chính xác, hợp lý của bài toán mới.
b. Ví dụ: Tôi đưa ra đề toán:
"Lớp 5A và lớp 5B nhận chăm sóc một vườn cây cố tổng cộng 50 cây.
Nếu chuyển
1
số cây của lớp 5A sang để lớp 5B chăm sóc thì số cây chăm
6
sóc của cả 2 lớp 5A và 5B sẽ bằng nhau. Hỏi lúc đầu mỗi lớp nhận chăm sóc
bao nhiêu cây?".
Trong bài toán trên có một số quan hệ toán học chính như sau:
+ Tổng số cây mà lớp 5A và 5B chăm sóc là 50 cây. (1)
+ Chuyển
1
số cây mà lớp 5A chăm sóc sang lớp 5B thì di số cây 2 lớp
6
chăm sóc bằng nhau (2).
Thay đổi các quan hệ toán học trên ta sẽ có bài toán mới:
Chằng hạn:
* Nếu thay 'quan hệ tổng" bằng " quan hệ hiệu" ở (1) và giữ nguyên (2)
ta có bài toán:
"Lớp 5A và lớp 5B nhận chăm sóc một vườn cây có hiệu số cây là 50
cây. Nếu chuyển
1
số cây của lớp 5A sang để lớp 5B chăm sóc thì số cây
6
chăm sóc của cả 2 lớp 5A và 5B sẽ bằng nhau. Hỏi lúc đầu mỗi lớp nhận
chăm sóc bao nhiêu cây?".
* Nếu thay từ "chuyển' bằng từ "thêm" và thay "của lớp 5A" bằng “của
cả 2 lớp" thì ta có:
8
"Lớp 5A và lớp 5B nhận chăm sóc một vườn cây cố tổng cộng 50 cây.
Nếu chuyển
1
số cây của cả hai lớp sang để lớp 5B chăm sóc thì số cây chăm
6
sóc của cả 2 lớp 5A và 5B sẽ bằng nhau. Hỏi lúc đầu mỗi lớp nhận chăm sóc
bao nhiêu cây?".
- Đối với cách đặt đề toán này, tôi khắc sâu cho học sinh hiểu rằng: việc
thay đổi các quan hệ trong đề toán ở đây chính là thay: Tổng Hiệu; tăng
giảm, thêm bớt...
4. Tăng số đối tượng trong đề toán:
Dạng toán này cũng là một trong các dạng toán khó dành cho việc dạy
phân loại đối tượng học sinh theo chuẩn KTKN, Việc tăng số đối tượng trong
đề toán là một biện pháp rất tốt để học sinh giải các bài toán cùng loại với
yêu cầu được nâng lên cao hơn cho học sinh khá giỏi. Nhằm phát triển tư duy
của các em trong quá trình học toán tránh nhàm chán so với đối tượng học
sinh đại trà và để bồi dưỡng các em thành học sinh khá, giỏi.
a. Các bước tiến hành:
Bước 1: Xác định đối tượng ban đầu của đề bài.
Bước 2: Thêm vào đề bài các đối tượng mới tương đương với số đối
tượng đã cho.
Bước 3: Thêm số liệu vào các đối tượng mới cho phù hợp.
Bước 4: Kiểm tra độ chính xác của mức độ, dữ kiện, số liệu mới.
b. Ví dụ:
Cuối năm 2000 số dân của một phường là 15.625 người. Cuối năm
2001 số dân của phường đó là: 15.875 người.
a. Hỏi từ cuối năm 2000 đến năm 2001 số dân của phường đó tăng thêm
bao nhiêu phầm trăm?.
b. Nếu từ cuối năm 2001 đến cuối năm 2002 số dân của Phường đó cũng tăng
thêm bấy nhiêu phầm trăm thì đến cuối năm 2002 số dân của Phường đó là
bao nhiêu người? (Bài 3 tr 79 SGK Toán 5).
9
Bài toán nêu trên các đối tượng ban đầu là: "từ cuối năm 2000 đến năm
2001". Đối tượng thứ 2 là: "từ cuối năm 2001 đến cuối năm 2002" Nếu học
sinh đưa vào một đối tượng nữa là "Từ cuối năm 2002 đến cuối năm 2003” ..
thì bài toán trở thành:
Cuối năm 2000 số dân của một phường là 15.625 người. Cuối năm
2001 số dân của phường đó là: 15.875 người.
a. Hỏi từ cuối năm 2000 đến năm 2001 số dân của phường đó tăng thêm
bao nhiêu phầm trăm?.
b. Nếu từ cuối năm 2001 đến cuối năm 2002 số dân của Phường đó
cũng tăng thêm bấy nhiêu phầm trăm thì đến cuối năm 2002 số dân của
Phường đó là bao nhiêu người?
c. Nếu cuối năm 2002 đến cuối năm 2003 mà số dân của Phường đó
vẫn tăng như vậy thì đến cuối năm 2003 số dân của Phường đó là bao nhiêu
người?
* Hoặc: Nếu thêm vào đối tượng nữa là: "Từ cuối năm 2000 đến cuối
năm 2003" thì nội dung bài toán sẽ là:
Cuối năm 2000 số dân của một phường là 15.625 người. Cuối năm
2001 số dân của phường đó là: 15.875 người.
a. Hỏi từ cuối năm 2000 đến năm 2001 số dân của phường đó tăng thêm
bao nhiêu phầm trăm?.
b. Nếu từ cuối năm 2001 đến cuối năm 2002 số dân của Phường đó
cũng tăng thêm bấy nhiêu phầm trăm thì đến cuối năm 2002 số dân của
Phường đó là bao nhiêu người?
c. Nếu cuối năm 2002 đến cuối năm 2003 mà số dân của Phường đó
vẫn tăng như vậy thì đến cuối năm 2003 số dân của Phường đó là bao nhiêu
người?
d. Từ cuối năm 2000 đến cuối năm 2003 số dân của Phường đó tăng
bao nhiêu người?
10
5. Thay đổi câu hỏi của bài toán bằng một câu hỏi khó hơn. (chỉ
dành riêng cho đối tượng học sinh khá giỏi)
Đặt đề bằng cách thay đổi câu hỏi của bài toán bằng một câu hỏi khó
hơn chính là tạo khả năng suy nghĩ linh hoạt cho học sinh đồng thời nhằm
tăng cường Tiếng việt cho học sinh vùng dân tộc. Giúp học sinh có dịp tiếp
xúc và thử sức với những yêu cầu cao hơn, và có dịp suy nghĩ đến những khía
cạnh khác nhau của bài toán.
a. Các bước tiến hành:
Bước 1: Giải bài toán ban đầu:
Bước 2: Thay câu hỏi của bài toán ban đầu bằng câu hỏi khó hơn.
Bước 3: Tìm cách giải cho bài toán mới bằng cách đưa về dạng toán đã học.
Bước 4: Kiểm tra mức độ chính xác của câu hỏi, dữ kiện mới.
b. Ví dụ: Tuổi của con gái bằng
1
1
tuổi mẹ, tuổi của con trai bằng
4
5
tuổi mẹ. Tuổi của con gái cộng với tuổi của con trai là 18 tuổi. Hỏi mẹ bao
nhiêu tuổi? ( Bài 1 trang 180 SGK Toán 5)
* Nếu ra thay câu hỏi của bài toàn bằng câu hỏi: “Biết năm nay là năm 2011,
hãy tính năm sinh của mẹ và năm sinh của con” thì sẽ được bài toán:
“Tuổi của con gái bằng
1
1
tuổi mẹ, tuổi của con trai bằng
tuổi mẹ.
4
5
Tuổi của con gái cộng với tuổi của con trai là 18 tuổi. Biết năm nay là năm
2011, hãy tính năm sinh của mẹ?
Bài toán này khó hơn bài toán lúc đầu một chút, vì muốn giải được nó,
trước hết học sinh phải tính được tuổi của mẹ hiện nay (mẹ: 40 tuổi) sau đó
mới lấy 2011 trừ đi 40 thì mới ra đáp số.
* Tuy nhiên nếu thay câu hỏi của bài toán bằng câu hỏi sau:
“Tính xem sau đây bao nhiêu năm thì tuổi mẹ bằng tổng số tuổi của hai
con” thì sẽ được bài toán khó hơn lúc đầu khá nhiều.
11
“Tuổi của con gái bằng
1
1
tuổi mẹ, tuổi của con trai bằng
tuổi mẹ.
4
5
Tuổi của con gái cộng với tuổi của con trai là 18 tuổi. Tính xem sau đây bao
nhiêu năm thì tuổi mẹ bằng tổng số tuổi của hai con?”
Để giải được bài toán này, trước hết học sinh phải tính được tuổi mẹ và tuổi
của các con hiện nay theo dạng “Tìm hai số biết hiệu và tỷ số”
Tuổi mẹ: 40.
Tuổi con gái: 10.
Tuổi con trai: 8.
Tiếp theo là giải bài toán để tìm ra đáp số mới của bài toán là: “22 năm sau”.
* Muốn thay câu hỏi cũ bằng câu hỏi mới khó khăn thì trước tiên học
sinh phải xác định được mục đích của câu hỏi ban đầu để đi tới giải đúng. Từ
câu hỏi cũ ban đầu đó mà nâng lên câu hỏi khác khó hơn. Sau khi học sinh
đặt được các đề toán mới, các em cần suy nghĩ để tìm cách giải. Luyện tập
được thói quan tốt về phương diện này, các em có điều kiện để trở thành
những học sinh giỏi ở các môn học khác.
6. Tự đặt bài toán ngược với bài toán đã giải:
Học sinh biết tự đặt các bài toán ngược với bài toán đã giải sẽ giúp em
rèn luyện trí thông minh, óc sáng tạo và cách suy luận đúng đắn, hợp lý.
a. Các bước tiến hành:
Bước 1: Xác định những dữ kiện đã cho biết của bài toán.
Bước 2: Thay một trong những điều đã cho đó bằng đáp số của bài toán
Bước 3: Đặt câu hỏi vào những điều đã cho thì được một bài toán ngược.
Bước 4: Kiểm tra tính chính xác của dữ kiện vừa thay thế.
b. Ví dụ:
“Một gia đình công nhân sử dụng tiền lương hành tháng như sau;
tiền lương để chi cho tiền ăn của gia đình và tiền học của các con,
3
số
5
1
số tiền
4
12
lương để trả tiền thuê nhà và tiền chi tiêu các việc khác, còn lại là tiền để
dành.
a) Hỏi mỗi tháng gia đình đó để dành được bao nhiêu phần trăm số tiền
lương?
b) Nếu số tiền lương là 4.000.000 đồng một tháng thì gia đình đó để
được bao nhiêu tiền mỗi tháng? (Bài 3, trang 161- SGK toán 5)Những điều đã
cho là:
3
1
số tiền lương để chi cho tiền ăn của gia đình và tiền học của các con (1)
5
4
số tiền lương để trả tiền thuê nhà và tiền chi tiêu các việc khác (2)
- Số tiền lương một tháng là 4.000.000 đồng. (3)
Các đáp số là:
+ Mỗi tháng để dành được 15% số tiền lương (4)
+ Mỗi tháng để dành được 600.000 đồng (5)
* Nếu đổi chỗ (3) cho (5)
Bài toán ngược thứ nhất:
“Một gia đình công nhân sử dụng tiền lương hành tháng như sau;
tiền lương để chi cho tiền ăn của gia đình và tiền học của các con,
3
số
5
1
số tiền
4
lương để trả tiền thuê nhà và tiền chi tiêu các việc khác, còn lại là tiền để
dành.
a) Hỏi mỗi tháng gia đình đó để dành được bao nhiêu phần trăm số tiền
lương?
b) Nếu số tiền lương để dành được là 600.000 đồng một tháng thì tiền
lương mỗi tháng của gia đình đó là bao nhiêu?
*. Nếu đổi chỗ (3) cho (1) ta có:
Bài toán ngược thứ 2:
“Một gia đình công nhân sử dụng tiền lương hành tháng như sau:
1
số tiền
4
13
lương để trả tiền thuê nhà và tiền chi tiêu các việc khác, 15 phần trăm số tiền
lương là tiền để dành, số tiền lương còn lại để chi cho tiền ăn của gia đình và
tiền học của các con.
a) Hỏi mỗi tháng gia đình đó dùng bao nhiêu phần trăm số tiền lương
để chi cho tiền ăn của gia đình và tiền học của các con?
b) Nếu số tiền lương là 4.000.000 đồng một tháng thì số tiền để chi cho
tiền ăn của gia đình và tiền học của các là bao nhiêu tiền mỗi tháng?
* Nếu đổi chỗ (3) cho (2) ta có:
Bài toán ngược thứ 3:
“Một gia đình công nhân sử dụng tiền lương hành tháng như sau;
3
số
5
tiền lương để chi cho tiền ăn của gia đình và tiền học của các con, 15 phần
trăm số tiền lương là tiền để dành, số còn lại để trả tiền thuê nhà và tiền chi
tiêu các việc khác.
a) Hỏi mỗi tháng gia đình đó trả tiền thuê nhà và tiền chi tiêu các việc
khác hết bao nhiêu phần trăm số tiền lương?
b) Nếu số tiền lương là 4.000.000 đồng một tháng thì gia đình đó trả
tiền thuê nhà và tiền chi tiêu các việc khác hết bao nhiêu tiền mỗi tháng?
Như vậy từ một bài toán trong SGK ta đã có thêm 3 bài toán mới bằng
cách đặt đề ngược với bài toán ban đầu. Song không phải cách giải bài toán
này hoàn toàn giống nhau. Mà, mỗi bài được đảo ngược ấy khi các em làm sẽ
phát hiện ra được những vấn đề mới. Cách đặt đề này nói ngắn gọn rằng nó
tương tự những dạng “Toán chuyển động đều” ở lớp 5, từ quy tắc “Muốn tính
quãng đường ta lấy vận tốc nhân với thời gian”
S=vxt
Đảo ngược lại có có câu hỏi sau:
“Nếu biết thời gian và quãng đường ta có tính được vận tốc không? Ta
lấy quãng đường chia cho thời gian”
V=S:t
14
Nếu biết vận tốc và quãng đường ta có tính được thời gian không? ta
lấy quãng đường chia cho vận tốc”
t=S:V
- Bằng những câu hỏi đảo ngược học sinh tự khám phá ra cách làm để
tìm được hai dạng toán mới dưới dạng tổng quát là:
V=S:t
t=S:V
Qua các vị dụ trên ta thấy: Dạy toán theo quan điểm “động” như vậy sẽ
là cách rất tốt giúp cho học sinh “Học một biết mười” mà mỗi giáo viên
chúng ta đều hướng tới.
C: KẾT LUẬN.
I. KẾT QUẢ NGHIÊN CỨU:
Năm học 2010 - 2011 qua quá trình áp dụng kinh nghiệm “Một số biện
pháp giúp học sinh lớp 5 tự đặt được đề toán” tại lớp 5A- Trường Tiểu học
Ngọc Khê 1 với tổng số học sinh 14 em, tôi thấy: Từ chỗ các em còn lúng
túng chưa đặt được đề toán mới thì đến nay, gần hết một năm học, học sinh
lớp tôi phần lớn dã tự đặt được đề toán. Những bài toán mà học sinh tự đặt đã
giúp các em củng cố được những kiến thức cơ bản ở SGK. Đồng thời đã phát
huy được sự thông minh, sáng tạo và năng lực học tập của các em.
Kết quả thu được như sau:
Đặt đề toán bằng cách
Thay đổi các số liệu đã cho
Thay đổi các đối tượng trong đề
toán
Thay đổi các quan hệ trong đề toán
Tăng số đối tượng trong đề toán
Thay đổi câu hỏi của bài toán bằng
một số câu hỏi khó hơn
Đặt các bài toán ngược với bài
Số học sinh
đặt đề thành
thạo
SL
%
10
71,5
Số học sinh
Số học sinh
chưa đặt được
biết đặt đề
để
SL
%
SL
%
4
28,5
0
0%
8
57,2
5
35,7
1
7,1
7
7
50,0
50,0
4
4
28,6
28,6
3
3
21,4
21,4
6
42,8
4
28,6
4
28,6
6
42,8
4
28,6
4
28,6
15
toán vừa giải
II. KIẾN NGHỊ - ĐỀ XUẤT
Từ thực tế giảng dạy , tôi có một số kiến nghị, đề xuất sau:
- Sau mỗi dạng toán mới, giáo viên nên giao bài tập cho học sinh để các
em làm bằng cách đặt các đề tương tự và giải. Để các em quen dần với việc tự
đặt ra đề toán, nhằm giúp trí tuệ các em được vận động mở mang hơn.
- Để việc dạy môn toán đảm bảo tính khoa học, tính chính xác và phát
huy được tính chủ động, sáng tạo của học sinh, giáo viên cần tự học tự bồi
dưỡng, nâng cao nghiệm vụ chuyên môn để có những phương pháp dạy học
phù hợp nhất, học sinh dễ dàng nhận thức nhất.
- Các cấp ngành giáo dục cần thường xuyên mở các hôị thảo về đổi mới
phương pháp dạy học để giáo viên có điều kiện giao lưu, học hỏi lẫn nhau.
- Cần nâng cao dần yêu cầu về tổ chức một số cuộc thi đối với giáo
viên cũng như học sinh để bắt buộc giáo viên phải có sự đầu tư, tìm tòi hơn
nữa đối với công tác dạy và học.
Do khôn khổ của SKKN và thời gian còn hạn chế, điều kiện nghiên cứu
và trình độ của bản thân có hạn, chắc chắn sáng kiến kinh nghiệm này còn có
những thiếu sót, tôi rất mong sự đóng góp ý kiến và giúp đỡ của các đồng
nghiệp để sáng kiến kinh nghiệm này có chất lượng và hoàn chỉnh hơn./.
Tôi xin chân thành cảm ơn!
Ngọc Khê, ngày 20 tháng 5 năm 2011
Người viết
Lê Thị Huyền
16