Tải bản đầy đủ (.doc) (8 trang)

Toán Hàm Số don dieu

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (134.39 KB, 8 trang )

hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học
môn toán

Trần Sĩ Tùng

Khảo sát hàm số
KSHS 01: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ

A. Kiến thức cơ bản
Giả sử hàm số y = f (x) có tập xác định D.
• Hàm số f đồng biến trên D ⇔ y′ ≥ 0,∀x∈ D và y′ = 0 chỉ xảy ra tại một số hữu hạn điểm
thuộc D.
• Hàm số f nghịch biến trên D ⇔ y′ ≤ 0,∀x∈ D và y′ = 0 chỉ xảy ra tại một số hữu hạn điểm
thuộc D.
• Nếu y' = ax2 + bx + c (a ≠ 0) thì:

∆ ≤ 0

a> 0
+ y' ≥ 0,∀x∈ R ⇔ 


∆ ≤ 0

a< 0
+ y' ≤ 0,∀x∈ R ⇔ 

• Định lí về dấu của tam thức bậc hai g(x) = ax2 + bx + c (a ≠ 0) :
+ Nếu ∆ < 0 thì g(x) luôn cùng dấu với a.
b
+ Nếu ∆ = 0 thì g(x) luôn cùng dấu với a (trừ x = − )


2a

+ Nếu ∆ > 0 thì g(x) có hai nghiệm x1, x2 và trong khoảng hai nghiệm thì g(x) khác dấu
với a, ngoài khoảng hai nghiệm thì g(x) cùng dấu với a.
• So sánh các nghiệm x1, x2 của tam thức bậc hai g(x) = ax2 + bx + c với số 0:
∆ ≥ 0
∆ ≥ 0


x

x
<
0

P
>
0
0
<
x

x

+ 1 2
+

 P > 0 + x1 < 0 < x2 ⇔ P < 0
1
2

S < 0
S > 0
g(x) ≤ m;
• g(x) ≤ m,∀x∈ (a; b) ⇔ max
(a;b)

g(x) ≥ m,∀x∈ (a; b) ⇔ ming(x) ≥ m
(a;b)

B. Một số dạng câu hỏi thường gặp
1. Tìm điều kiện để hàm số y = f (x) đơn điệu trên tập xác định (hoặc trên từng khoảng
xác định).
• Hàm số f đồng biến trên D ⇔ y′ ≥ 0,∀x∈ D và y′ = 0 chỉ xảy ra tại một số hữu hạn điểm
thuộc D.
• Hàm số f nghịch biến trên D ⇔ y′ ≤ 0,∀x∈ D và y′ = 0 chỉ xảy ra tại một số hữu hạn điểm
thuộc D.
• Nếu y' = ax2 + bx + c (a ≠ 0) thì:

∆ ≤ 0

a> 0
+ y' ≥ 0,∀x∈ R ⇔ 


∆ ≤ 0

a< 0
+ y' ≤ 0,∀x∈ R ⇔ 

2. Tìm điều kiện để hàm số y = f (x) = ax3 + bx2 + cx + d đơn điệu trên khoảng (a ; b ) .

Ta có: y′ = f ′(x) = 3ax2 + 2bx + c .
a) Hàm số f đồng biến trên (a ; b ) ⇔ y′ ≥ 0,∀x∈ (a ; b ) và y′ = 0 chỉ xảy ra tại một số hữu
hạn điểm thuộc (a ; b ) .
Trường hợp 1:
• Nếu bất phương trình f ′(x) ≥ 0 ⇔ h(m) ≥ g(x)
(*)
g(x)
thì f đồng biến trên (a ; b ) ⇔h(m) ≥ (max
a ;b )

• Nếu bất phương trình f ′(x) ≥ 0 ⇔ h(m) ≤ g(x)
Trang 1

(**)


Khảo sát hàm số

Trần Sĩ Tùng

g(x)
thì f đồng biến trên (a ; b ) ⇔h(m) ≤ (min
a ;b )

Trường hợp 2: Nếu bất phương trình f ′(x) ≥ 0 không đưa được về dạng (*) thì đặt t = x −a .
Khi đó ta có: y′ = g(t) = 3at2 + 2(3aα + b)t + 3aα 2 + 2bα + c .
a > 0
∆ > 0
a > 0
∨ 

– Hàm số f đồng biến trên khoảng (−∞; a) ⇔g(t) ≥ 0,∀t < 0 ⇔
∆ ≤ 0
S > 0
 P ≥ 0
a > 0
 ∆ > 0
a > 0
∨ 
– Hàm số f đồng biến trên khoảng (a; +∞) ⇔g(t) ≥ 0,∀t > 0 ⇔
∆ ≤ 0
S < 0
 P ≥ 0

b) Hàm số f nghịch biến trên (a ; b ) ⇔ y′ ≥ 0,∀x∈ (a ; b ) và y′ = 0 chỉ xảy ra tại một số hữu
hạn điểm thuộc (a ; b ) .
Trường hợp 1:
• Nếu bất phương trình f ′(x) ≤ 0 ⇔ h(m) ≥ g(x)
(*)
g(x)
thì f nghịch biến trên (a ; b ) ⇔h(m) ≥ (max
a ;b )

• Nếu bất phương trình f ′(x) ≥ 0 ⇔ h(m) ≤ g(x)

(**)

g(x)
thì f nghịch biến trên (a ; b ) ⇔h(m) ≤ (min
a ;b )


Trường hợp 2: Nếu bất phương trình f ′(x) ≤ 0 không đưa được về dạng (*) thì đặt t = x −a .
Khi đó ta có: y′ = g(t) = 3at2 + 2(3aα + b)t + 3aα 2 + 2bα + c .
a < 0
∆ > 0
a < 0
∨ 
– Hàm số f nghịch biến trên khoảng (−∞; a) ⇔g(t) ≤ 0,∀t < 0 ⇔
∆ ≤ 0
S > 0
 P ≥ 0
a < 0
∆ > 0
a < 0
∨ 
– Hàm số f nghịch biến trên khoảng (a; +∞) ⇔g(t) ≤ 0,∀t > 0 ⇔
∆ ≤ 0
S < 0
 P ≥ 0

3. Tìm điều kiện để hàm số y = f (x) = ax3 + bx2 + cx + d đơn điệu trên khoảng có độ dài
bằng k cho trước.

∆ > 0

a≠ 0
• f đơn điệu trên khoảng (x1; x2) ⇔y′ = 0 có 2 nghiệm phân biệt x1, x2 ⇔
(1)

• Biến đổi x1 − x2 = d thành (x1 + x2)2 − 4x1x2 = d2
• Sử dụng định lí Viet đưa (2) thành phương trình theo m.

• Giải phương trình, so với điều kiện (1) để chọn nghiệm.
2
4. Tìm điều kiện để hàm số y = ax + bx + c (2), (a,d ≠ 0)

dx + e

a) Đồng biến trên (−∞;α ) .
b) Đồng biến trên (α ; +∞) .
c) Đồng biến trên (α ; β ) .
Trang 2

(2)


hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học
môn toán

Trần Sĩ Tùng

Khảo sát hàm số

2
 −e y' = adx + 2aex + be− dc = f (x)
Tập xác định: D = R \   ,
2
2
d
( dx + e)
( dx + e)


Trường hợp 1

Nếu: f (x) ≥ 0 ⇔ g(x) ≥ h(m) (i)

a) (2) đồng biến trên khoảng (−∞;α )

Trường hợp 2

Nếu bpt: f (x) ≥ 0 không đưa được về dạng (i)
thì ta đặt: t = x − α .
Khi đó bpt: f (x) ≥ 0 trở thành: g(t) ≥ 0 , với:
g(t) = adt2 + 2a(dα + e)t + adα 2 + 2aeα + be− dc
a) (2) đồng biến trên khoảng (−∞;α )

 −e

⇔  d ≥α
 g(x) ≥ h(m),∀x < α
 −e
 ≥α
⇔d
h(m) ≤ min g(x)
(−∞;α ]


b) (2) đồng biến trên khoảng (α ; +∞)

 −e

⇔  d ≥α

 g(t) ≥ 0,∀t < 0 (ii )
a > 0
∆ > 0
a > 0
(ii ) ⇔ 
∨ 
∆ ≤ 0 S > 0
 P ≥ 0

b) (2) đồng biến trên khoảng (α ; +∞)

 −e

⇔  d ≤α
 g(x) ≥ h(m),∀x > α
 −e
 ≤α
⇔d
h(m) ≤ min g(x)
[α ;+∞ )


 −e

⇔  d ≤α
 g(t) ≥ 0,∀t > 0 (iii )
a > 0
∆ > 0
a > 0
(iii ) ⇔ 

∨ 
∆ ≤ 0 S < 0
 P ≥ 0

c) (2) đồng biến trên khoảng (α ; β )
 −e

⇔  d ∉ ( α ;β )
 g(x) ≥ h(m),∀x∈ (α ; β )
 −e
 ∉ ( α ;β )
⇔d
h(m) ≤ min g(x)
[α ;β ]


2
5. Tìm điều kiện để hàm số y = ax + bx + c (2), (a,d ≠ 0)

dx + e

a) Nghịch biến trên (−∞;α ) .
b) Nghịch biến trên (α ; +∞) .
c) Nghịch biến trên (α ; β ) .
2
 −e y' = adx + 2aex + be− dc = f (x)
D
=
R
\

Tập xác định:
 ,
2
2
d
( dx + e)
( dx + e)

Trang 3


Khảo sát hàm số

Trường hợp 1
Nếu f (x) ≤ 0 ⇔ g(x) ≥ h(m) (i)

a) (2) nghịch biến trên khoảng (−∞;α )
 −e

⇔  d ≥α
 g(x) ≥ h(m),∀x < α
 −e
 ≥α
⇔d
h(m) ≤ min g(x)
(−∞;α ]


b) (2) nghịch biến trên khoảng (α ; +∞)
 −e


⇔  d ≤α
 g(x) ≥ h(m),∀x > α
 −e
 ≤α
⇔d
h(m) ≤ min g(x)
[α ;+∞ )


c) (2) đồng biến trong khoảng (α ; β )

Trần Sĩ Tùng

Trường hợp 2
Nếu bpt: f (x) ≥ 0 không đưa được về dạng (i)
thì ta đặt: t = x − α .
Khi đó bpt: f (x) ≤ 0 trở thành: g(t) ≤ 0 , với:
g(t) = adt2 + 2a(dα + e)t + adα 2 + 2aeα + be− dc
a) (2) đồng biến trên khoảng (−∞;α )
 −e

⇔  d ≥α
 g(t) ≤ 0,∀t < 0 (ii )
a < 0
∆ > 0
a < 0
(ii ) ⇔ 
∨ 
∆ ≤ 0 S > 0

 P ≥ 0

b) (2) đồng biến trên khoảng (α ; +∞)
 −e

⇔  d ≤α
 g(t) ≤ 0,∀t > 0 (iii )
a < 0
∆ > 0
a < 0
(iii ) ⇔ 
∨ 
∆ ≤ 0 S < 0
 P ≥ 0

 −e

⇔  d ∉ ( α ;β )
 g(x) ≥ h(m),∀x∈ (α ; β )
 −e
 ∉ ( α ;β )
⇔d
h(m) ≤ min g(x)
[α ;β ]


Trang 4


hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học

môn toán

Trần Sĩ Tùng
Câu 1.

Khảo sát hàm số
1
3

Cho hàm số y = (m− 1)x3 + mx2 + (3m− 2)x (1)

1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m= 2 .
2) Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên tập xác định của nó.
• Tập xác định: D = R. y′= (m− 1)x2 + 2mx + 3m− 2 .
(1) đồng biến trên R ⇔ y′≥ 0, ∀x ⇔ m≥ 2
Cho hàm số y = x3 + 3x2 − mx − 4 (1)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m= 0 .
2) Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên khoảng (−∞;0) .

Câu 2.

• Tập xác định: D = R. y′= 3x2 + 6x − m. y′ có ∆′ = 3(m+ 3) .
+ Nếu m≤ −3 thì ∆′ ≤ 0 ⇒y′ ≥ 0,∀x ⇒hàm số đồng biến trên R ⇒m≤ −3 thoả YCBT.
+ Nếu m> −3 thì ∆′ > 0 ⇒PT y′ = 0 có 2 nghiệm phân biệt x1, x2 (x1 < x2) . Khi đó hàm số
đồng biến trên các khoảng (−∞; x1),(x2; +∞) .
 ∆′ > 0


 m> −3



 S > 0

 −2 > 0

Do đó hàm số đồng biến trên khoảng (−∞;0) ⇔0≤ x1 < x2 ⇔ P ≥ 0 ⇔ −m≥ 0 (VN)
Vậy: m≤ −3.

Cho hàm số y = 2x3 − 3(2m+ 1)x2 + 6m(m+ 1)x + 1 có đồ thị (Cm).
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0.
2) Tìm m để hàm số đồng biến trên khoảng (2; +∞)

Câu 3.

• Tập xác định: D = R. y' = 6x2 − 6(2m+ 1)x + 6m(m+ 1) có ∆ = (2m+ 1)2 − 4(m2 + m) = 1> 0
x = m
y' = 0 ⇔ 
. Hàm số đồng biến trên các khoảng (−∞; m), (m+ 1; +∞)
 x = m+ 1
Do đó: hàm số đồng biến trên (2; +∞) ⇔ m+ 1≤ 2 ⇔ m≤ 1

Cho hàm số y = x3 + (1− 2m)x2 + (2 − m)x + m+ 2 .
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1.
2) Tìm m để hàm đồng biến trên khoảng K = (0; +∞) .

Câu 4.

• Hàm đồng biến trên (0; +∞) ⇔ y ′= 3x2 + 2(1− 2m)x + (2 − m) ≥ 0 với ∀x∈ (0; +∞)
⇔ f (x) =


Ta có: f ′(x) =

6(2x2 + x − 1)
2

(4x + 1)

3x2 + 2x + 2
≥ m với ∀x∈ (0; +∞)
4x + 1

= 0 ⇔ 2x2 + x − 1= 0 ⇔ x = −1; x =

1
2
 1

5

Lập BBT của hàm f (x) trên (0; +∞) , từ đó ta đi đến kết luận: f  ÷ ≥ m⇔ ≥ m.
4
 2
Câu hỏi tương tự:
1
a) y = (m+ 1)x3 − (2m− 1)x2 + 3(2m− 1)x + 1 (m≠ −1) , K = (−∞; −1) .
3
1
b) y = (m+ 1)x3 − (2m− 1)x2 + 3(2m− 1)x + 1 (m≠ −1) , K = (1; +∞) .
3
1

c) y = (m+ 1)x3 − (2m− 1)x2 + 3(2m− 1)x + 1 (m≠ −1) , K = (−1;1) .
3

Trang 5

ĐS: m≥

4
11

ĐS: m ≥ 0
ĐS: m≥

1
2


Khảo sát hàm số

Câu 5.

Trần Sĩ Tùng

1
Cho hàm số y = (m2 − 1)x3 + (m− 1)x2 − 2x + 1 (1) (m≠ ±1) .
3

1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 0.
2) Tìm m để hàm nghịch biến trên khoảng K = (−∞;2) .


• Tập xác định: D = R; y′ = (m2 − 1)x2 + 2(m− 1)x − 2 .
Đặt t = x– 2 ta được: y′ = g(t) = (m2 − 1)t2 + (4m2 + 2m− 6)t + 4m2 + 4m− 10
Hàm số (1) nghịch biến trong khoảng (−∞;2) ⇔ g(t) ≤ 0, ∀t < 0
a < 0

 m2 − 1< 0

TH1: 
⇔
 ∆ ≤ 0 3m2 − 2m− 1≤ 0
Vậy: Với

Câu 6.

 m2 − 1< 0
a < 0  2
∆ > 0 3m − 2m− 1> 0
TH2: 
⇔4m2 + 4m− 10 ≤ 0
 S > 0  −2m− 3
 P ≥ 0 
>0
 m+ 1

−1
≤ m< 1 thì hàm số (1) nghịch biến trong khoảng (−∞;2) .
3

1
Cho hàm số y = (m2 − 1)x3 + (m− 1)x2 − 2x + 1 (1) (m≠ ±1) .

3

1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 0.
2) Tìm m để hàm nghịch biến trên khoảng K = (2; +∞) .

• Tập xác định: D = R; y′ = (m2 − 1)x2 + 2(m− 1)x − 2 .
Đặt t = x– 2 ta được: y′ = g(t) = (m2 − 1)t2 + (4m2 + 2m− 6)t + 4m2 + 4m− 10
Hàm số (1) nghịch biến trong khoảng (2; +∞) ⇔ g(t) ≤ 0, ∀t > 0
 m2 − 1< 0
a < 0  2
∆ > 0 3m − 2m− 1> 0
 a < 0  m2 − 1< 0
TH1: 
⇔ 2
TH2: 
⇔4m2 + 4m− 10 ≤ 0
 ∆ ≤ 0 3m − 2m− 1≤ 0
 S < 0  −2m− 3
 P ≥ 0 
<0
 m+ 1
Vậy: Với −1< m< 1 thì hàm số (1) nghịch biến trong khoảng (2; +∞)

Cho hàm số y = x3 + 3x2 + mx + m (1), (m là tham số).
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 3.
2) Tìm m để hàm số (1) nghịch biến trên đoạn có độ dài bằng 1.
• Ta có y' = 3x2 + 6x + m có ∆′ = 9− 3m.

Câu 7.


+ Nếu m ≥ 3 thì y′ ≥ 0,∀x∈ R ⇒hàm số đồng biến trên R ⇒m ≥ 3 không thoả mãn.
+ Nếu m < 3 thì y′ = 0 có 2 nghiệm phân biệt x1, x2 (x1 < x2) . Hàm số nghịch biến trên đoạn
 x1; x2  với độ dài l = x1 − x2 . Ta có: x1 + x2 = −2; x1x2 = m.
3
9
YCBT ⇔l = 1 ⇔x1 − x2 = 1 ⇔(x1 + x2)2 − 4x1x2 = 1 ⇔m= .
4

Cho hàm số y = −2x3 + 3mx2 − 1 (1).
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.
2) Tìm các giá trị của m để hàm số (1) đồng biến trong khoảng (x1; x2) với x2 − x1 = 1.

Câu 8.

• y' = −6x2 + 6mx , y' = 0 ⇔ x = 0∨ x = m.
+ Nếu m = 0 ⇒ y′ ≤ 0,∀x∈ ¡ ⇒hàm số nghịch biến trên ¡ ⇒m = 0 không thoả YCBT.
Trang 6


hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học
môn toán

Trần Sĩ Tùng

Khảo sát hàm số

+ Nếu m≠ 0 , y′ ≥ 0,∀x∈ (0; m) khi m> 0 hoặc y′ ≥ 0,∀x∈ (m;0) khi m< 0 .
Vậy hàm số đồng biến trong khoảng (x1; x2) với x2 − x1 = 1
(x ; x ) = (0; m)


 m− 0 = 1
⇔(x1; x2) = (m;0) và x2 − x1 = 1 ⇔ 0 − m= 1⇔ m= ±1.


1



2

Cho hàm số y = x4 − 2mx2 − 3m+ 1 (1), (m là tham số).
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.
2) Tìm m để hàm số (1) đồng biến trên khoảng (1; 2).
• Ta có y' = 4x3 − 4mx = 4x(x2 − m)

Câu 9.

+ m≤ 0 , y′≥ 0,∀x∈ (0; +∞) ⇒ m≤ 0 thoả mãn.
+ m> 0 , y′= 0 có 3 nghiệm phân biệt: − m, 0, m .

Hàm số (1) đồng biến trên (1; 2) ⇔ m ≤ 1 ⇔ 0 < m≤ 1.
Vậy m∈ ( −∞;1 .
Câu hỏi tương tự:
a) Với y = x4 − 2(m− 1)x2 + m− 2 ; y đồng biến trên khoảng (1;3) .
ĐS: m≤ 2.
Câu 10. Cho hàm số y =

mx + 4
x+ m


(1)

1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m= −1.
2) Tìm tất cả các giá trị của tham số m để hàm số (1) nghịch biến trên khoảng (−∞;1) .

• Tập xác định: D = R \ {–m}.

y ′=

m2 − 4
(x + m)2

.

Hàm số nghịch biến trên từng khoảng xác định ⇔ y′< 0 ⇔ −2 < m< 2
(1)
Để hàm số (1) nghịch biến trên khoảng (−∞;1) thì ta phải có − m≥ 1⇔ m≤ −1 (2)
Kết hợp (1) và (2) ta được: −2 < m≤ −1.
Câu 11. Cho hàm số y =

2x2 − 3x + m
(2).
x−1

Tìm m để hàm số (2) đồng biến trên khoảng (−∞; −1) .
2x2 − 4x + 3− m
f (x)
=
.
• Tập xác định: D = R \ {1}. y' =

2
2
(x − 1)

(x − 1)

Ta có: f (x) ≥ 0 ⇔ m≤ 2x2 − 4x + 3. Đặt g(x) = 2x2 − 4x + 3 ⇒ g'(x) = 4x − 4
min g(x)
Hàm số (2) đồng biến trên (−∞; −1) ⇔ y' ≥ 0, ∀x∈ (−∞; −1) ⇔ m≤ (−∞
;−1]

Dựa vào BBT của hàm số g(x), ∀x∈ (−∞; −1] ta suy ra m≤ 9.
Vậy m≤ 9thì hàm số (2) đồng biến trên (−∞; −1)
Câu 12. Cho hàm số y =

2x2 − 3x + m
(2).
x−1

Tìm m để hàm số (2) đồng biến trên khoảng (2; +∞) .
2x2 − 4x + 3− m
f (x)
=
.
• Tập xác định: D = R \ {1}. y' =
2
2
(x − 1)

(x − 1)


Ta có: f (x) ≥ 0 ⇔ m≤ 2x − 4x + 3. Đặt g(x) = 2x − 4x + 3 ⇒ g'(x) = 4x − 4
2

2

min g(x)
Hàm số (2) đồng biến trên (2; +∞) ⇔ y' ≥ 0, ∀x∈ (2; +∞) ⇔ m≤ [2;
+∞ )

Trang 7


Khảo sát hàm số

Trần Sĩ Tùng

Dựa vào BBT của hàm số g(x), ∀x∈ (−∞; −1] ta suy ra m≤ 3 .
Vậy m≤ 3 thì hàm số (2) đồng biến trên (2; +∞) .
Câu 13. Cho hàm số y =

2x2 − 3x + m
(2).
x−1

Tìm m để hàm số (2) đồng biến trên khoảng (1;2) .
2x2 − 4x + 3− m
f (x)
=
.

• Tập xác định: D = R \ {1}. y' =
2
2
(x − 1)

(x − 1)

Ta có: f (x) ≥ 0 ⇔ m≤ 2x2 − 4x + 3. Đặt g(x) = 2x2 − 4x + 3 ⇒ g'(x) = 4x − 4
g(x)
Hàm số (2) đồng biến trên (1;2) ⇔ y' ≥ 0, ∀x∈ (1;2) ⇔ m≤ min
[1;2]

Dựa vào BBT của hàm số g(x), ∀x∈ (−∞; −1] ta suy ra m≤ 1.
Vậy m≤ 1 thì hàm số (2) đồng biến trên (1;2) .
Câu 14. Cho hàm số y =

x2 − 2mx + 3m2
(2).
2m− x

Tìm m để hàm số (2) nghịch biến trên khoảng (−∞;1) .

• Tập xác định: D = R \ {2m}. y' =

− x2 + 4mx − m2
2

(x − 2m)

=


f (x)
(x − 2m)2

. Đặt t = x − 1.

Khi đó bpt: f (x) ≤ 0 trở thành: g(t) = −t2 − 2(1− 2mt
) − m2 + 4m− 1≤ 0
2m> 1
Hàm số (2) nghịch biến trên (−∞;1) ⇔ y' ≤ 0, ∀x∈ (−∞;1) ⇔ 

 g(t) ≤ 0, ∀t < 0 (i )

 m= 0
∆ ' = 0
  m≠ 0
 ∆ ' > 0
 m= 0
(i ) ⇔  
⇔ 
⇔
 4m− 2 > 0
 S > 0
 m≥ 2 + 3
 m2 − 4m+ 1≥ 0
  P ≥ 0


Vậy: Với m≥ 2 + 3 thì hàm số (2) nghịch biến trên (−∞;1) .
Câu 15. Cho hàm số y =


x2 − 2mx + 3m2
(2).
2m− x

Tìm m để hàm số (2) nghịch biến trên khoảng (1; +∞) .

• Tập xác định: D = R \ {2m}. y' =

− x2 + 4mx − m2
2

(x − 2m)

=

f (x)
(x − 2m)2

. Đặt t = x − 1.

Khi đó bpt: f (x) ≤ 0 trở thành: g(t) = −t2 − 2(1− 2mt
) − m2 + 4m− 1≤ 0
2m< 1
Hàm số (2) nghịch biến trên (1; +∞) ⇔ y' ≤ 0, ∀x∈ (1; +∞) ⇔ 

 g(t) ≤ 0, ∀t > 0 (ii )

 m= 0
∆ ' = 0

 m≠ 0
 ∆ ' > 0
(ii ) ⇔  
⇔ 
⇔ m≤ 2 − 3
 4m− 2 < 0
 S < 0
 m2 − 4m+ 1≥ 0
  P ≥ 0


Vậy: Với m≤ 2 − 3 thì hàm số (2) nghịch biến trên (1; +∞)

Trang 8



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×