257 CÂU TRẮC NGHIỆM LƯỢNG GIÁC CÓ ĐÁP ÁN
CHƯƠNG 6 – ĐẠI SỐ 10
I. GÓC VÀ CUNG LƯỢNG GIÁC
Câu 1: Tìm khẳng định sai:
A. Với ba tia Ou, Ov, Ow , ta có: sđ ( Ou, Ov ) +sđ ( Ov, Ow ) = sđ ( Ou, Ow ) - k 2π ( k ∈ Z ) .
Ð
Ð
Ð
B. Với ba điểm U , V , W trên đường tròn định hướng : sđ UV +sđ VW = sđ UW + k 2π ( k ∈ Z ) .
C. Với ba tia Ou, Ov, Ox , ta có: sđ ( Ou , Ov ) = sđ ( Ox, Ov ) - sđ ( Ox, Ou ) + k 2π ( k ∈ Z ) .
D. Với ba tia Ou, Ov, Ow , ta có: sđ ( Ov, Ou ) +sđ ( Ov, Ow ) = sđ ( Ou , Ow ) + k 2π ( k ∈ Z ) .
Câu 2: Trên đường tròn lượng giác gốc A cho các cung có số đo:
I.
π
4
II. −
7π
4
III.
13π
4
IV. −
71π
4
Hỏi các cung nào có điểm cuối trùng nhau?
A. Chỉ I và II
B. Chỉ I, II và III
C. Chỉ II,III và IV
D. Chỉ I, II và IV
Câu 3: Một đường tròn có bán kính 15 cm. Tìm độ dài cung tròn có góc ở tâm bằng 300 là :
A.
5π
.
2
B.
5π
.
3
C.
2π
.
5
D.
π
.
3
Câu 4: Trong 20 giây bánh xe của xe gắn máy quay được 60 vòng.Tính độ dài quãng đường xe gắn máy
đã đi được trong vòng 3 phút,biết rằng bán kính bánh xe gắn máy bằng 6,5cm (lấy π = 3,1416 )
A. 22054cm
B. 22043cm
C. 22055cm
D. 22042cm
Câu 5: Xét góc lượng giác ( OA; OM ) = α , trong đó M là điểm không làm trên các trục tọa độ Ox và
Oy. Khi đó M thuộc góc phần tư nào để tan α , cot α cùng dấu
A. I và II.
B. II và III.
C. I và IV.
D. II và IV.
Câu 6: Cho đường tròn có bán kính 6 cm. Tìm số đo (rad) của cung có độ dài là 3cm:
A. 0,5.
Câu 7: Góc có số đo −
A. 330 45'
B. 3.
C. 2.
D. 1.
3π
được đổi sang số đo độ là :
16
B. - 29030'
C. -33045'
D. -32055'
Câu 8: Số đo radian của góc 300 là :
A.
π
.
6
B.
π
.
4
C.
π
.
3
D.
π
.
2
Câu 9: Trong mặt phẳng định hướng cho tia Ox và hình vuông OABC vẽ theo chiều ngược với chiều
0
0
quay của kim đồng hồ, biết sđ ( Ox, OA ) = 30 + k 360 , k ∈ Z . Khi đó sđ ( OA, AC ) bằng:
A. 1200 + k 3600 , k ∈ Z
B. −450 + k 3600 , k ∈ Z
C. −1350 + k 3600 , k ∈ Z
D. 1350 + k 3600 , k ∈ Z
Câu 10: Trong mặt phẳng định hướng cho ba tia Ou , Ov, Ox . Xét các hệ thức sau:
I. sđ ( Ou , Ov ) = sđ ( Ou , Ox ) + sđ ( Ox, Ov ) + k 2π , k ∈ Z
II. sđ ( Ou , Ov ) = sđ ( Ox, Ov ) + sđ ( Ox, Ou ) + k 2π , k ∈ Z
III. sđ ( Ou , Ov ) = sđ ( Ov, Ox ) + sđ ( Ox, Ou ) + k 2π , k ∈ Z
Hướng dẫn đăng ký tài liệu(số lượng có hạn)
XOẠN TIN NHẮN:”TÔI MUỐN ĐĂNG KÝ TÀI
LIỆU ĐỀ THI FILE WORD “
RỒI GỬI ĐẾN SỐ ĐIỆN THOẠI:
0969.912.851
Hệ thức nào là hệ thức Sa- lơ về số đo các góc:
A. Chỉ I
B. Chỉ II
C. Chỉ III
D. Chỉ I và III
Câu 11: Góc lượng giác có số đo α (rad) thì mọi góc lượng giác cùng tia đầu và tia cuối với nó có số đo
dạng :
A. α + k1800 (k là số nguyên, mỗi góc ứng với một giá trị của k).
B. α + k 3600 (k là số nguyên, mỗi góc ứng với một giá trị của k).
C. α + k 2π (k là số nguyên, mỗi góc ứng với một giá trị của k).
D. α + kπ (k là số nguyên, mỗi góc ứng với một giá trị của k).
Câu 12: Cho hai góc lượng giác có sđ ( Ox, Ou ) = −
π
5π
+ m2π , m ∈ Z và sđ ( Ox, Ov ) = − + n 2π , n ∈ Z
2
2
. Khẳng định nào sau đây đúng?
A. Ou và Ov trùng nhau.
B. Ou và Ov đối nhau.
C. Ou và Ov vuông góc.
D. Tạo với nhau một góc
π
.
4
C. 300 .
D. 450 .
Câu 13: Số đo độ của góc
A. 600 .
π
là :
4
B. 900 .
Câu 14: Nếu góc lượng giác có sđ ( Ox, Oz ) = −
63π
thì hai tia Ox và Oz
2
A. Trùng nhau.
B. Vuông góc.
C. Tạo với nhau một góc bằng
3π
4
D. Đối nhau.
Câu 15: Trên đường tròn định hướng góc A có bao nhiêu điểm M thỏa mãn sđ ¼
AM = 300 + k 450 , k ∈ Z ?
A. 6
B. 4
C. 8
D. 10
Câu 16: Số đo radian của góc 2700 là :
A. π .
B.
3π
.
2
C.
3π
.
4
D. −
5
.
27
Câu 17: Trong mặt phẳng định hướng cho tia Ox và hình vuông OABC vẽ theo chiều ngược với chiều
0
0
quay của kim đồng hồ, biết sđ ( Ox, OA ) = 30 + k 360 , k ∈ Z . Khi đó sđ ( Ox, BC ) bằng:
A. 1750 + h3600 , h ∈ Z
B. −2100 + h3600 , h ∈ Z
C. 1350 + h3600 , h ∈ Z
D. 2100 + h3600 , h ∈ Z
Câu 18: Khi biểu diễn trên đường tròn lượng giác các cung lượng giác nào trong các cung lượng giác có
số đo dưới đây có cùng ngọn cung với cung lượng giác có số đo 42000.
A. 1300.
B. 1200.
C. −1200.
D. 4200.
C. 1,108rad
D. 1,113rad
Câu 19: Góc 630 48' bằng (với π = 3,1416 )
A. 1,114 rad
B. 1,107 rad
Câu 20: Cung tròn bán kính bằng 8, 43cm có số đo 3,85 rad có độ dài là:
A. 32, 46cm
B. 32, 45cm
C. 32, 47cm
D. 32,5cm
Câu 21: Một đồng hồ treo tường, kim giờ dài 10,57cm và kim phút dài 13,34cm .Trong 30 phút mũi kim
giờ vạch lên cung tròn có độ dài là:
A. 2,77cm .
B. 2, 78cm .
C. 2, 76cm .
D. 2,8cm .
Câu 22: Xét góc lượng giác ( OA; OM ) = α , trong đó M là điểm không làm trên các trục tọa độ Ox và
Oy. Khi đó M thuộc góc phần tư nào để sin α , cos α cùng dấu
A. I và II.
B. I và III.
C. I và IV.
D. II và III.
0
0
Câu 23: Cho hai góc lượng giác có sđ ( Ox, Ou ) = 45 + m360 , m ∈ Z và sđ
( Ox, Ov ) = −1350 + n3600 , n ∈ Z . Ta có hai tia Ou
A. Tạo với nhau góc 450 B. Trùng nhau.
và Ov
C. Đối nhau.
D. Vuông góc.
Câu 24: Trong mặt phẳng định hướng cho tia Ox và hình vuông OABC vẽ theo chiều ngược với chiều
0
0
quay của kim đồng hồ, biết sđ ( Ox, OA ) = 30 + k 360 , k ∈ Z . Khi đó sđ ( Ox, AB ) bằng
A. 1200 + n3600 , n ∈ Z B. 600 + n3600 , n ∈ Z
Câu 25: Góc
C. −300 + n3600 , n ∈ Z D. −600 + n3600 , n ∈ Z
5π
bằng:
8
B. 11205'
A. 112030 '
C. 112050 '
D. 1130
Câu 26: Sau khoảng thời gian từ 0 giờ đến 3 giờ thì kim giây đồng hồ sẽ quay được một góc có số đo
bằng:
A. 129600.
B. 324000.
C. 3240000.
D. 648000.
Câu 27: Góc có số đo 1200 được đổi sang số đo rad là :
A. 120π
B.
3π
C. 12π
2
Hướng dẫn đăng ký tài liệu(số lượng có hạn)
XOẠN TIN NHẮN:”TÔI MUỐN ĐĂNG KÝ TÀI
LIỆU ĐỀ THI FILE WORD “
RỒI GỬI ĐẾN SỐ ĐIỆN THOẠI:
D.
2π
3
0969.912.851
Câu 28: Biết góc lượng giác ( Ou , Ov ) có số đo là −
A. 0, 6π
B. 27, 4π
137
π thì góc ( Ou , Ov ) có số đo dương nhỏ nhất là:
5
C. 1, 4π
D. 0, 4π
π kπ
AM = +
, k ∈Z?
Câu 29: Có bao nhiêu điểm M trên đường tròn định hướng gốc A thoả mãn sđ ¼
3 3
A. 6
B. 4
C. 3
D. 12
II. GIÁ TRỊ LƯỢNG GIÁC – GTLG CỦA CÁC CUNG LIÊN
QUAN ĐẶC BIỆT
Câu 30: Biểu thức sin 2 x.tan 2 x + 4sin 2 x − tan 2 x + 3cos 2 x không phụ thuộc vào x và có giá trị bằng :
A. 6.
B. 5.
C. 3.
D. 4.
Câu 31: Bất đẳng thức nào dưới đây là đúng?
A. cos 90o30′ > cos100o.
B. sin 90o < sin150o.
C. sin 90o15′ < sin 90o30′.
D. sin 90o15′ ≤ sin 90o30′.
Câu 32: Giá trị của M = cos 2 150 + cos 2 250 + cos 2 350 + cos 2 450 + cos 2 1050 + cos 2 1150 + cos 2 1250 là:
B. M =
A. M = 4.
7
.
2
1
C. M = .
2
D. M = 3 +
2
.
2
Câu 33: Cho tan α + cot α = m Tính giá trị biểu thức cot 3 α + tan 3 α .
B. m3 − 3m
A. m3 + 3m
Câu 34: Cho cosα = −
A.
2
5
2π
π < α <
3
21
5
Câu 35: Cho sin a + cos a =
A. 1
A. (–4; 7)
9
32
21
5
21
3
D.
C.
3
16
D.
5
4
1
p+ q
và 00 < x < 1800 thì tan x = −
với cặp số nguyên (p, q) là:
2
3
B. (4; 7)
Câu 37: Tính giá trị của G = cos
A. 3
C. −
5
. Khi đó sin a.cos a có giá trị bằng :
4
B.
Câu 36: Nếu cos x + sin x =
D. 3m3 − m
÷. Khi đó tan α bằng:
21
2
B. −
C. 3m3 + m
2
C. (8; 14)
D. (8; 7)
π
2π
5π
+ cos 2
+ ... + cos 2
+ cos 2 π .
6
6
6
B. 2
C. 0
D. 1
Câu 38: Biểu thức A = cos 200 + cos 400 + cos 600 + ... + cos1600 + cos1800 có giá trị bằng :
A. A = 1.
B. A = −1
C. A = 2 .
D. A = −2 .
2
sinα + tanα
Câu 39: Kết quả rút gọn của biểu thức
÷ + 1 bằng:
cosα +1
A. 2
Câu 40: Tính E = sin
B. 1 + tanα
π
2π
9π
+ sin
+ ... + sin
5
5
5
C.
1
cos 2 α
D.
1
sin2 α
A. 0
Câu 41: Cho cot α = 3 . Khi đó
A. −
C. −1
B. 1
1
.
4
D. −2
3sin α − 2 cos α
có giá trị bằng :
12sin 3 α + 4 cos3 α
5
B. − .
4
C.
3
.
4
D.
1
.
4
π
3π
Câu 42: Biểu thức A = sin(π + x) − cos( − x) + cot(2π − x) + tan( − x) có biểu thức rút gọn là:
2
2
B. A = −2sin x
A. A = 2sin x .
C. A = 0 .
D. A = −2cot x .
Câu 43: Biểu thức A = sin 8 x + sin 6 x cos 2 x + sin 4 x cos 2 x + sin 2 x cos 2 x + cos 2 x được rút gọn thành :
A. sin 4 x .
C. cos 4 x .
B. 1.
D. 2.
Câu 44: Giá trị của biểu thức tan 200 + tan 400 + 3 tan 200.tan 400 bằng
A. −
3
.
3
B.
3
.
3
C. -
3.
Hướng dẫn đăng ký tài liệu(số lượng có hạn)
XOẠN TIN NHẮN:”TÔI MUỐN ĐĂNG KÝ TÀI
LIỆU ĐỀ THI FILE WORD “
RỒI GỬI ĐẾN SỐ ĐIỆN THOẠI:
0969.912.851
D.
3.
0
0
0
0
Câu 45: Tính B = cos 4455 − cos 945 + tan1035 − cot ( −1500 )
A.
3
+1
3
B.
3
−1− 2
1
C.
3
+1+ 2
3
D.
3
−1
3
Câu 46: Tìm khẳng định sai trong các khẳng định sau đây?
A. tan 45o < tan 60o.
B. cos45o < sin 45o.
C. sin 60o < sin 80o.
D. cos 35o > cos10o.
Câu 47: Trong các đẳng thức sau, đẳng thức nào là đúng?
A. cos150o =
3
.
2
B. cot150o = 3.
o
C. tan150 = −
1
.
3
D. sin150o = −
3
.
2
Câu 48: Tính M = tan10 tan 20 tan 30....tan 890
A. 1
Câu 49: Giả sử (1 + tan x +
B. 2
C. −1
D.
1
2
1
1
)(1 + tan x −
) = 2 tan n x (cos x ≠ 0) . Khi đó n có giá trị bằng:
cos x
cos x
A. 4.
B. 3.
C. 2.
D. 1.
Câu 50: Để tính cos1200, một học sinh làm như sau:
(I) sin1200 =
3
2
(II) cos21200 = 1 – sin21200
(III) cos21200 =
1
4
(IV) cos1200=
1
2
Lập luận trên sai ở bước nào?
A. (I)
B. (II)
C. (III)
Câu 51: Biểu thức thu gọn của biểu thức A =
A. cos a .
B. sin a .
D. (IV)
sin 2a + sin 5a - sin 3a
là
1 + cos a - 2sin 2 2a
C. 2 cos a .
D. 2sin a .
Câu 52: Cho tan α + cot α = m với | m |≥ 2 . Tính tan α − cot α
A. m 2 − 4
B.
m2 − 4
C. − m 2 − 4
D. ± m2 − 4
Câu 53: Cho điểm M trên đường tròn lượng giác gốc A gắn với hệ rục toạ độ Oxy . Nếu sđ
π
π
+ kπ , k ∈ Z thì sin + kπ ÷ bằng:
2
2
AM =
B. ( −1)
A. −1
k
Câu 54: Tính giá trị biểu thức P = sin
2
B. 4
A. 2
D. 0
C. 1
π
π
π
9π
π
π
+ sin 2 + sin 2 + sin 2
+ tan cot
6
3
4
4
6
6
C. 3
D. 1
Câu 55: Biểu thức A = sin 2 100 + sin 2 200 + ..... + sin 2 1800 có giá trị bằng :
A. A = 6
B. A = 8.
C. A = 3 .
D. A = 10 .
Câu 56: Trên đường tròn lượng giác gốc A, cho sđ AM = α + k 2π , k ∈ Z . Xác định vị trí của M khi
sin α = 1 − cos 2 α
A. M thuộc góc phần tư thứ I
B. M thuộc góc phần tư thứ I hoặc thứ II
C. M thuộc góc phần tư thứ II
D. M thuộc góc phần tư thứ I hoặc thứ IV
Câu 57: Cho sin x + cos x = m . Tính theo m giá trị.của M = sin x.cosx :
A. m 2 − 1
B.
m2 − 1
2
C.
m2 + 1
2
D. m 2 + 1
Câu 58: Biểu thức A = cos2 100 + cos2 200 + cos2 300 + ... + cos2 1800 có giá trị bằng :
A. A = 9 .
Câu 59: Cho cot α =
A.
2
.
5
B. A = 3 .
1
2
C. A = 12 .
D. A = 6
3π
2
π < α <
÷ thì sin α .cos α có giá trị bằng :
2
B.
−4
.
5 5
C.
4
5 5
.
D.
−2
.
5
Câu 60: Giá trị của biểu thức S = 3 – sin2900 + 2cos2600 – 3tan2450 bằng:
A.
1
2
B. −
Câu 61: sin
A. cos
C. 1
D. 3
3π
bằng:
10
4π
5
B. cos
π
5
C. 1 − cos
π
5
D. − cos
π
5
2 π
− < x < 0 ÷ thì sin x có giá trị bằng :
5 2
Câu 62: Cho cos x =
A.
1
2
3
.
5
B.
−3
.
5
C.
−1
.
5
1
.
5
D.
Câu 63: Tính A = sin 3900 − 2sin11400 + 3cos18450
A.
(
1
1+ 2 3 + 3 2
2
)
B.
(
1
1− 3 2 − 2 3
2
)
C.
(
1
1+ 3 2 − 2 3
2
)
D.
(
1
1+ 2 3 − 3 2
2
Câu 64: Tính A = cos 6300 − sin15600 − cot12300
A.
3 3
2
3
2
B. −
C.
3
2
D. −
3 3
2
Câu 65: Cho cot x = 2 + 3 . Tính giá trị của cos x :
Hướng dẫn đăng ký tài liệu(số lượng có hạn)
XOẠN TIN NHẮN:”TÔI MUỐN ĐĂNG KÝ TÀI
LIỆU ĐỀ THI FILE WORD “
RỒI GỬI ĐẾN SỐ ĐIỆN THOẠI:
0969.912.851
B. A = 2 + 3
2
A. A = 5
Câu 66: Nếu tanα =
A.
r
s
D. A = 7
2rs
với α là góc nhọn và r>s>0 thì cosα bằng:
r − s2
2
B.
r 2 − s2
2r
4
4
Câu 67: Giả sử 3sin x − cos x =
A. 1.
C. A = 4
B. 2.
C.
rs
2
r + s2
D.
r 2 − s2
r 2 + s2
1
thì sin 4 x + 3cos 4 x có giá trị bằng :
2
C. 3.
D. 4.
)
Câu 68: Tính P = cot10 cot 20 cot 30...cot 890
A. 0
C. 2
B. 1
D. 3
3π
3π
3π
3π
− a ÷+ sin
− a ÷− cos
− a ÷− sin
+ a÷
Câu 69: Rút gọn biểu thức B = cos
2
2
2
2
A. −2sin a
B. −2 cos a
C. 2sin a
D. 2 cos a
Câu 70: Cho hai góc nhọn α và β trong đó α < β . Khẳng định nào sau đây là sai?
A. cos α < cos β .
B. sin α < sin β .
C. cosα = sin β ⇔ α + β = 90o.
D. tanα + tan β > 0.
Câu 71: Cho α là góc tù. Điều khẳng định nào sau đây là đúng?
A. cos α > 0.
B. tanα < 0.
Câu 72: Cho 0 < α <
A.
π
. Tính
2
2
sin α
B.
1 + sin α
1 − sin α
+
1 − sin α
1 + sin α
2
cos α
C. −
2
sin α
D. −
Câu 73: Rút gọn biểu thức sau A = ( tan x + cot x ) − ( tan x − cot x )
2
A. A = 2
A. −10 .
Câu 75: Cho tan α = 3, π < α <
3 10
10
Câu 76: Cho cos α =
A. sin α = −
2 2
.
3
D. A = 3
π
4
với < α < π . Tính giá trị của biểu thức : M = 10sin α + 5cos α
5
2
B. 2 .
A. sin α = −
2
.
cos α
2
C. A = 4
B. A = 1
Câu 74: Cho cos α = −
D. sinα < 0.
C. cot α > 0.
C. 1.
D.
1
4
3π
.Ta có:
2
B. Hai câu (A) và (B)
C. cos α = −
10
10
D. cos α = ±
1
7π
< α < 4π , khẳng định nào sau đây là đúng ?
và
3
2
B. sin α =
2 2
.
3
C. sin α =
2
.
3
2
D. sin α = − .
3
Câu 77: Đơn giản biểu thức G = (1 − sin 2 x ) cot 2 x + 1 − cot 2 x
A. sin 2 x
B.
1
cos x
C. cosx
Câu 78: Tính các giá trị lượng giác của góc α = − 300
A. cos α =
10
10
1
3
1
; sin α =
; tan α = 3 ; cot α =
2
2
3
D.
1
sin x
B. cos α = −
1
3
1
; sin α = −
; tan α = − 3 ; cot α = −
2
2
3
2
2
; sin α =
; tan α = − 1; cot α = − 1
2
2
C. cos α = −
D. cosα =
3
1
; sinα = − ;
2
2
tanα = −
1
3
; cot α = − 3
Câu 79: Nếu tan α + cot α = 2 thì tan 2 a + cot 2 a bằng bao nhiêu ?
A. 1.
C. 2 .
B. 4 .
Câu 80: Cho sin α =
A. cosα =
A. tan α =
1 0
0 < α < 900 ) . Khi đó cosα bằng:
(
3
2
.
3
Câu 81: Cho sin α =
D. 3 .
B. cosα = −
2 2
.
3
C. cosα = −
2
.
3
D. cosα =
2 2
.
3
5 π
, < α < π .Ta có:
13 2
−5
12
B. cos α =
12
13
C. cot α = −
12
5
D. Hai câu (B) và (C)
Câu 82: Trong các khẳng định sau đây, khẳng định nào sai?
A. cos 45o = sin135o.
Câu 83: Nếu tanα =
A.
B. cos120o = sin 60o.
7
4
1
sin x
Câu 85: Cho tan α = −
A.
7
.
274
D. cos30o = sin120o.
7 thì sinα bằng:
B. −
7
4
Câu 84: Đơn giản biểu thức T = tan x +
A.
C. cos 45o = sin 45o.
C.
7
8
D. ±
7
8
cos x
1 + sin x
B. sinx
C. cosx
D.
1
cos x
15
p
với < a < p , khi đó giá trị của sin α bằng
2
7
B.
15
.
274
C. −
7
.
274
D. -
15
.
274
2
sin α + tan α
Câu 86: Kết quả đơn giản của biểu thức
÷ + 1 bằng
cosα +1
A.
1
.
cos 2α
B. 1 + tan a .
C. 2 .
D.
1
.
sin 2 a
Câu 87: Biểu thức A = sin 200 + sin 400 + sin 600 + ... + sin 3400 + sin 3600 có giá trị bằng :
A. A = 0 .
B. A = −1
C. A = 1.
D. A = 2 .
2
Câu 88: Tính F = sin
π
2π
5π
+ sin 2
+ .... + sin 2
+ sin 2 π
6
6
6
A. 3
B. 2
Câu 89: Đơn giản biểu thức E = cot x +
A.
1
sin x
D. 4
C. 1
sin x
ta được
1 + cos x
B. cosx
C. sinx
D.
7π
3π
3π
− a ÷− sin
− a ÷+ cos a −
2
2
2
Câu 90: Đơn giản biểu thức C = cos
B. −2 cos a
A. 2 cos a
A. 150 .
7π
÷− sin a −
÷
2
D. −2sin a
C. 2sin a
Câu 91: Tìm giá trị của α (độ) thỏa mãn
1
cos x
1
sin 75o − cos 75o
=
.
o
o
3
cos 75 + sin 75
B. 350 .
D. 750 .
C. 450 .
Câu 92: Các khẳng định sau đây, khẳng định nào là đúng ?
A. sin16560 = sin 360.
B. sin16560 = − sin 360.
C. cos16560 = cos360.
D. cos16560 = cos 540.
Câu 93: Biểu thức (cotα + tanα)2 bằng:
A. cot2α – tan2α+2
Câu 94: Cho tan α =
A. sin α =
2 34
.
17
Câu 95: Cho cosa =
A. -
153
.
169
B.
1
1
−
sin 2 α cos 2 α
C. cot2α + tan2α–2
D.
1
sin α cos 2 α
2
9π
2 2
và 4π < α <
, khẳng định nào sau đây là đúng ?
2
3
B. sin α = −
2 2
.
17
C. sin α =
3 17
.
17
D. sin α = −
3 17
.
17
π
4
với 0 < α < , khi đó giá trị của sin α bằng
13
2
B.
3 17
.
13
C.
153
.
169
D. -
153
.
169
Câu 96: Tính Q = tan 200 tan 700 + 3 cot 200 cot 700
A. 1
B.
3
C. 1 + 3
D. 1 − 3
Câu 97: Giá trị D = tan10 tan 20...tan 890 cot 890...cot 20 cot10 bằng
B. 2
A. 0
C. 1
D. 4
Ð
Câu 98: Cho điểm M trên đường tròn lượng giác gốc A gắn với hệ trục toạ độ Oxy . Nếu sđ AM
= kπ , k ∈ Z thì hoành độ điểm M bằng:
A. ( −1)
k
B. 0
C. 1
D. −1
Câu 99: Cho sin x + cos x =
1
8
A. M = .
1
và gọi M = sin 3 x + cos3 x. Giá trị của M là:
2
B. M =
11
.
16
C. M = −
7
.
16
D. M = −
11
.
16
5π
− a ÷+ cos ( 13π + a ) − 3sin ( a − 5π )
Câu 100: Đơn giản biểu thức D = sin
2
A. 3sin a − 2 cos a
C. −3sin a
B. 3sin a
D. 2 cos a + 3sin a
Câu 101: sin α ≥ 0 khi và chỉ khi điểm cuối của cung α thuộc góc phần tư thứ
A. I và IV
B. II
Câu 102: Cho
C. I và II
D. I
7π
< α < 2π . Khẳng định nào sau đây đúng?
4
Hướng dẫn đăng ký tài liệu(số lượng có hạn)
XOẠN TIN NHẮN:”TÔI MUỐN ĐĂNG KÝ TÀI
LIỆU ĐỀ THI FILE WORD “
RỒI GỬI ĐẾN SỐ ĐIỆN THOẠI:
0969.912.851
A. tan α > 0
Câu 103: Biểu thức A =
A. A = 1 .
B. cot α > 0
sin(−3280 ).sin 9580 cos(−5080 ).cos(−10220 )
−
có giá trị bằng :
cot 5720
tan( −2120 )
B. A = −1
Câu 104: Cho cot α = −3 với
A.
3
.
10
D. sin α > 0
C. cos α > 0
C. A = 2 .
D. A = −2 .
3π
< α < 2π , khi đó giá trị của cosα bằng
2
B.
−1
.
10
C. -
3
.
10
D.
1
.
10
Câu 105: Trong các mệnh đề sau, mệnh đề nào sai:
A. (sinx + cosx)2 = 1 + 2sinxcosx
B. (sinx – cosx)2 = 1 – 2sinxcosx
C. sin4x + cos4x = 1 – 2sin2xcos2x
D. sin6x + cos6x = 1 – sin2xcos2x
π
, < α < π . Xét
Câu 106: Trên đường tròn lượng giác gốc A cho cung AM có sđ AM = α + k 2π , k ∈ Zx
2
các mệnh đề sau đây:
I. cos α +
π
÷< 0
2
π
II. sin α + ÷ < 0
2
π
III. cot α + ÷ > 0
2
Mệnh đề nào đúng?
A. Cả I, II và III
B. Chỉ I
Câu 107: Cho sin a =- 0, 7 với 0 < α <
A. −
51
.
10
B.
C. Chỉ II và III
D. Chỉ I và II
3π
, khi đó giá trị của tan a bằng
2
51
.
10
C.
7 51
.
51
D. −
7 51
.
51
Câu 108: Giá trị của biểu thức S = cos2120 + cos2780 + cos210 + cos2890 bằng:
A. 0
Câu 109: Cho 0 < α <
A.
B. 1
C. 2
π
. Rút gọn biểu thức
2
2
cos α
B. −
D. 4
1 − sin α
1 + sin α
−
1 + sin α
1 − sin α
2
sin α
C. −
2
cos α
D.
2
sin α
sin 2 x − 2sin x.cos x
Câu 110: Cho tan x = 2 . Tính A =
cos 2 x + 3sin 2 x
A. A = 4
B. A = 0
Câu 111: Cho tan α = 3 . Khi đó
A.
7
.
9
Câu 112: Tính D = cos
A. 0
D. A = 2
2sin α + 3cos α
có giá trị bằng :
4sin α − 5cos α
7
B. − .
9
C.
9
.
7
9
D. − .
7
π
2π
9π
+ cos
+ ... + cos
5
5
5
B. −1
Câu 113: Tìm giá trị của α ( độ) thỏa mãn
A. 150 .
C. A = 1
C. 1
cos α + sin α
=
cos α − sin α
B. 750 .
D. 2
3.
C. 450 .
D. 350 .
Câu 114: cosα ≥ 0 khi và chỉ khi điểm cuối của cung α thuộc góc phần tư thứ
A. I và II
B. II và IV
C. I và IV
D. I và III
Câu 115: Tính giá trị nhỏ nhất của F = cos 2 a + 2sin a + 2
A. 2
B. −1
C. 1
D. 0
Câu 116: Trong các mệnh đề sau, mệnh đề nào sai:
A. sin900>sin1800
B. sin90013’>sin90014’
C. tan450>tan460
D. cot1280>cot1260
cot 2 x − cos 2 x sin x.cos x
Câu 117: Rút gọn biểu thức sau A =
+
cot x
cot 2 x
A. A = 1
B. A = 2
C. A = 3
D. A = 4
Câu 118: Nếu tan a − cot a = 3 thì tan2 a + cot2 a có giá trị bằng :
A. 10.
B. 9.
Câu 119: Cho sin α =
A.
C. 11.
D. 12.
4
π
và 0 < α < . Tính tan α .
2
5
3
4
B.
3
4
C.
(
4
3
D.
) (
6
6
4
4
Câu 120: Rút gọn biểu thức sau A = 2 sin x + cos x − 3 sin x + cos x
B. A = 0
A. A = −1
3
5
)
C. A = 3
D. A = 4
Câu 121: Câu nào sau đây đúng?
Hướng dẫn đăng ký tài liệu(số lượng có hạn)
XOẠN TIN NHẮN:”TÔI MUỐN ĐĂNG KÝ TÀI
LIỆU ĐỀ THI FILE WORD “
RỒI GỬI ĐẾN SỐ ĐIỆN THOẠI:
0969.912.851
A. Nếu a dương thì sin a = 1 − cos 2 a
B. Nếu a dương thì hai số cos a,sin a là số dương.
C. Nếu a âm thì cos a có thể âm hoặc dương.
D. Nếu a âm thì ít nhất một trong hai số cos a,sin a phải âm.
Câu 122: Điều khẳng định nào sau đây là đúng?
(
)
o
B. tanα = tan 180 − α .
o
C. cos α = cos 180 − α .
o
D. cotα = cot 180 − α .
o
A. sin α = sin 180 − α .
(
)
Câu 123: Cho tan x = 3 . Tính A =
A.
4
23
B.
4
26
Câu 125: Tính C = cos
B. 0
)
(
)
2sin 2 x − 5sin x.cos x + cos 2 x
2sin 2 x + sin x.cos x + cos 2 x
C.
23
4
3π
Câu 124: Tính A = cos ( 3π − a ) + sin ( a − 3π ) − cos a −
2
A. 4
(
C. 1
π
2π
8π
+ cos
+ ... + cos
+ cos π
9
9
9
D. A = 4
3π
+ a÷
÷− sin
2
D. −1
B. −1
A. 0
Câu 126: Cho cos x =
A. A =
D. 1
C. 2
1
π
, 0 < α < . Tính giá trị của sin x :
3
2
3
8
B. A =
2 2
3
C. A = 2 2
D. A = 3
Câu 127: Tính giá trị của biểu thức P = tanα − tanα sin2 α nếu cho cos α = −
A.
12
15
B. − 3
Câu 128: Cho sin α =
A. cosα =
2 2
.
3
(
C.
1
3
4
3π
(π < α < )
5
2
D. 1
)
1
900 < α < 1800 . Khi đó cosα bằng:
3
B. cosα = −
2 2
.
3
C. cosα =
2
.
3
2
D. cosα = − .
3
Ð
Câu 129: Trên đường tròn lượng giác gốc A, cho sđ AM = α + k 2π , k ∈ Z . Xác định vị trí của M khi
cos 2 α = cos α
A. M thuộc góc phần tư thứ I hoặc thứ IV
B. M thuộc góc phần tư thứ IV
C. M thuộc góc phần tư thứ I
D. M thuộc góc phần tư thứ I hoặc thứ III
Câu 130: Cho tan α = −3 . Khi đó cot α bằng:
A. cot α = 3 .
1
B. cot α = .
3
1
C. cot α = − .
3
D. cot α = −3 .
Câu 131: Cho α và β là hai góc khác nhau và bù nhau. Trong các đẳng thức sau đây, đẳng thức nào sai?
A. tanα = − tan β .
B. cot α = cot β .
C. ..
D. cosα = − cos β .
Câu 132: Chọn giá trị của x để siny0 + sin(x–y)0 = sinx0 đúng với mọi y .
A. 90
Câu 133: Biết cosx =
A.
7
4
B. 180
C. 270
D. 360
1
. Giá trị biểu thức P = 3sin2x + 4cos2x bằng:
2
B. 7
C.
1
4
D.
13
4
4 − 2 tan 2 450 + cot 4 600
Câu 134: Tính giá trị biểu thức S =
3sin 3 900 − 4 cos 2 600 + 4 cot 450
A. -1
B. 1 +
1
3
C.
19
54
3
D. −
π
π
π
π
Câu 135: Tính giá trị biểu thức T = 3 sin
− 2 tan − 8 cos 2 + 3 cot 3
4
4
6
2
2
25
2
B. 1 +
A. -1
1
3
C.
19
54
D. −
25
2
Câu 136: Tính L = tan 200 tan 450 tan 700
D. −1
C. 2
B. 0
A. 1
Câu 137: Tính giá trị lớn nhất của E = 2sin α − sin 2 α + 3
B. 2
A. 1
Câu 138: Cho tan x = 2 . Tính A =
A. A =
1
11
2sin 2 x − 5sin x.cos x + cos 2 x
2sin 2 x + sin x.cos x + cos 2 x
B. A = −11
Câu 139: Tính N = 5sin
C. A = −
1
11
D. A = 11
9π
16π
3π
π
− 3 tan
+ 4 cos sin
2
3
2
7
B. N = 2
A. N = 1
D. 3
C. 4
C. N = 3
D. N = 1
π
Ð
, < α < π . Xét
Câu 140: Trên đường tròn lượng giác gốc A cho cung AM có sđ AM = α + k 2π , k ∈ Zx
2
các mệnh đề sau
π
I. cos − α ÷ > 0
2
π
III. tan − α ÷ > 0
2
π
II. sin − α ÷ > 0
2
Mệnh đề nào sai?
A. Cả I, II và III
B. Chỉ II và III
C. Chỉ II
D. Chỉ I
Câu 141: Cho số nguyên k bất kì. Đẳng thức nào sau đây sai?
A. cos(kπ ) = (−1) k
B. tan(
π kπ
2
C. sin( + ) = ( −1) k
4 2
2
D. sin(
π kπ
+
) = ( −1) k
4 2
π
+ kπ ) = (−1) k
2
Câu 142: Trong các đẳng thức sau, đẳng thức nào sai?
A. cos 9300 = −
3
2
B. sin 3150 = −
2
2
D. cot 4050 = − 3
C. tan 4950 = −1
Câu 143: Cho góc x thoả 00 < x < 900 . Trong các mệnh đề sau, mệnh đề nào sai?
A. sin x > 0
B. cos x < 0
C. tan x > 0
D. cot x > 0
Câu 144: Giá trị của biểu thức tan 90 − tan 27 0 − tan 630 + tan 810 bằng
A.
2.
B. 4 .
C. 2 .
D.
1
.
2
2
3π
Câu 145: Cho sin α = − , π < α <
. Tính cosα .
5
2
A.
21
25
21
5
B.
C. −
21
25
D. −
21
5
Câu 146: Tính N = sin 2 200 + cos 2 400 + ... + cos 2 1600 + sin 2 1800
C. 2
B. 1
A. 4
D. 3
π
Câu 147: Cho tanα = −2 < α < π ÷ thì cos α có giá trị bằng :
2
A.
−1
.
5
B.
1
.
5
C.
−3
.
5
D.
3
.
5
Câu 148: Đẳng thức nào sau đây là đúng ?
Hướng dẫn đăng ký tài liệu(số lượng có hạn)
XOẠN TIN NHẮN:”TÔI MUỐN ĐĂNG KÝ TÀI
LIỆU ĐỀ THI FILE WORD “
RỒI GỬI ĐẾN SỐ ĐIỆN THOẠI:
0969.912.851
A. sin 4 x + cos 4 x = 1 + 2sin 2 x cos 2 x.
B. sin 4 x + cos 4 x = 1.
C. sin 6 x + cos6 x = 1 + 3sin 2 x cos 2 x.
D. sin 4 x − cos 4 x = sin 2 x − cos 2 x.
Câu 149: Giá trị của biểu thức P = msin00 + ncos00 + psin900 bằng:
A. n – p
B. m + p
C. m – p
D. n + p
Câu 150: Nếu tanα + cotα =2 thì tan2α + cot2α bằng:
A. 4
B. 3
C. 2
D. 1
Câu 151: Tính sin 2 100 + sin 2 200 + sin 2 300 + ... + sin 2 700 + sin 2 800
A. 2
C. 3
B. 5
D. 4
Câu 152: Cho hai góc α và β phụ nhau. Hệ thức nào sau đây là sai?
A. sin α = − cos β .
B. tan α = cot β .
C. cotα = tan β .
D. cos α = sin β .
Câu 153: Cho góc x thoả 900 < x < 1800 . Trong các mệnh đề sau, mệnh đề nào đúng:
A. cos x < 0
B. sin x < 0
C. tan x > 0
D. cot x > 0
Câu 154: Cho a = 15000 . Xét ba đẳng thức sau:
I. sin α =
3
2
II. cos α =
1
2
III. tan α = 3
Đẳng thức nào đúng?
A. Chỉ I và II
B. Cả I, II và III
C. Chỉ II và III
D. Chỉ I và III
Câu 155: Tính các giá trị lượng giác của góc α = 240 0
A. cos α =
3
1
1
; sin α = − ; tan α = −
; cot α = − 3
2
2
3
2
2
; sin α =
; tan α = − 1 ; cot α = − 1
2
2
B. cos α = −
C. cos α = −
D. cos α =
1
3
1
; sin α = −
; tan α = − 3 ; cot α = −
2
2
3
1
3
1
; sin α =
; tan α = 3 ; cot α =
2
2
3
Câu 156: Giá trị của biểu thức Q = mcos900 + nsin900 + psin1800 bằng:
A. m
B. n
C. p
D. m + n
Câu 157: Kết qủa rút gọn của biểu thức A = a2sin900 + b2cos900 + c2cos1800 bằng:
A. a2 + b2
B. a2 – b2
Câu 158: Cho 3π < α <
Câu 159: Đơn giản biểu thức F =
1
cos x
D. b2 + c2
10π
. Khẳng định nào sau đây đúng?
3
B. cot α < 0
A. cos α > 0
A.
C. a2 – c2
B.
D. sin α < 0
C. tan α < 0
cos x tan x
− cot x cos x
sin 2 x
1
sin x
C. cosx
D. sinx
Câu 160: Cho tan150 = 2 − 3 .Tính M = 2 tan10950 + cot 9150 − tan 5550
(
A. M = 2 2 − 3
)
(
B. M = 2 2 + 3
)
C. M = 2 + 3
D. M = 4
Câu 161: Xét các mệnh đề sau:
I. sin
11π
5π
≠ sin
+ 1505π ÷
6
6
II. sin kπ = ( −1) , k ∈ Z
k
III. cos kπ = ( −1) , k ∈ Z
k
Mệnh đề nào sai?
A. Chỉ I và III
Câu 162: Giả sử
A. 3.
B. Chỉ I và II
C. Chỉ II và III
D. Chỉ I
tan 2 x − sin 2 x
= tan n x ( giả thiết biểu thức có nghĩa). Khi đó n có giá trị là
2
2
cot x − cos x
B. 6.
C. 5.
D. 4.
Câu 163: Giá trị của biểu thức S = sin230 + sin2150 + sin2750 + sin2870 bằng:
A. 1
B. 0
C. 2
D. 4
Câu 164: Rút gọn biểu thức S = cos(900–x)sin(1800–x) – sin(900–x)cos(1800–x), ta được kết quả:
A. S = 1
C. S = sin2x – cos2x
B. S = 0
D. S = 2sinxcosx
Câu 165: Đẳng thức nào sau đây là sai?
2
A. co s x =
1
.
1 + tan 2 x
B.
1
= 1 + cot 2 x.
2
sin x
D. sin 2 x = 1 − cos 2 x.
C. cos x = 1 − sin 2 x
Câu 166: Trong các đẳng thức sau, đẳng thức nào sai?
A. sin13200 = −
3
2
B. cos 7500 =
3
2
C. cot12000 =
3
3
D. tan 6900 = −
Hướng dẫn đăng ký tài liệu(số lượng có hạn)
XOẠN TIN NHẮN:”TÔI MUỐN ĐĂNG KÝ TÀI
LIỆU ĐỀ THI FILE WORD “
RỒI GỬI ĐẾN SỐ ĐIỆN THOẠI:
0969.912.851
3
3
III. CÔNG THỨC LƯỢNG GIÁC
π
3
π
3
Câu 167: Giả sử A = tan x.tan ( − x) tan ( + x) được rút gọn thành A = tan nx . Khi đó n bằng :
A. 2.
B. 1.
C. 4.
D. 3.
Câu 168: Nếu sinx = 3cosx thì sinx.cosx bằng:
A.
3
10
B.
2
9
C.
1
4
D.
1
6
Câu 169: Giá trị của biểu thức tan1100.tan 3400 + sin1600.cos1100 + sin 2500.cos3400 bằng
Câu 170: Cho sin a =
A.
17 5
27
Câu 171: Biết
A.
C. −1 .
B. 1 .
A. 0 .
5
. Tính cos 2a sin a
3
B. −
cot
D. 2 .
5
9
C.
5
27
5
27
D. −
x
sin kx
− cot x =
x
, với mọi x để các biểu thức có nghĩa. Lúc đó giá trị của k là:
4
sin sin x
4
5
4
B.
3
4
C.
5
8
D.
3
8
D.
π
8
π
Câu 172: Nếu cos α + sin α = 2 0 < α < ÷ thì α bằng:
2
A.
π
6
B.
π
3
C.
π
4
Câu 173: Nếu a = 200 và b = 250 thì giá trị của (1+tana)(1+tanb) là:
A.
2
Câu 174: Tính B =
A. −
2
21
B. 2
C.
3
C.
2
21
D. 1 +
2
1 + 5cos α
α
, biết tan = 2 .
2
3 − 2 cos α
B.
20
9
D. −
10
21
3 π
π
Câu 175: Giá trị của tan α + ÷ bằng bao nhiêu khi sinα = < α < π ÷ .
5 2
3
A.
38 + 25 3
.
11
B.
Câu 176: Giá trị của biểu thức
1− 2 .
A. 2
B.
8−5 3
.
11
C.
8− 3
.
11
D.
38− 25 3
.
11
1
1
−
bằng
0
sin18
sin 540
2.
C.
−2
.
1+ 2 .
D. 2
Câu 177: Biểu thức tan300 + tan400 + tan500 + tan600 bằng:
3
A. 4 1 +
÷
3 ÷
B.
8 3
cos200
3
C. 2
D.
4 3
sin 700
3
Câu 178: Nếu α là góc nhọn và sin2α = a thì sinα + cosα bằng:
A.
(
)
2 − 1 a+ 1
B.
a + 1 − a2 − a
C.
a +1
D.
a + 1 + a2 − a
cos800 − cos 200
Câu 179: Giá trị biểu thức
bằng
sin 400.cos100 + sin100.cos 400
3
2
A.
B. -1
D. - sin(a − b)
C. 1
π
π
π
π
cos + sin cos
15
10
10
15 bằng:
Câu 180: Giá trị biểu thức
2π
π
2π
π
cos
cos − sin
sin
15
5
5
5
sin
A. −1
B.
3
Câu 181: Cho α = 600 , tính E = tan α + tan
Câu 182: Đơn giản biểu thức C =
Câu 183: Cho sin α =
A.
1
2
C. 3
D.
1
2
C. 8cos 200
D. 8sin 200
1
3
+
sin100 cos100
B. 4 cos 200
A. 4sin 200
D.
α
4
B. 2
A. 1
C. 1
3
. Khi đó cos 2α bằng:
4
1
.
8
B.
7
.
4
C. −
7
.
4
1
D. − .
8
π
π
π
π
.cos + sin cos
15
10
10
15 là
Câu 184: Giá trị biểu thức
2π
π
2π
π
cos
cos − sin
.sin
15
5
15
5
sin
A. -
3
2
B. -1
C. 1
D.
3
2
Câu 185: Đẳng thức nào trong các đẳng thức sau là đồng nhất thức?
1) sin2x = 2sinxcosx
2) 1–sin2x = (sinx–cosx)2
3) sin2x = (sinx+cosx+1)(sinx+cosx–1)
4) sin2x = 2cosxcos(
A. Chỉ có 1)
B. 1) và 2)
C. Tất cả trừ 3)
π
–x)
2
D. Tất cả
Câu 186: Biết sin a =
5
3 π
π
; cos b = ( < a < π ; 0 < b < ) Hãy tính sin(a + b) .
13
5 2
2
A. 0
B.
63
65
C.
Câu 187: Nếu α là góc nhọn và sin
A.
x −1
x +1
B.
12 - 2 3
.
2+ 3
B.
D.
−33
65
α
x −1
thì tan a bằng
=
2
2x
C.
x −1
2
2
Câu 188: Giá trị của biểu thức A = tan
A.
56
65
1
x
D.
x2 −1
x
D.
12 − 2 3
.
2− 3
π
π
+ cot 2
bằng
24
24
12 + 2 3
.
2− 3
C.
12 + 2 3
.
2+ 3
Câu 189: Với giá trị nào của n thì đẳng thức sau luôn đúng
1 1 1 1 1 1
x
π
+
+
+ cos x = cos , 0 < x < .
2 2 2 2 2 2
n
2
A. 4.
Câu 190: Cho a =
A.
B. 2.
D. 6.
1
π
và (a+1)(b+1) =2; đặt tanx = a và tany = b với x, y ∈ (0; ), thế thì x+y bằng:
2
2
π
3
B.
Câu 191: Cho cos 2a =
A.
C. 8.
π
6
C.
π
4
D.
π
2
C.
3 10
16
D.
5 6
8
1
. Tính sin 2 a cos a
4
3 10
8
B.
5 6
16
1
+ 1÷.tan x là
cos2x
Câu 192: Biểu thức thu gọn của biểu thức B =
B. cot 2x .
A. tan 2x .
4
Câu 193: Ta có sin x =
A. 2.
Câu 194: Biểu thức
A. tan100+tan200
D. sin x .
a 1
b
− cos 2 x + cos 4 x với a, b ∈ ¤ . Khi đó tổng a + b bằng :
8 2
8
B. 1.
C. 3.
D. 4.
C. cot100+ cot 200
D. tan150
sin100 + sin200
bằng:
cos100 + cos200
B. tan300
Câu 195: Ta có sin8x + cos8x =
A. 1.
C. cos2x .
a b
c
+ cos 4 x + cos x với a, b ∈ ¤ . Khi đó a − 5b + c bằng:
64 16
16
B. 2.
C. 3.
D. 4.
Câu 196: Nếu α là góc nhọn và sin
x2 −1
x
A.
B.
α
x −1
thì cot α bằng:
=
2
2x
x−1
x+ 1
x2 − 1
x2 − 1
C.
1
D.
x2 + 1
Câu 197: Nếu sin2xsin3x = cos2xcos3x thì một giá trị của x là:
A. 180
Câu 198: Tính C =
B. 300
Câu 199: Cho sin a =
B. 14
D. 34
C. 2
1
π
π
với 0 < α < , khi đó giá trị của cos α + ÷ bằng
3
3
2
1
1
- .
6 2
Câu 200: Cho cos a =
A.
D. 450
α
3tan 2 α − tan α
, biết tan = 2 .
2
2
2 − 3 tan α
A. −2
A.
C. 360
6 −3.
B.
6
− 3.
6
C.
1
6− .
2
D.
3
3a
a
.Tính cos cos
2
2
4
23
16
B. B
C.
7
16
D.
23
8
π
Câu 201: Nếu sin α − cos α = − 2 − < α < 0 ÷ thì α bằng:
2
A. −
π
6
B. −
π
4
C. −
π
8
D. −
π
3
3π
+ α ÷ = ... ”. Chọn phương án đúng để điền vào dấu …?
Câu 202: “ Với mọi α , sin
2
A. cos α
C. − cos α
B. sin α
Câu 203: Với a ≠ kπ, ta có cos a.cos 2a.cos 4a... cos 16a =
A. 8.
B. 12.
C. 32.
D. − sin α
sin xa
Khi đó tích x. y có giá trị bằng
x.sin ya
D. 16.
Câu 204: Đẳng thức cho dưới đây là đồng nhất thức?
A. cos3α = 3cos3α +4cosα
B. cos3α = –4cos3α +3cosα
C. cos3α = 3cos3α –4cosα
D. cos3α = 4cos3α –3cosα
(
0
0
0
Câu 205: Tính E = tan 40 cot 20 − tan 20
A. 2
B.
1
4
)
C.
1
2
π
Câu 206: Nếu tan α + cot α = 2 0 < α < ÷ thì α bằng:
2
D. 1
A.
π
8
B.
π
6
C.
π
3
D.
π
4
Câu 207: Biểu thức nào sau đây có giá trị phụ thuộc vào biến x ?
A. cosx+ cos(x+
4π
2π
)+ cos(x+
)
3
3
C. cos2x + cos2(x+
4π
2π
) + cos2(x+
)
3
3
B. sinx + sin(x+
4π
2π
) + sin(x+
)
3
3
D. sin2x + sin2(x+
2π
4π
) + sin2(x)
3
3
Câu 208: Tính cos360 − cos 720
A. −
1
2
Câu 209: Cho cot
B. 1
a
2
B. −
Câu 210: Biểu thức M = sin
D.
1
2
Câu 211: Tính D = cos
C.
a
2
D.
a
4
1
3
π
π
π
4π
cos + sin cos
có giá trị bằng:
5
10
30
5
1
2
B. −
A. 1
C.
1
2
D.
C.
1
2
D. −1
π
2π
3π
− cos
+ cos
7
7
7
1
2
Câu 212: Biểu thức A =
A. 2 x .
1
4
π
2π
4π
6π
= a .Tính K = sin
+ sin
+ sin
14
7
7
7
A. a
A. −
C.
B. 1
sin 4 x − cos 4 x + cos 2 x
được rút gọn thành A = cos 2 α . Khi đó α bằng :
2
2(1 − cos x)
B.
x
.
3
C.
x
.
2
D. x .
Câu 213: Giá trị của biểu thức tan90–tan270–tan630+tan810 bằng:
A. 2
B.
2
C. 0,5
Câu 214: Tính giá trị của biểu thức P = sin 4 α + cos 4 α biết sin 2α =
A.
1
.
3
B. 1.
D. 4
2
3
C.
9
.
7
D.
7
.
9
C.
2
2
D.
2
8
Câu 215: Tính cos150 cos 450 cos 750
A.
2
16
B.
2
4
Câu 216: Giả sử cos 6 x + sin 6 x = a + b cos 4 x với a, b ∈ ¤ . Khi đó tổng a + b bằng:
A.
3
.
8
B.
Câu 217: Giá trị biểu thức sin
A.
1
2
1 +
÷
2
2
5
.
8
C. 1 .
D.
3
.
4
D.
1
2
1 −
÷
2
2
900
2700
bằng:
cos
4
4
2 −1
B.
C.
1 2
− 1÷
÷
2 2
3π
1
< α < π . Khi đó giá trị của tan 2a bằng
Câu 218: Cho sin a + cosa = với
2
4
A. −
3
.
4
B.
3
.
7
3
.
7
C. −
D.
3
.
4
Câu 219: Giá trị của biểu thức cot 300 + cot 400 + cot 500 + cot 600 bằng
A.
4sin100
.
3
Câu 220: Biết
B.
8cos 200
.
3
C.
4 3
.
3
D. 4 .
1
1
1
1
+
+ 2 + 2 = 6 . Khi đó giá trị của cos2x bằng
2
2
sin x cos x tan x cot x
A. −2 .
B. 2 .
C. −1 .
D. 0 .
C.
6
D.
6
2
C.
3
D.
3
3
D.
1
2
Câu 221: Tính giá trị của A = cos 750 + sin1050
A. 2 6
B.
6
4
π
5π
+ sin
9
9
Câu 222: Tính giá trị của F =
π
5π
cos + cos
9
9
sin
A. − 3
B. −
Câu 223: Nếu sin α + cos α =
A.
3
4
3
3
1
thì sin 2α bằng:
2
B. −
3
4
C.
3
8
Câu 224: Cho cos120 = sin180 + sinα0, giá trị dương nhỏ nhất của α là
A. 35 .
Câu 225: Cho sin a = −
A.
12 − 5 3
.
26
B. 42 .
C. 32 .
D. 6 .
12 3π
π
;
< a < 2π . Tính cos − a ÷.
13 2
3
B.
12 + 5 3
.
26
C.
−5 + 12 3
.
26
D.
−5 − 12 3
.
26