Tải bản đầy đủ (.doc) (7 trang)

gia tri lon nhat nho? nhat va bat dang thuc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (249.25 KB, 7 trang )

Một bài toán tìm giá trị nhỏ nhất
Tác giả: luxipe đưa lên lúc: 13:38:48 Ngày 18-01-2008
Trong giờ luyện tập, tôi gặp một bài toán như sau:
"Cho . Tìm GTNN của "
Đối với dân chuyên Toán và có thể nhiều bạn khác nữa, bài toán này tương đối dễ. Còn đối với tôi không phải dân
chuyên Toán, việc giải và mở rộng bài toán này đã đưa đến nhiều kết quả thú vị. Trước hết ta xem xét lời giải của bài
toán trên:
Cộng 2 BĐT trên ta có
. Dấu "=" xảy ra khi và chỉ khi
Tuy nhiên vấn đề đặt ra là tại sao nghĩ ra được số để thêm vào BĐT? Để giải quyết vấn đề này, sử dụng ý tưởng dùng
BĐT như trên, nhưng tôi sẽ thêm vào 1 số nào đó:
Cộng hai BĐT trên ta có:
Dấu "=" xảy ra khi và chỉ khi:
Giả sử đã tồn tại \alpha để dấu "=" xảy ra, khi đó
. Thay vào F được GTNN của F là đạt được khi .
Như vậy việc đưa số vào áp dụng BĐT là hoàn toàn có cơ sở. Từ đó tôi đã nâng bài toán lên với hệ số các số hạng là
các số dương:
"Cho . Tìm GTNN của "
Mục tiêu của chúng ta là dùng BĐT Cô-si sao cho khi cộng 2 BĐT vào, ta có vế trái là 2F cộng với 1 số hạng nào đó, còn
vế phải chứa biểu thức đã cho trong giả thiết. Rõ ràng việc đặt số đơn lẻ sẽ không đưa đến kết quả mà phải biến đổi
số hạng cộng vào mỗi BĐT
Cách đặt số hạng cộng vào này giúp triệt tiêu được c bên vế trái, nhân thêm được hệ số a vào vế phải. Ta tiếp tục cộng 2
BĐT:
Dấu "=" xảy ra khi và chỉ khi
. Khi đó . Giả sử đã có thỏa mãn dấu "=", tức là:
(1)
Khi đó theo (1) tìm được GTNN của F là

Lần này, tôi phát triển bài toán theo hướng tăng dần số mũ. Để tránh phức tạp, tôi cho các hệ số bằng 1.
"Cho . Tìm GTNN của "
Áp dụng BĐT Cô-si cho 4 số dương:


Cộng 2 BĐT:
. Dấu "=" xảy ra khi và chỉ khi:
. Khi đó (2). Giả sử tồn tại để dấu bằng xảy ra, vậy thì:
. Thay vào (2) ta có , đạt được khi x = y =

Không dừng lại ở việc phát triển hệ số, tôi nâng bài toán lên với số mũ, số ẩn, tôi tìm được lời giải cho các bài toán sau

Bài toán 1: "Cho . Tìm GTNN của "
Áp dụng BĐT Cô-si:
Cộng 3 BĐT vào:
Dáu "=" xảy ra khi và chỉ khi:
. Khi đó . Giả sử tồn tại thỏa mãn dấu "=", khi đó:
. Khi đó đạt được khi

Bài toán 2: "Cho . Tìm GTNN của "
Áp dụng BĐT Cô-si:
Cộng 3 BĐT vào:
Dấu "=" xảy ra khi và chỉ khi
.
Tiếp tục làm tương tự như các bài trên, ta thu được kết quả:
Đạt được khi .

Bài toán 3: "Cho . Tìm GTNN của "
Áp dụng BĐT Cô-si cho n số hạng:
(m số hạng , (n - m) số hạng )
(m số hạng , (n - m) số hạng )
Cộng 2 BĐT:
Tiếp tục làm tương tự như các bài trên, ta thu được kết quả:
Đạt được khi
Các phương pháp biến đổi trong chứng minh BĐT

Tác giả: minhbka đưa lên lúc: 14:09:13 Ngày 09-11-2007
1.Biến đổi tương đương : khi sử dụng phép biến dổi tương đương cần chú ý tới dấu của
BĐT khi đảo chiều hay nhân thêm biểu thức...
Ví dụ:Cho hai số a, b thỏa mãn điều kiện , chứng tỏ rằng :
Giải:
, bất đẳng thức này đúng do giả thiết
Đẳng thức xảy ra
2.Đưa về hàm số : khi đưa về hàm số ta thường sử dụng tính chất đơn điệu và liên tục
Ví dụ:Cho các số x, y thỏa mãn : và .
Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức :
Giải:
Từ giả thiết . Ta có :
Đặt với ; có
P là hàm nghịch biến trong đoạn
( đạt khi hoặc ).
( đạt khi ).
3.Sử dụng phương pháp đánh giá: đây là PP tương đối khó trong việc Cm BĐT,tùy
từng dạng bài mà có cách đánh giá khác nhau.Cần chú ý điều kiện đề bài để có hướng đi
phù hợp nhất cho bài toán
Ví dụ 1:
Cho là ba số thay đổi, nhận giá trị thuộc đoạn [0 ; 2]. Chứng minh rằng:
Giải:
Do giả thiết
(đpcm)
Đẳng thức xảy ra chẳng hạn khi
Ví dụ 2:
Chứng minh rằng với mọi số nguyên ta đều có:
Giải:
bất đẳng thức cần chứng minh đúng với .
Với , đpcm (1)

Ta có :
( đpcm).
Ví dụ 3:
Cho . Chứng minh:

×