Tải bản đầy đủ (.pdf) (10 trang)

Một số bài tập về bất đẳng thức (Phạm Công Thành Quảng Ngãi)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (473.86 KB, 10 trang )

TEST 1: BUNHIAKOPXKI AND AM-GM
“In mathematics the art of proposing a question must be held of higher value than solving it.”
Georg Cantor

PROBLEM 1: If a,b are positive numbers such that: a 2  b 2  4 then:
2018a  2017b  16140

PROBLEM 2: If a, b, c are positive numbers then:
a

3

 2018a  b  c  2020
PROBLEM 3: If a, b, c are positive numbers then:
a(2a  b)
1
ac  c) 2
(CMATH)

 (b 

PROBLEM 4: Let a, b, c are positive numbers such that abc=1. Prove that:

a

8

1
1

 3a  2ab  6 2


2

PROBLEM 5: If a, b, c are positive numbers then:

1
18 x  2 y  4 z
1
1
1




6( x  y ) (2 y  3z )( z  18 x) 12 x  2 y  z 6 x  4 y  z 6 x  2 y  2 z
PROBLEM 6: Let a, b, c > 0 such that ab  bc  ca 



3abc
. Prove that:
2018

1
2018a 2  4024ab  2015b 2



1
2018



PROLEM 7: If a, b, c are positives numbers and ab+bc+ca=abc then:



b2  2a 2
 3
ab

1 1
3
1
 ab  bc  ca  abc

a 2  b 2  ab

PROBLEM 8: Let a, b, c are positive numbers such that 
b 2  c 2  bc

c 2  a 2  ca

Find the minimum value of the empression:

a 4  b4
1
ab
 a 2  b2  ab  3 ( c )2

PROBLEM 9: If a, b, c are positive numbers then:


1
8

3
2
2
2
( 2018abc  1)
( a  4b  2)( 4b  (1009c) 2  2)( (1009c) 2  a 2  2)
3

 a1  a2  ...  a2018  1
.
2
2
2
a1  a2  ...  a2018  1

PROBLEM 10: Let a1 , a2 ,..., a2018 are real numbers satisfying: 
Find the minimum value and maximum value of a2018 .

__________THE END__________
Good luck!


RESOLUTION

Pham Cong Thanh

PROBLEM 1: If a,b are positive numbers such that: a 2  b 2  4 then:

2018a  2017b  16140

Dễ thấy a>b>0
Ta có: 4  a 2  b2  (a  b)(a  b)
1 4035
4035
1
 4035  [
(a  b)][ ( a  b)]
2 2
2
2

 4. .

Áp dụng BĐT ab  (

ab 2
) suy ra:
2

4035
1
4035  [
(a  b)][ (a  b)]  [
2
2

4035
1

(a  b)  (a  b)
2018a  2017b 2
2
2
]2  (
)
2
2

 (2018a  2017b)2  16140
 2018a  2017b  16140 (đpcm).

4036

 a  4035
Dấu “=” xảy ra khi 
b  4034

4035


PROBLEM 2: If a, b, c are positive numbers then:
a

3

 2018a  b  c  2020

Ta có: 3  2017.
Áp dụng BĐT


3  2017.


a
abc
1

 (a  b  c).
2018a  b  c
2018a  b  c
2018a  b  c

1 1 1
9
  
suy ra:
x y z x yz
a
9
9
 (a  b  c).

2018a  b  c
2020(a  b  c) 2020
a

3

 2018a  b  c  2020 . (đpcm)


Dấu “=”xảy ra khi a=b=c.

PROBLEM 3: If a, b, c are positive numbers then:
a(2a  b)
1
ac  c) 2

 (b 

Ta có: (b  ac  c) 2  ( b . b  a . c  a .

c 2
)
a

Áp dụng BĐT Bunhiakopxki, ta có: ( b. b  a . c  a .

=>

a (2a  b)

(b  ac  c) 2

a
bc

c2
a




a2
ab  ac  c 2

c 2
c2
)  (2a  b)(b  c  )
a
a


c(2c  a)
b(2b  c)
b2
c2


Tương tự:

2
2
(a  ab  c)2 ab  bc  a
(a  bc  b) 2 ac  bc  b
a(2a  b)
a2
b2
c2



=> 
2
2
2
(b  ac  c)2 ab  ac  c ab  bc  a ac  bc  b
Áp dụng BĐT Cauchy- Schward, ta có:
a(2a  b)
a2
b2
c2
(a  b  c ) 2
(a  b  c ) 2




1
2
2
2
a 2  b 2  c 2  2(ab  bc  ca ) (a  b  c )2
ac  c)2 ab  ac  c ab  bc  a ac  bc  b

 (b 

=>đpcm.
Dấu “=” xảy ra khi a=b=c.

PROBLEM 4: Let a, b, c are positive numbers such that abc=1. Prove that:


a

8

1
1

 3a  2ab  6 2
2

Ta có:

a8  3a 2  2ab  6 = (a8  1  1  1)  3a 2  2ab  3  AM GM (a 2  1)  2ab  2  AM GM 2( a  ab  1)
=>

1
1

a  3a  2ab  6 2(a  ab  1)
8

2

Tương tự:

=>

a

8


1
1
1
1


và 8
2
c  3c  2ca  6 2(c ca  1)
b  3b  2bc  6 2(b  bc  1)
8

2

1
1
1
 .
 3a  2ab  6 2
ab  a  1
2

Với abc=1 dễ chứng minh

=>

a

8


1
1

 3a  2ab  6 2
2

1

 ab  a  1  1


=>đpcm
Dấu “=” xảy ra khi a=b=c=1.

PROBLEM 5: If a, b, c are positive numbers then:

1
18 x  2 y  4 z
1
1
1




6( x  y ) (2 y  3z )( z  18 x) 12 x  2 y  z 6 x  4 y  z 6 x  2 y  2 z

BĐT 




1
(2 y  3z )  ( z  18 x)
1
1
1




6( x  y) (2 y  3z )( z  18 x) 12 x  2 y  z 6 x  4 y  z 6 x  2 y  2 z

1
1
1
1
1
1





6( x  y) 2 y  3z z  18 x 12 x  2 y  z 6 x  4 y  z 6 x  2 y  2 z

Đặt a=6x; b=2y; c=z
BĐT 

1


1

 a  3b   2a  b  c

Ta dễ dàng chứng minh BĐT trên.
Thật vậy: Áp dụng BĐT

1 1
4
 
ta có:
a b ab

1
1
4
2



a  3b a  b  2c 2(a  2b  c) a  2b  c
1
1
4
2



b  3c 2a  b  c 2(a  b  2c ) a  b  2c

1
1
4
2



c  3a a  2b  c 2(2a  b  c) 2a  b  c
Cộng vế tương ứng => đpcm.
Dấu “=” xảy ra khi a=b=c hay 6x=2y=z


PROBLEM 6: Let a, b, c > 0 such that ab  bc  ca 



Ta có:



1

2018a  4024ab  2015b

1



2018a 2  4024ab  2015b 2


Áp dụng BĐT

=>

1
2

2



3abc
. Prove that:
2018

1
2018

1
(2a  b) 2  2014(a  b) 2



1
2a  b

1 1 1
9
  
x y z x yz

1

9

1 3

3

3

1 1

1

1

 2a  b  9  a  a  b  9 ( a  b  c )  3 ( a  b  c )

Lại có ab  bc  ca 

3abc
2018

1 1 1
3
  
 a b c 2018




1



2018a  4024ab  2015b

 Đpcm
Dấu “=” xảy ra khi a  b  c  2018 .
2

2

1
2018

PROLEM 7: If a, b, c are positives numbers and ab+bc+ca=abc then:



b2  2a 2
 3
ab


Áp dụng BĐT Bunhiakopxki cho bộ số (1; 2) và (b; 2.a) , ta có:

(1  2)(b2  2a 2 )  Bunhiakopxki (b  2a)2


b 2  2a 2 




b  2a
3

b 2  2a 2 b  2a

ab
3ab
Tương tự:





c 2  2b 2 c  2b

;
bc
3bc

a 2  2c 2 a  2c

ca
3ca

b  2a c  2b a  2c 3(ab  bc  ca)
b 2  2a 2





 3 (đpcm)
ab
3ab
3bc
3ca
3abc

Dấu “=” xảy ra khi a=b=c=3.

1 1
3
1
 ab  bc  ca  abc

a 2  b 2  ab

PROBLEM 8: Let a, b, c are positive numbers such that 
b 2  c 2  bc

c 2  a 2  ca

Find the minimum value of the empression:

a 4  b4
1
ab
 a 2  b2  ab  3 ( c )2


Ta có: (a 2  b2 )(a  b)2  0  a 4  b 4  2a 3b  2ab3  2a 2b 2  0  a 4  b4  2ab(a 2  b 2  ab)

a 4  b4
 2ab

a 2  b 2  ab
b4  c 4
c4  a4

2
bc
 2ca
Tương tự: 2
;
b  c 2  bc
c 2  a 2  ca


a 4  b4
  2
  2ab (1)
a  b 2  ab
2

ab
a 2b 2 b 2 c 2 c 2 a 2
Lại có: ( )  2  2  2  2(a 2  b 2  c 2 )  AM GM 3 a 2
c
c

a
b
2

1
ab
( )   a 2 (2)

3
c
1
1 1
3
 

Mặt khác:
=> a  b  c  3
ab bc ca abc

a 4  b4
1
ab
 a2  b2  ab + 3 ( c )   a2   2ab  ( a)2  9 .
2

Từ (1) và (2) suy ra:
Vậy GTNN của

a 4  b4
1

ab
 a 2  b2  ab  3 ( c )2 là 9.

Dấu “=” xảy ra khi a=b=c=1.

PROBLEM 9: If a, b, c are positive numbers then:

1
8

3
2
2
2
( 2018abc  1)
( a  4b  2)( 4b  (1009c) 2  2)( (1009c) 2  a 2  2)
3

Đặt x=a; y=2b; z=1009c
BĐT 

1
8

( 3 xyz  1)3 ( x 2  y 2  2)( y 2  z 2  2)( z 2  x 2  2)

Thật vậy, ta có:
(1  x)(1  y )(1  z )  xyz  ( xy  yz  xz )  ( x  y  z )  1  AM GM xyz  3 3 x 2 y 2 z 2  3 3 xyz  1  ( 3 xyz  1)3




1
1

(1)
3
( 3 xyz  1) (1  x)(1  y)(1  z )

Lại có

(1  x)(1  y )(1  z )  (1  x)(1  y ). (1  y )(1  z ). (1  x)(1  z ) 

( x  y  2)( y  z  2)( x  z  2)
8




( x  y  2)( y  z  2)( x  z  2) ( 2( x2  y 2 )  2)( 2(y2  z 2 )  2)( 2(z 2  x2 )  2) ( x2  y 2  2)( y2  z 2  2)( z 2  x 2  2)


8
8
8
 (1  x)(1  y )(1  z ) 


( x 2  y 2  2)( y2  z 2  2)( z 2  x 2  2)
8


1
8

(2)
2
2
2
(1  x)(1  y )(1  z ) ( x  y  2)( y  z 2  2)( z 2  x 2  2)
Từ (1) và (2) suy ra: đpcm.

 a1  a2  ...  a2018  1
.
2
2
2
a1  a2  ...  a2018  1

PROBLEM 10: Let a1 , a2 ,..., a2018 are real numbers satisfying: 

Find the minimum value and maximum value of a2018 .

 a1  a2  ...  a2018  1
 a1  a2  ...  a2017  1  a2018

 2
2
2
2
2
2

2
a1  a2  ...  a2018  1 a1  a2  ...  a2017  1  a2018

Ta có: 

Áp dụng BĐT Bunhiakopxki, ta có:

(1  1  ...  1)(a12  a2 2  ...  a2017 2 )  ( a1  a2  ...  a2017 ) 2
2
2
2
2
 2017(a1  a2  ...  a2017 )  ( a1  a2  ...  a2017 )
2
2
 2017(1  a2018 )  (1  a2018 )
2
 2018a2018  2a2018  2016  0

 1  a2018  

1008
.
1009

Vậy GTNN của a2018 

1008
và GTLN của a2018 là 1.
1009


____________________THANKS FOR READING____________________



×