Tải bản đầy đủ (.doc) (16 trang)

De thi thu THPT quang xuong 1 thanh hoa lan 2 file word co loi giai chi tiet

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.6 KB, 16 trang )

QUẢNG XƯƠNG 1 – THANH HÓA – LẦN 2
Câu 1: Biết z1 và z2 là hai nghiệm của phương trình 2z 2 + 3z + 3 = 0. Khi đó giá trị của
z12 + z22 là
A.

9
4

B. −

9
4

C. 9

D. 4

Câu 2: Trong không gian Oxyz, cho tam giác ABC, biết A ( 1; −2; 4 ) , B ( 0; 2;5 ) , C ( 5;6;3 ) .
Tọa độ trọng tâm G của tam giác ABC là
A. G ( 2; 2; 4 )

B. G ( 4; 2; 2 )

C. G ( 3;3;6 )

D. G ( 6;3;3)

Câu 3: Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) liên tục trên đoạn [ 1; 4] , f ( 1) = 12 và
4

∫ f ' ( x ) dx = 17. Gía trị của f ( 4 )



bằng

1

A. 29

B. 5

C. 19

D. 9

Câu 4: Cho hình trụ có bán kính đáy bằng a, diện tích toàn phần bằng 8πa 2 . Chiều cao của
hình trụ bằng
A. 4a

B. 3a

C. 2a

D. 8a

Câu 5: Số giao điểm tối đa của 10 đường thẳng phân biệt là
A. 50
Câu 6: xlim
→+∞

B. 100


(

A. 0

C. 120

D. 45

C. −∞

D. +∞

)

x + 1 − x − 3 bằng
B. 2

Câu 7: Cho hàm số y = f ( x ) có đồ thị như hình vẽ bên. Phương trình f ( x ) = −3 có số
nghiệm là

A. 0

B. 1

C. 2

D. 3

Câu 8: Điểm nào sau đây thuộc cả hai mặt phẳng ( Oxy ) và mặt phẳng ( P ) : x + y + z − 3 = 0
A. M ( 1;1;0 )


B. N ( 0; 2;1)

C. P ( 0;0;3)

D. Q ( 2;1;0 )

Trang 1 – Website chuyên đề thi thử file word có lời giải


3
2
Câu 9: Giá trị lớn nhất của hàm số f ( x ) = x − 8x + 16x − 9 trên đoạn [ 1;3] là

f ( x ) = −6
A. max
[ 1;3]

B. max f ( x ) =
[ 1;3]

13
27

f ( x) = 0
C. max
[ 1;3]

Câu 10: Nguyên hàm F ( x ) của hàm số f ( x ) = 3 −


f ( x) = 5
D. max
[ 1;3]

1

sin 2 x

A. F ( x ) = 3x − tan x + C

B. F ( x ) = 3x + tan x + C

C. F ( x ) = 3x + cot x + C

D. F ( x ) = 3x − cot x + C

Câu 11: Đồ thị dưới đây là của hàm số nào?

A. y =

−x + 3
x−2

B. y =

3− x
x+2

C. y =


−x − 3
x−2

D. y =

x −3
x−2

Câu 12: Phần ảo của số phức z = 5 + 2i bằng
A. 5
Câu 13: Cho hàm số y =
A. y = 1

B. 5i

C. 2

D. 2i

x−2
Đường tiệm cận đứng của đồ thị hàm số là:
x −1
B. x = 2

C. y = 2

D. x = 1

Câu 14: Công thức tính thể tích V của khối cầu có bán kính bằng R là
A. V = 4πR 2


B. V =

4
πR 2
3

C. V =

4 3
πR
3

D. V = πR 3

Câu 15: Cho mặt phẳng ( α ) có phương trình: 2x + 4y − 3z + 1 = 0, một vecto pháp tuyến của
mặt phẳng ( α ) là
r
A. n = ( 2; 4;3)
Câu 16: Cho hàm số y =

r
B. n = ( 2; 4; −3)

r
C. n = ( 2; −4; −3)

r
D. n = ( −3; 4; 2 )


x+3
. Khẳng định nào sau đây đúng?
x+2

Trang 2 – Website chuyên đề thi thử file word có lời giải


A. Hàm số đồng biến trên ¡
B. Hàm số đồng biến trên các khoảng ( −∞; −2 ) và ( −2; +∞ )
C. Hàm số nghịch biến trên ¡ \ { 2}
D. Hàm số nghịch biến trên các khoảng ( −∞; −2 ) và ( −2; +∞ )
Câu 17: Cho hàm số y = f ( x ) xác định, liên tục trên ¡ và có bảng biến thiên sau:
x

−∞

y'

0
+

y

+∞

1


||


+
+∞

2
−∞

−3

Trong các khẳng định sau, khẳng định nào đúng?
A. Hàm số có một cực tiểu và không có cực đại
B. Hàm số có giá trị cực tiểu bằng 1
C. Hàm số có giá trị lớn nhất bằng 2 và giá trị nhỏ nhất bằng −3
D. Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = 1
1

Câu 18: Tập xác định của hàm số y = ( x − 1) 2 là
A. ( −∞; −1) ∪ ( 1; +∞ )

B. [ 1; +∞ )

C. ( 1; +∞ )

D. ( −∞;1)

Câu 19: Tập nghiệm của bất phương trình log 2 ( x + 1) < log 2 ( 3 − x ) là
A. S = ( −∞;1)

B. S = ( 1; +∞ )

C. S = ( 1;3]


D. S = ( −1;1)

Câu 20: Cho hàm số y = f ( x ) xác định và liên tục trên đoạn [ a; b ] . Diện tích hình phẳng
giới hạn bởi đồ thị hàm số y = f ( x ) , trục hoành và hai đường thẳng x = a, x = b được tính
theo công thức:
b

A. S = ∫ f ( x ) dx
a

b

B. S = ∫ f ( x ) dx
a

b

C. S = − ∫ f ( x ) dx
a

a

D. S = ∫ f ( x ) dx
b

Câu 21: Bà A gửi tiết kiệm 50 triệu đồng theo kỳ hạn 3 tháng. Sau 2 năm, bà ấy nhận được số
tiền cả gốc cả lãi là 73 triệu đồng. Hỏi lãi suất ngân hàng là bao nhiêu một tháng (làm tròn
đến hàng phần nghìn)? Biết rằng trong các tháng của kỳ hạn, chỉ cộng thêm lãi chứ không
cộng vốn và lãi tháng trước để tính lãi tháng sau, hết một kỳ hạn lãi suất cộng vào vốn để tính

lãi trong đủ một kỳ hạn tiếp theo
Trang 3 – Website chuyên đề thi thử file word có lời giải


A. 0,024

B. 0,048

C. 0,008

D. 0,016

1
2
Câu 22: Phương trình log 3 ( x + 2 ) + log 3 ( x − 5 ) + log 1 8 = 0 có tất cả bao nhiêu nghiệm
2
3
thực?
A. 1

B. 2

C. 3

D. 4

Câu 23: Cho hình chóp S.ABCD có SA ⊥ ( ABCD ) , đáy ABCD là hình vuông cạnh bằng 4,
biết SA = 3. Khoảng cách giữa 2 đường thẳng SB và AD là
A.


4
5

B.

12
5

C.

6
5

D. 4
9

1

Câu 24: Hệ số của số hạng chứa x 3 trong khai triển  + x 3 ÷ (với x ≠ 0) bằng
x

A. 54x 3

B. 36

C. 126

D. 84
x 3 − 6x 2 + mx + 2


1
Câu 25: Số gí trị nguyên dương của tham số m để hàm số y =  ÷
2

luôn đồng biến

trên khoảng ( 1;3) là:
A. 8

B. 9

C. 10

D. vô số

1
1
Câu 26: Cho A, B là hai biến cố xung khắc. Biết P ( A ) = ,P ( B) = . Tính P ( A ∪ B)
3
4
A.

7
12

B.

1
12


C.

1
7

D.

1
2

Câu 27: Cho hàm số y = x3 − 2x + 1 có đồ thị ( C) . Hệ số góc của tiếp tuyến với ( C) tại
M ( −1;2) bằng
B. −5

A. 3

C. 25

D. 1

Câu 28: Cho hình phẳng (S) giới hạn bởi đường cong có phương trình y = 2 − x2 và trục
Ox, quay (S) xung quanh Ox. Thể tích của khối tròn xoay được tạo thành bằng
A. V =

8 2π
3

B. V =

4 2π

3

C. V =


3

D. V =


3

Câu 29: Diện tích xung quanh của hình nón được sinh ra khi quay tam giác đều ABC cạnh a
xung quanh đường cao AH
A. πa

2

πa2
B.
2

C. 2πa2

D.

πa2 3
2

Trang 4 – Website chuyên đề thi thử file word có lời giải



Câu 30: Trong không gian tọa độ Oxyz, cho điểm A ( 5;4;3) . Gọi ( α ) là mặt phẳng đi qua
các hình chiếu của A lên các trục tọa độ. Phương trình của mặt phẳng ( α ) là:
A. 12x + 15y + 20z − 10 = 0
C.

B. 12x + 15y + 20z + 60 = 0

x y z
+ + =1
5 4 3

D.

x y z
+ + − 60 = 0
5 4 3

Câu 31: Cho hình chóp S.ABCD có đáy ABCD là nửa lục giác đều nội tiếp đường tròn
đường kính AB = 2a,SA = a 3 và vuông góc với mặt phẳng ABCD. Cosin của góc giữa hai
mặt phẳng ( SAD) và ( SBC) bằng
A.

2
2

2
3


B.

C.

2
4

D.

2
5

Câu 32: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng ( SAB)
và ( SAC) cùng vuông góc với đáy ( ABCD) và SA = 2a. Tính cosin của góc giữa đường
thẳng SB và mặt phẳng ( SAD)
A.

5
5

B.

2 5
5

C.

1
2


D. 1

Câu 33: Cho dãy số ( un ) thỏa mãn ln2 u6 − lnu6 = lnu4 − 1 và un+1 = un.e với mọi n ≥ 1.
Tìm u1
A. e

B. e2

Câu 34: Cho số phức z thỏa mãn

C. e−3

D. e−4

z −1
1
=
. Tìm giá trị lớn nhất của biểu thức
z + 3i
2

P = z + i + 2 z − 4 + 7i
A. 10

B. 20

C. 2 5

D. 4 5


Câu 35: Cho hàm số y = ax 3 + bx 2 + cx + d đạt cực trị tại các điểm x1 , x 2 thỏa mãn
x1 ∈ ( −1;0 ) ; x 2 ∈ ( 1; 2 ) . Biết hàm số đồng biến trên khoảng ( x1 ; x 2 ) . Đồ thị hàm số cắt trục
tung tại điểm có tung độ âm. Trong các khẳng định sau, khẳng định nào đúng?
A. a < 0, b > 0, c > 0, d < 0

B. a < 0, b < 0, c > 0, d < 0

C. a < 0, b < 0, c < 0, d < 0

D. a < 0, b > 0, c < 0, d < 0

Trang 5 – Website chuyên đề thi thử file word có lời giải


Câu 36: Cho hàm số y = f ( x) xác định và liên tục trên ¡ thỏa mãn đồng thời các điều kiện
1
x 2
sau: f ( x) > 0∀x ∈ ¡ ,f '( x) = −e .f ( x) ∀x ∈ ¡ và f ( 0) = . Phương trình tiếp tuyến của đồ
2
thị tại điểm có hoành độ x0 = ln2 là:
A. 2x + 9y − 2ln2 − 3 = 0

B. 2x − 9y − 2ln2 + 3 = 0

C. 2x − 9y + 2ln2 − 3 = 0

D. 2x − 9y − 2ln2 − 3 = 0

Câu


37:

Trong

không

gian

tọa

độ

Oxyz

cho

các

điểm

A ( 1; 2;3) , B ( 2;1;0 ) , C ( 4; −3; −2 ) , D ( 3; −2;1) , E ( 1;1; −1) . Hỏi có bao nhiêu mặt phẳng cách
đều 5 điểm trên?
A. 1

B. 4

C. 5

D. không tồn tại


Câu 38: Cho hàm số y = f ( x ) > 0 xác định, có đạo hàm trên đoạn [ 0;1] và thỏa mãn:
x

g ( x ) = 1 + 2018∫ f ( t ) dt, g ( x ) = f

2

( x) .

0

A.

1011
2

B.

1009
2

1

Tính

∫ g ( x ) dx
0

C.


2019
2

D. 505

Câu 39: Có 12 người xếp thành một hàng dọc (vị trí của mỗi người trong hàng là cố định).
Chọn ngẫu nhiên 3 người trong hàng. Tính xác suất để 3 người được chọn không có 2 người
nào đứng cạnh nhau
A.

21
55

B.

6
11

C.

55
126

D.

7
110

Câu 40: Cho x, y là các số thực dương thay đổi. Xét hình chóp S.ABC có SA = x, BC = y,
các cạnh còn lại đều bằng 1. Khi thể tích khối chóp S,ABC đạt giá trị lớn nhất thì tích x.y

bằng
A.

4
3

B.

4 3
3

C. 2 3

D.

1
3

Câu 41: Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = x 2 ( x − 9 ) ( x − 4 ) . Xét hàm số
2

y = g ( x ) = f ( x 2 ) trên ¡ . Trong các phát biểu sau:
I. Hàm số y = g ( x ) đồng biến trên khoảng ( 3; +∞ )
II. Hàm số y = g ( x ) nghịch biến trên khoảng ( −∞; −3)
III. Hàm số y = g ( x ) có 5 điểm cực trị
Trang 6 – Website chuyên đề thi thử file word có lời giải


g ( x ) = f ( 9)
IV. Min

x∈¡
Số phát biểu đúng là
A. 1

B. 2

C. 3

D. 4

Câu 42: Cho hai số phức z1 , z 2 có điểm biểu diễn lần lượt là M1 , M 2 cùng thuộc đường tròn
có phương trình x 2 + y 2 = 1 và z1 − z 2 = 1. Tính giá trị biểu thức P = z1 + z 2
A. P =

3
2
1



Câu 43: Cho

C. P =

B. P = 2

0

2
2


D. P = 3

dx
8
2
=a b−
a + ( a, b ∈ ¥ * ) . Tính a + 2b
3
3
x + 2 + x +1

A. a + 2b = 7

B. a + 2b = 8

C. a + 2b = −1

D. a + 2b = 5

x
x
Câu 44: Cho phương trình 2.5 − ( m + 2 ) 5 + 2m − 1 = 0 với m là tham số thực. Có bao nhiêu

giá trị nguyên m ∈ [ 0; 2018] để phương trình có nghiệm?
A. 2015

B. 2016

C. 2018


D. 2017

Câu 45: Trong không gian tọa độ Oxyz, cho M ( 2;0;0 ) , N ( 1;1;1) . Mặt phẳng (P) thay đổi
qua M, N và cắt các trục Oy, Oz lần lượt tại B ( 0; b;0 ) , C ( 0;0;c ) ( b > 0, c > 0 ) . Hệ thức nào
dứoi đây là đúng?
A. bc = 2 ( b + c )

B. bc =

1 1
+
b c

C. b + c = bc

D. bc = b − c

Câu 46: Trong không gian tọa độ Oxyz, cho điểm A ( 0;0; −2 )
∆:

và đường thẳng

x+2 y−2 z+3
=
=
. Phương trình mặt cầu tâm A, cắt ∆ tại hai điểm B và C sao cho
2
3
2


BC = 8 là:
A. x 2 + y 2 + ( z + 2 ) = 16

B. x 2 + y 2 + ( z + 2 ) = 25

2

2

C. ( x + 2 ) + ( y − 3) + ( z + 1) = 16
2

Câu

47:

2

Trong

không

D. ( x + 2 ) + y 2 + z 2 = 25

2

gian

2


tọa

độ

Oxy,

cho

tam

giác

ABC

biết

A ( 1;0; −1) , B ( 2;3; −1) , C ( −2;1;1) . Phương trình đường thẳng đi qua tâm đường tròn ngoại
tiếp cảu tam giác ABC và vuông góc với mặt phẳng ( ABC ) .
A.

x − 3 y −1 z − 5
=
=
3
−1
5

B.


x y−2 z
=
=
3
1
5

Trang 7 – Website chuyên đề thi thử file word có lời giải


C.

x −1 y z +1
=
=
1
−2
2

D.

x −3 y −2 z −5
=
=
3
−1
5

Câu 48: Tổng tất các nghiệm thuộc đoạn [ 0;10π] của phương trình sin 2 2x + 3sin 2x + 2 = 0
A.


105
π
2

B.

105
π
4

C.

297
π
4

299
π
4

D.

Câu 49: Cho lăng trụ ABC.A’B’C’ có thể tích bằng 6a 3 . Các điểm M, N, P lần lượt thuộc các
cạnh AA’, BB’, CC’ sao cho
A. V ' =

11 3
a
27

Cho

AM 1 BN 2
= ,
= . Tính thể tích V’ của khối đa diện ABC.MNP
AA ' 2 BB' 3

B. V ' =
hàm

số

9 3
a
16
f ( x)

C. V ' =
xác

định

11 3
a
3
trên

11 3
a
18


D. V ' =
¡ \ { −2;1}

Câu

50:

thỏa

mãn

f '( x ) =

1
1
, f ( −3) − f ( 3) = 0 và f ( 0 ) = . Giá trị biểu thức f ( −4 ) + f ( −1) − f ( 4 )
x +x−2
3
2

bằng
A.

1
1
ln 2 +
3
3


B. ln 80 + 1

C.

1 4
ln + ln 2 + 1
3 5

D.

1 8
ln + 1
3 5

Đáp án
1-B
11-A
21-D
31-C
41-C

2-A
12-C
22-C
32-B
42-D

3-A
13-D
23-B

33-D
43-B

4-B
14-C
24-D
34-B
44-B

5-D
15-B
25-B
35-A
45-A

6-A
16-D
26-A
36-A
46-B

7-D
17-D
27-D
37-C
47-A

8-D
18-C
28-A

38-A
48-A

9-B
19-D
29-B
39-B
49-C

10-C
20-A
30-C
40-A
50-A

LỜI GIẢI CHI TIẾT
Câu 1: Đáp án B
PT có 2 nghiệm: z1,2 =

− 3 ± 21i
−9
⇒ z12 + z 22 =
4
4

Câu 2: Đáp án A
Câu 3: Đáp án A
4

Ta có ∫ f ' ( x ) dx = f ( 4 ) − f ( 1) ⇒ f ( 4 ) = 17 + f ( 1) = 29

1

Câu 4: Đáp án B
Trang 8 – Website chuyên đề thi thử file word có lời giải


gt

Ta có Stp = 2πR 2 + 2πRh = 8πa 2 ⇔ 2πa 2 + 2πah = 8πa 2 ⇔ h = 3a
Câu 5: Đáp án D
Số giao điểm tối đa của 10 đường thẳng phân biệt khi không có 3 đường thẳng nào đồng quy
và không có hai đường thẳng nào song song. Và cứ hai đường thẳng ta lại có 1 giao điểm suy
ra số giao điểm chính là số cặp đường thẳng bất kì lấy từ 10 đường thẳng phân biệt. Như vậy,
2
ta có C10 = 45 giao điểm

Câu 6: Đáp án A
Câu 7: Đáp án D
Dựa vào đồ thị ta thấy đường thẳng y = −3 cắt đồ thị tại 3 điểm phân biệt. Nên pt có 3
nghiệm phân biệt
Câu 8: Đáp án D
Mặt phẳng ( Oxy ) có phương trình là: z = 0. Vậy điểm Q ( 2;1;0 ) thuộc cả hai mặt phẳng
Câu 9: Đáp án B
4

x = ∈ [ 1;3]  4  13

3
f ' ( x ) = 3x − 16x + 16 = 0 ⇔
, f  ÷ = , f ( 1) = 0, f ( 3 ) = −6


 3  27
 x = 4 ∉ [ 1;3]
2

Vậy max f ( x ) =
[ 1;3]

13
27

Câu 10: Đáp án C
Câu 11: Đáp án A
Đồ thị có tiệm cận đứng là x = 2, tiệm cận ngang y = −1. giao với trục hoành tại ( 3;0 ) giáo
3
−x + 3

với trục tung tại  0; − ÷. Hàm số y =
thỏa mãn các đặc điểm trên
2
x−2

Câu 12: Đáp án C
Câu 13: Đáp án D
Câu 14: Đáp án C
Câu 15: Đáp án B
Trang 9 – Website chuyên đề thi thử file word có lời giải


Câu 16: Đáp án D

y=

x +3
−1
⇒ y' =
<0
2
x+2
( x + 2)

Câu 17: Đáp án D
Câu 18: Đáp án C
Câu 19: Đáp án D
Với ĐK: −1 < x < 3. Ta có BPT ⇔ x + 1 < 3 − x ⇔ x < 1. Vậy tập nghiệm là ( −1;1)
Câu 20: Đáp án A
Câu 21: Đáp án D
Áp dụng công thức 73 = 50 ( 1 + r ) ta được lãi suất một quý là r =
8

8

73
− 1 ≈ 0, 0484. Do đó
50

lãi suất một tháng là r : 3 ≈ 0, 0161
Câu 22: Đáp án C

 x = −3 ( L )


 x 2 − 3x − 18 = 0
 x > −2
DK : 
, pt ⇔ ( x + 2 ) x − 5 = 8 ⇔  2
⇔ x = 6
x ≠ 5

 x − 3x − 2 = 0
 x = 3 ± 17

2
Vậy phương trình có 3 nghiệm phân biệt
Câu 23: Đáp án B
Ta có AD ⊥ AB, AD ⊥ SA ⇒ AD ⊥ SB. Từ A hạ AH ⊥ SB ⇒ d ( AD,SB ) = AH. Trong tam
giác SAB có:

1
1
1
9.16 12
=
+
=
=
2
2
2
AH
SA
AB

25
5

Câu 24: Đáp án D
9

9−k

9
1

1
Ta có  + x 3 ÷ = ∑ C9k  ÷
x
 k =0  x 

(x )

3 k

9

= ∑ C9k x 4k −9
k =0

3
Hệ số của x 3 ứng với 4k − 9 = 3 ⇔ k = 3 
→ hệ số cần tìm là C9 = 84

Câu 25: Đáp án B

Trang 10 – Website chuyên đề thi thử file word có lời giải


–truy cập Website để xem thêm chi tiết
Câu 28: Đáp án A
Giải phương trình

2 − x2 = 0 ⇔ x = ± 2.
2

(

)

Thể tích cần tìm là V = 2π ∫ 2 − x2 dx =
0

8 2
π
3

Câu 29: Đáp án B
a
Hình nón có đường sinh l = a, bán kính đáy R = .
2
πa2
Diện tích xung quanh của hình nón cần tìm là Sxq = πrl =
2
Câu 30: Đáp án C
Gợi A’, B’ C’ hình chiếu của A lên Ox, Oy, Oz. Ta có:

x y z
A '( 5;0;0) ,B'( 0;4;0) ,C'( 0;0;3) ⇒ PT ( α ) : + + = 1
5 4 3
Câu 31: Đáp án C
Gọi I là giao điểm của AD và BC
 BD ⊥ AD
⇒ BD ⊥ ( SAD) ⇒ BD ⊥ SI. Kẻ DE ⊥ SI ta có
Ta có 
 BD ⊥ SA

(

SI ⊥ BD
⇒ SI ⊥ ( BDE )

SI ⊥ DE

)

·
·
⇒ ( SAD) ,( SBC ) = ( DE,BE ) .
SA
3
DE
·
·
=
=
Ta có sinAIS

mà sinAIS
=
SI
DI
7
a 3
2
·
·
·
⇒ DE = DI.sinAIS
=
⇒ tanDEB
= 7 ⇒ cosDEB
=
4
7
Câu 32: Đáp án B
( SAB) ⊥ ( ABCD)
⇒ SA ⊥ ( ABCD) .
Do 
( SAC) ⊥ ( ABCD)
 AB ⊥ AD
⇒ AB ⊥ ( SAD)
Lại có 
 AB ⊥ SA

(

)


SA
SA
2 2 5
·
·
=
=
=
Ta có cos SB,( SAD) = cosBSA =
2
2
SB
5
5
SA + AB
Câu 33: Đáp án D
Trang 11 – Website chuyên đề thi thử file word có lời giải


Vì un+1 = un.e nên dễ thấy dãy số ( un ) là cấp số nhân có công bội q = e
ln2 u6 − ( lnu8 + lnu4 ) + 1= 0 ⇔ ln2 u6 − ( lnu8u4 ) + 1= 0 ⇔ ( lnu6 − 1) = 0
2

⇔ lnu6 = 1⇔ u6 = e ⇔ u1 = e−4
Câu 34: Đáp án B
Ta có

z −1
1

=
⇔ 2 z − 1 = z + 3i .
z + 3i
2

Gọi M là điểm biểu diễn số phức, tập hợp điểm biểu diễn số phức z là đường tròn có phương
trình ( x − 2) + ( y − 3) = 20( C)
2

2

–truy cập Website để xem thêm chi tiết

(

)

Mặt khác P = z + i + 2 z − 4 + 7i = z + i + 2 z − 4 − 7i = MA + 2MB ≤ 5 MA 2 + MB2 = 20,
dấu “=” xảy ra khi MB = 2MA. Vậy maxP = 20
Câu 35: Đáp án A
Vì hàm số y = ax 3 + bx 2 + cx + d đạt cực trị tại các điểm x1 , x 2 và hàm số đồng biến trên
khoảng ( x1 ; x 2 ) nên a < 0
Đồ thị hàm số cắt trục tung tại điểm có tung độ âm nên d < 0
Ta có y' = 2ax2 + 2bx + c . Hàm số đạt cực trị tại các điểm

x1 , x 2

thỏa mãn

x1 ∈ ( −1;0 ) ; x 2 ∈ ( 1; 2 ) nên y' = 0 ⇔ 2ax2 + 2bx + c = 0( * ) có 2 nghiệm x1 , x 2 trái dấu nên

suy ra ac < 0 ⇒ c > 0
Mặt khác (*) có 2 nghiệm phân biệt x1 , x 2 thỏa mãn x1 ∈ ( −1;0 ) ; x 2 ∈ ( 1; 2 ) suy ra
x1 + x2 > 0 ⇒ −

b
> 0⇒ b > 0
a

Câu 36: Đáp án A
f '( x) = −exf 2 ( x) ⇔ −


f '( x)
f

2

( x)

= ex ⇔

ln2



0

ln2
 f '( x) 
 1

− 2
dx = ∫ exdx ⇔ 

 f ( x) 
0
 f ( x)

ln2


÷ = ex
÷
0

( )

ln2
0

1
1
1

= 1⇔ fl( n2) = .
3
fl( n2) f ( 0)
2

 1
1

2
Vậy fl( n2) = .f '( ln2) = −eln2.fl2 ( n2) = −2 ÷ = −
3
9
 3
Trang 12 – Website chuyên đề thi thử file word có lời giải


Phương trình tiếp tuyến cần tìm: y = −

2
1
x − ln2) + hay 2x + 9y − 2ln2 − 3 = 0
(
9
3

Câu 37: Đáp án C
uuur
uuur
uuur
AB = ( 1; −1; −3) ,DC = ( 1; −1; −3) ,AD = ( 2; −4; −2) ⇒ ABCD là hình bình hành
uuur uuur uuur
 AB.AD .AE = 12 ⇒ E.ABCD là hình chóp đáy hình bình hành nên các mặt phẳng cách đều


5 điểm là
+ Mặt phẳng qua 4 trung điểm của 4 cạnh bên
+ Mặt phẳng qua 4 trung điểm lần lượt là AD, EC, AD, BC
+ Mặt phẳng qua 4 trung điểm lần lượt là EC, EB, DC, AB

+ Mặt phẳng qua 4 trung điểm lần lượt là EA, EB, AD, BC
+ Mặt phẳng qua 4 trung điểm lần lượt là EA, ED, AB, DC
Câu 38: Đáp án A
x

g ( x ) = 1 + 2018∫ f ( t ) dt ⇒ g ' ( x ) = 2018f ( x ) = 2018 g ( x ) ⇒
0

⇒2

(

)

1

g ( t ) − 1 = 2018t ⇒ g ( t ) = 1009t + 1 ⇒ ∫ g ( t ) dt =
0

g '( x )

g( x)

t

= 2018 ⇒ ∫
0

g '( x )


g( x)

t

dx = 2018 ∫ dx

1011
2

Câu 39: Đáp án B
3
Có n( Ω ) = C12

Giả sử chọn 3 người có số thứ tự trong hàng lần lượt là a, b, c
Theo giả –truy cập Website để xem thêm chi tiết
Câu 40: Đáp án A
So SB = SC = AB = AC nên tam giác SBC và ABC cân tại S và A.
 BC ⊥ SM
⇒ BC ⊥ ( SAM ) . Hạ BC ⊥ SM tại H thì
Gọi M là trung điểm của BC thì 
 BC ⊥ AM
2
2
BC ⊥ ( ABC) Ta có AM = 1− y nên S = 1 AM.BC = 1 1− y .y.
ABC
4
2
2
4


Trang 13 – Website chuyên đề thi thử file word có lời giải

0


Mặt khác vì SM = AM nên tam giác SAM cân tại M,MN = AM 2 − AN2 = 1−

mà MN.SA = SH.AM ⇔ SH =

VS.ABC

1−

MN.SA
=
AM

y2 x2

4 4

x2 + y2
.x
x 4 − x2 − y2
4
=
y2
4 − y2
1−
4


1
1 x 4 − x2 − y2 1
y2
= SH.SABC =
. 1− .y
3
3
2
4
4 − y2

1
1
1  x2 + y2 + 4 − x2 − y2  2 3
2
2
2 2
2
2
= xy 4 − x − y =
x y 4− x − y ≤

÷=
12
12
12 
3
27



(

Vmax =

)

2
2
2
2
2 3
.
khi x = y = 4 − 2x ⇔ x = y =
3
27

Vậy x.y =

4
3

Câu 41: Đáp án C
Ta có g ' ( x ) = 2xf ' ( x

2

) = 2x ( x
5


2

− 9) ( x − 4)
2

2

x = 0
= 0 ⇔  x = ±3
 x = ±2

Bảng biến thiên của hàm số y = g ( x )
x

−∞

g '( x )
g( x)



−3
0

+

−2
0

+


0
0



2
0



3
0

f ( 0)

+∞
f ( 9)

+∞
+
+∞

f ( 9)

Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( 3; +∞ ) , hàm số nghịch biến
trong khoảng ( −∞; −3) , hàm số có 3 cực trị, hàm số đạt giá trị nhỏ nhất tại x = ±3.
Vậy có 3 khẳng định đúng là kahwngr định I, II, IV
Câu 42: Đáp án D
M1 , M 2 thuộc đường tròn ( T ) có tâm O ( 0;0 ) và bán kính R = 1


Trang 14 – Website chuyên đề thi thử file word có lời giải


Ta có z1 − z 2 = 1 ⇔ M1M 2 = 1 ⇒ ∆OM1M 2 là tam giác đều cạnh bằng 1
uuuuu
r uuuuu
r
3
Suy ra P = z1 + z 2 = OM1 + OM 2 = 2OH = 2
= 3
2
Câu 43: Đáp án B
Theo giả thiết:
1


0

1

dx
=
x + 2 + x + 1 ∫0

=2 3−

(

)


1

3
3
2

x + 1 − x + 2 dx = ( x + 2 ) 2 − ( x + 1) 2 
3
0

8
2
8
2
2+ =a b−
a + ⇒ a = 2; b = 3 ⇒ a + 2b = 8
3
3
3
3

Câu 44: Đáp án B
x
Đặt t = 5 , ( t > 0 )

t 2 − 2t + 1
+ Phương trình: t − ( m + 2 ) t + 2m − 1 = 0 ( 2 ) ¬ 
→m =
= f ( t ) .(t = 2 phương trình

t−2
2

vô nghiệm). Do đó phương trình đã cho có nghiệm khi phương trình (2) có nghiệm t > 0
–truy cập Website để xem thêm chi tiết
Câu 45: Đáp án A
uuuu
r
uuur
uuur
MN = ( −1;1;1) , MB = ( −2; b;0 ) , MC = ( −2;0;c )
uuur uuur uuuu
r
Theo giả thiết 4 điểm M, N, B, C đồng phẳng nên  MB; MC  .MN = 0 ⇔ bc = 2 ( b + c )
Câu 46: Đáp án B
–truy cập Website để xem thêm chi tiết
Câu 47: Đáp án A
Ta có AB2 = 10, BC 2 = 24, AC 2 = 14 ⇒ ∆ABC vuông tại A
Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC, I ( 0; 2;0 ) .
Đường thẳng d qua tâm I và vuông góc mặt phẳng

( ABC )

đưuọc xác định

 −qua I ( 0; 2;0 )
x y−2 z
x − 3 y −1 z − 5

⇒ PT : =

= ⇔
=
=
r 1 uuur uuur



3

1
5
3

1
5

Vtcp
:
u
=
AB,
AC
=
3;

1;5
(
)




2
Vậy phương trình của d là

x − 3 y −1 z − 5
=
=
3
−1
5

Câu 48: Đáp án A

Trang 15 – Website chuyên đề thi thử file word có lời giải


π

sin 2x = −1 ⇔ x = − + kπ

sin 2x + 3sin 2x + 2 = 0 ⇔
4

sin 2x = −2 ( l )
2

Vậy tổng nghiệm là S =

3π  3π


 3π
 105π
+  + π ÷+ ... +  + 9π ÷ =
4  4
2

 4


Câu 49: Đáp án C
Trên AA’ lấy Q sao cho PQ / /AC. Ta có:
1
MQ = MA '− QA ' = AA '
6
2
1 1
11
11
V ' = VABC.MNP − VM.QNP = V − . V = V = a 3
3
3 6
18
3
Câu 50: Đáp án A
1
 3 ln

1
1
dx = ln x − 1 − ln x + 2 + C =  ln

Ta có f ( x ) = ∫
( x + 2 ) ( x − 1)
3
1
 ln
3

x −1
+ C1 , ∀x ∈ ( −∞; −2 )
x+2
x −1
+ C 2 , ∀x ∈ ( −2;1)
x+2
x −1
+ C3 , ∀x ∈ ( 1; +∞ )
x+2

–truy cập Website để xem thêm chi tiết

Trang 16 – Website chuyên đề thi thử file word có lời giải



×