Tải bản đầy đủ (.pdf) (20 trang)

04 đề thi thử THPTQG năm 2019 môn toán bắc trung nam đề số 4 file word có lời giải chi tiết

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (785.58 KB, 20 trang )

TOÁN HỌC BẮC–TRUNG–NAM

ĐỀ ÔN THI THPT QUỐC GIA 2019

ĐỀ SỐ 04

NĂM HỌC 2018-2019
Môn: TOÁN 12

Câu 1: Mệnh đề nào dưới đây sai?
1
A. x 1  2 x   , x .
8

B. x 2  2 

x2  x  1 1
C. 2
 , x
x  x 1 3

D.

Câu 2: Tập xác định của hàm số y 
A.  0;  .

1
5
 , x
x 2 2
2



x
1
 , x
x 1 2
2

x

x2

B.  ; 2 

C. 0;   \ 2

\ 2

D.

Câu 3: Bánh xe của người đi xe đạp quay được 2 vòng trong 5 giây. Hỏi trong 1 giây, bánh
xe quay được một góc bao nhiêu độ?
A. 1440

B. 2880

D. 720

C. 360

2 x  1  3  x  3


2  x
Câu 4: Hệ bất phương trình sau 
có tập nghiệm là
 x 3
 2
 x  3  2
A.  7; 

B. 

C. 7;8

D . ;8 
3
8





Câu 5: Cho góc lượng giác  . Mệnh đề nào sau đây sai?
A. tan      tan 

B. sin      sin  .



C. sin      cos  .
2



D. sin      sin 

Câu 6: Phương trình x  2  3 x  5 có nghiệm x0 

a
a
với a, b  , b  0 và
là phân số
b
b

tối giản. Trong các mệnh đề sau, mệnh đề nào đúng?
A. a  b  5 .

B. a - b  3 .

C. 2a + b  15 .

D. 3a + b  11 .

Trang 1 – Website chuyên đề thi thử file word có lời giải


Câu 7: Cho ABC . Mệnh đề nào sau đây đúng?

A. sin  A  B    sin C .

B. tan  A  B   tan C .


C cos  A  B   cos C .

D. sin 

A B 
C
  cos
2
 2 

Câu 8: Cho ba điểm A,B,C phân biệt. Đẳng thức nào sau đây đúng?

A. AB  BC  CA .

B. AB  AC  BC .

C. CA  BA  BC .

D. AB  CA  CB

1 
Câu 9: Cho góc  thỏa mãn sin   ,     . Tính cos .
3 2

A.

2 2
.
3


B. 

1
.
3

C. 

2 2
.
3

D.

1
3

3 3
Câu 10: Trong mặt phẳng tọa độ Oxy , cho tam giác ABC có trực tâm H 0;1 , M  ; 
2 2
trung điểm của AC,I 1;  1 là điểm đối xứng với tâm đường tròn ngoại tiếp tam giác ABC
qua BC .Biết IC  5 và tọa độ điểm B a ;b với B có tung độ nguyên. Tính giá trị của
biểu thức P  a + b .
A. 1.

B. 0 .

C. 1.


D. 5 .

Câu 11: Tìm m để phương trình 2sin 2 x  m.sin 2 x  2m vô nghiệm.
A. m  0; m 
C. 0  m 

4
.
3

B. m  0; m 

4
.
3

4
.
3

D. m  0 hoặc m 

4
.
3

Câu 12: Từ các chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi
một khác nhau?
A. 15 .


B. 4096 .

C. 360 .

D. 720 .



Câu 13: Biết rằng hệ số của x 4 trong khai triển nhị thức Newton  2  x  , n 
n

*



bằng

60. Tìm n .
Trang 2 – Website chuyên đề thi thử file word có lời giải


A. n  5.

B. n  6 .

C. n  7 .

D. n  8 .

Câu 14: Cho tập X  6;7;8;9 , gọi E là tập các số tự nhiên khác nhau có 2018 chữ số lập

từ các số của tập X. Chọn ngẫu nhiên một số trong tập E , tính xác suất để chọn được số
chia hết cho 3 .
A.

1
1 
1  4035 
3 2 

B.

1
1 
1  2017 
3 2 

C.

1
1 
1  4036 
3 2 

D.

1
1 
1  2018 
3 2 


Câu 15: Cho cấp số cộng  un  và gọi Sn là tổng n số hạng đầu tiên của nó. Biết S7  77
và S12 192 . Tìm số hạng tổng quát n u của cấp số cộng đó
A. un = 5 + 4n.

B. un = 3 + 2n.

C. un = 2 + 3n.

D. un = 4 + 5n.

Câu 16 : Trong sân vận động có tất cả 30 dãy ghế, dãy đầu tiên có 15 ghế, các dãy liền sau
nhiều hơn dãy trước 4 ghế, hỏi sân vận động đó có tất cả bao nhiêu ghế?
A. 2250 .

B. 1740.

Câu 17: Tính giới hạn lim

2n  1
.
3n  2

2
.
3

3
.
2


A.

B.

C. 4380 .

C.

1
.
2

D. 2190 .

D. 0 .

 1 x  1 x
khi x<0

x
Câu 18: Tìm tất cả các giá trị của m để hàm số f  x  
liên tục tại
1

x
m 
khi  0

1 x
x0.

A. m 1.

B. m  2 .

C. m  1

D. m  0.

Trang 3 – Website chuyên đề thi thử file word có lời giải


 x32
khi  x  1

Câu 19: Hàm số f  x    x  1
. Tìm tất cả các giá trị của tham số thực m
1
m 2  m  khi  x  1

4
để hàm số f x liên tục tại x 1.
A. m0;1.

B. m 0; - 1.

C. m1.

D. m0.

Câu 20: Phát biểu nào trong các phát biểu sau là đúng ?

A. Nếu hàm số y  f x có đạo hàm trái tại x 0 thì nó liên tục tại điểm đó.
B. Nếu hàm số y  f x có đạo hàm phải tại x 0 thì nó liên tục tại điểm đó.
C. Nếu hàm số y  f x có đạo hàm tại x 0 thì nó liên tục tại điểm x 0 .
D. Nếu hàm số y  f x có đạo hàm tại x 0 thì nó liên tục tại điểm đó.

 
Câu 21 : Cho hàm số y  sin 3x .cosx - sin 2x . Giá trị của y 10   gần nhất với số nào
3
dưới đây?
A. 454492 .

B. 2454493.

C. 454491.

D. 454490 .

Câu 22. Trong mặt phẳng với hệ trục tọa độ Oxy cho A2; 3  , B1;0. Phép tịnh tiến theo

u  4; 3 biến điểm A ,B tương ứng thành A,B khi đó, độ dài đoạn thẳng AB bằng
A. AB  10

B. AB10 .

C. AB  13 .

D. AB 

5 .


Câu 23: Trong mặt phẳng Oxy , cho đường tròn  C  :  x  6   y  4  12 Viết phương
2

2

trình đường tròn là ảnh của đường tròn C qua phép đồng dạng có được bằng cách thực
1
hiện liên tiếp phép vị tự tâm O tỉsố và phép quay tâm O góc 90 .
2
A.  x  2   y  3  3 .

B.  x  2   y  3  3 .

C.  x  2   y  3  6 .

D.  x  2   y  3  6

2

2

2

2

2

2

2


2

Câu 24: Cho lăng trụ ABC.ABC . Gọi M ,N lần lượt là trung điểm của AB và CC . Khi
đó CB song song với
A. AM .

B. AN .

C. BCM.

D. ACM .

Trang 4 – Website chuyên đề thi thử file word có lời giải


Câu 25: Cho tứ diện ABCD và các điểm M,N xác định
bởi AM  2 AB  3 AC ; DN  DB  xDC . Tìm x để các véc tơ AD, BC , MN đồng phẳng.
A. x  1 .

B. x  3 .

C. x  2 .

D. x  2 .

Câu 26: Cho hình chóp S.ABCD . có đáy ABCD là hình chữ nhật tâm I ,cạnh bên SA vuông
góc với đáy. H K, lần lượt là hình chiếu của A lên SC,SD . Khẳng định nào sau đây đúng?
A. AK  (SCD).


B. BD   SAC .

C. AH   SCD .

D. BC   SAC .

Câu 27: Cho hình chóp S.ABCD có đáy ABCD là hình vuông, gọi M là trung điểm
của AB.Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy
 ABCD, biết SD  2a 5 , SC tạo với mặt đáy  ABCD một góc 60 . Tính theo a khoảng
cách giữa hai đường thẳng DM và SA ?
A.

a 15
.
79

B.

a 5
.
9

C.

2a 15
.
79

D.


3a 5
.
79

Câu 28: Cho hình chóp S.ABCD . có đáy ABCD là hình thoi tâm I , cạnh a , góc BAD =
60 , SA = SB = SD =

a 3
. Gọi  là góc giữa hai mặt phẳng SBD và
2

 ABCD. Mệnh đề nào sau đây đúng?
A. tan 

5
.
5

B. tan  

5
.
5

C. tan  

3
.
2


D.   45  Câu

29: Hàm số y  sin 2 x.cos x có đạo hàm là
A. y '  sin x  3cos 2 x  1 .

B. y '  sin x  3cos 2 x  1 .

C. y '  sin x  cos 2 x  1 .

D. y '  sin x  3cos 2 x  1 .

Câu 30: Trong mặt phẳng với hệ trục tọa độ Oxy , phương trình đường tròn C có tâm nằm
trên đường thẳng d :x – 6y – 10 = 0 và tiếp xúc với hai đường thẳng có phương trình
d1 : 3x  4 y  5  0 và d2  4x  3 y  5  0 là
2

2

10  
70 
49

A.  x  10  y  7 và  x     y   
.
43  
43  5329

2

2


Trang 5 – Website chuyên đề thi thử file word có lời giải


2

2

10  
70 
7

B. .  x  10  y  49 và  x     y   
.
43  
43 
43

2

2

2

2

10  
70 
49


C. .  x  10  y  49 và  x     y   
.
43  
43  5329

2

2

2

2

10  
70 
7

D.  x  10  y  7 và  x     y   
.
43  
43 
43

2

2

Câu 31: Hàm số y 

3x  1

đồng biến trên những khoảng nào sau đây?
x 1

A. 0;.

B. ;2.

C. ;1 và 1;.

D.   ;  .

Câu 32: Cho hàm số y 

x 2  3x  1
. Tổng giá trị cực đại yCD và giá trị cực tiểu yCT của
x

hàm số trên là
A. yCD  yCT  5 .

B. yCD  yCT = -1

C. yCD  yCT  0

D. yCD  yCT   6 .

Câu 33: Cho hàm số y  f x có bảng biến thiên sau.

Hàm số đạt giá trị nhỏ nhất là f  x0  tại x0 . Khi đó x0 + f  x0  bằng
A.16 3 .


B. 20 3 .

C. 20 .

D. 8 3 .

Câu 34: Cho hàm số y  f  x  xác định trên R \  0  , liên tục trên mỗi khoảng xác định và
có bảng biến thiên như sau

Trang 6 – Website chuyên đề thi thử file word có lời giải


Số tiệm cận của đồ thị hàm số đã cho là?
A. 1.

B. 2 .

C. 0

D. 3 .

Câu 35: Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt
kê ở bốn phương án A,B,C,D dưới đây. Hỏi hàm số đó là hàm số nào?

Hàm số đạt giá trị nhỏ nhất là f (x0) tại x0 . Khi đó x0+f (x0)bằng
A. y  x3  3x .

B. y   x3  3x .


C. y   x 4  2 x 2 .

D. y  x 4  2 x 2 .

Câu 36: Cho hàm số y  f  x  xác định trên

và có đồ thị như hình vẽ sau.

Tìm tất cả các giá trị thực của tham số m để phương trình f  x   m  2018  0 có đúng hai
nghiệm thực?
A. m  2015 , m  2019 .

B. 2015  m < 2019 .

C. m  2015 , m  2019 .

D. m  2015 , m  2019

Trang 7 – Website chuyên đề thi thử file word có lời giải


Câu 37: Cho hàm số y   x3  3x  2 . Gọi A là điểm cực tiểu của đồ thị hàm số và d là
đường thẳng đi qua điểm M 0;2 có hệ số góc k. Tìm k để khoảng cách từ A đến d bằng 1
A. k  

3
.
4

B. k 


3
.
4

C. k  1 .

D.k = 1.

Câu 38: Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y  2 x  m cắt đồ thị
2x  3
tại hai điểm A,B phân biệt cho P  k12018  k22018 đạt giá trị nhỏ
x2
nhất (với là hệ số góc của tiếp tuyến tại A,B của đồ thị H

H của hàm số y 

A. m  3 .

B. m  2 .

C. m  3 .

D. m  2 .

Câu 39: Một người bán gạo muốn đóng một thùng tôn đựng gạo có thể tích không đổi
bằng 8m 3 , thùng tôn hình hộp chữ nhật có đáy là hình vuông, không nắp. Trên thị trường,
giá tôn làm đáy thùng là 100.000 / m 2 và giá tôn làm thành xung quanh thùng là 50.000 /
m 2 . Hỏi người bán gạo đó cần đóng thùng đựng gạo với cạnh đáy bằng bao nhiêu để chi
phí mua nguyên liệu là nhỏ nhất ?

A. 3m .

B. 1,5m.

Câu 40: Với giá trị nào của m thì hàm số y 

A.-2 < m < 2.

B. m  2 .

C. 2m .

D. 1m .

mx  4
đồng biến trên khoảng 1; ?
xm

m  2
C. 
.
 m  2

D. m  2 .

Câu 41: Cho hàm số y  x 4  2mx 2  2m2  4m4 có đồ thị C. Biết đồ thị C có ba điểm
cực trị A,B,C và ABCD là hình thoi, trong đó D0; - 3  , A thuộc trục tung. Khi đó m thuộc
khoảng nào?

1 9

A. m   ; 
 2 5

9 
B. m   ;2 
5 

 1
C. m   1; 
2


D. m2;3 .

Câu 42: Tìm số mặt của hình đa diện ở hình vẽ bên:

Trang 8 – Website chuyên đề thi thử file word có lời giải


A. 11.

B. 10 .

C. 12.

D. 9 .

Câu 43: Khối mười hai mặt đều là khối đa diện đều loại
A. 4;3 .


B. 3;5 .

C. 2;4.

D. 5;3 .

Câu 44: Cho hình chóp S.ABCD . có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với
mặt phẳng đáy và SA  a 6 . Tính thể tích V của khối chóp S.ABCD là
A. V 

a3 6
.
6

B. V 

a3 6
.
4

C. V 

a3 6
.
3

D. a3 6 .

Câu 45: Cho hình chóp S.ABC có SA = SB = SC, tam giác ABC là tam giác vuông tại B ,
AB  a ; BC  a 3 , mặt bên SBC tạo với đáy góc 60 . Thể tích khối chóp S.ABC là

A.

a3
.
4

B.

a3
.
6

C.

a3
.
3

D.

2a 3
.
3

Câu 46: Cho khối chóp S.ABC có đáy ABC là tam giác cân tại A , AB  a ,

BAC  120 , SBA  SCA  90 . Biết góc giữa SB và đáy bằng 60  Tính thể tích V của
khối chóp S.ABC là
A. V 


a3
.
4

B. V 

a3 3
.
4

C. V 

3a 3 3
.
4

D. V 

3a 3
.
4

Câu 47 : Cho hình chóp S.ABC có SA = SB = SC, tam giác ABC là tam giác vuông tại B ,
AB  a ; BC  a 3 , mặt bên SBC tạo với đáy góc 60  . Thể tích khối chóp S.ABC là
A. Hình lập phương.

B. Bát diện đều.

C. Tứ diện đều.


D. Lăng trụ lục giác đều.

Câu 48: Hàm số y  f x xác định trên
biến thiên như sau

\ 1;1, có đạo hàm trên

\ 1;1, và có bảng

Trang 9 – Website chuyên đề thi thử file word có lời giải


1
có bao nhiêu tiệm cận (tiệm cận đứng và tiệm cận ngang)?
f  x 1

Đồ thị hàm số y 
A. 4 .

B. 5 .

C. 2 .

D. 3 .

Câu 49: Nghiệm dương bé nhất của phương trình: 2sin 2 x  5sin x  3  0 là
A. x 


6


.

B. x 


2

C. x 

.

3
.
2

D. x 

5
.
6

Câu 50: Phương trình tiếp tuyến của đồ thị hàm số y  x 2  x  2 tại điểm có hoành độ x 
1 là
A.2x – y - 4 = 0.

B.2x – y = 0.

C.x – y - 3= 0.


D. x – y – 1 = 0.

BẢNG ĐÁP ÁN

LỜI GIẢI
Câu 1: Chọn B
Với x = 0 dễ thấy x 2  2 

1
5
 , x sai.
x 2 2
2

Câu 2: Chọn C

x  0
x  0
Hàm số xác định khi : 

x  2  0
x  2
Vậy tập xác định của hàm số D  0;   \ 2 .
Câu 3: chọn A
Ta có : trong 5 giây quay được 2  360 = 720
Trang 10 – Website chuyên đề thi thử file word có lời giải


Vậy trong 1 giây quay được :


720
 144 
5

Câu 4: chọn C

2 x  1  3  x  3
x  8
2 x  1  3x  9
 x  8


8
2  x



 x3
 2  x  2 x  6  3 x  8   x   7  x  8

3
 2
x  3  4
x  7



 x  3  2
 x  7
Câu 5: chọn B

Vì sin       sin 
Câu 6: chọn B

3x  5  0
7

x  2  3x  5    x  2  3x  5  x 
4
  x  2  3x  5

Câu 7: chọn D

C
 A B 
 A B 
sin 
  cos  
  cos
2 
2
 2 
2
Câu 8: chọn D

AB  CA  CA  AB  CB
Câu 9: chọn C

cos 2   1  sin 2  



2

8
9

     cos   0  cos   

2 2
3

Câu 10: chọn A
Gọi BB’ là đường kính của đường tròn ngoại tiếp tam giác ABC
Chứng minh được M là trung điểm của HB’
Suy ra B’( 3;2 ).
Trang 11 – Website chuyên đề thi thử file word có lời giải


+ giả thiết có IB = IC   a  1   b  1  5 1
2

2

+giả thiết  BB’ = 2IC   a  3   b  2   20  2 
2

2

Từ (1) và (2) giải hệ kết hợp với giả thuyết có B( -1;0)  a  1, b  0  P  1
Câu 11: chọn D
Xét phương trình asinx  b cos x  c  0 có nghiệm khi a 2  b2  c 2 Vậy để phương trình vô

nghiệm thì a 2  b2  c 2
Ta có :

2sin 2 x  m sin 2 x  2m  1  cos 2 x  m sin 2 x  2m
 m sin 2 x  cos 2 x  2m  1  0 *

m  0
Để phương trình  vô nghiệm thì: m   1   2m  1  3m  4m  0  
m  4
3

2

2

2

2

Câu 12: chọn C
Để được một số có 4 chữ số theo yêu cầu đề bài, ta chọn 4 chữ số trong 6 chữ số đã cho và
xếp theo một thứ tự nào đó, nghĩa là ta được một chỉnh hợp chập 4 của 6 phần tử. Vậy số
các số cần thành lập là A64  360

Câu 13: chọn B



Số hạng tổng quát trong khai triển nhị thức Newton  2  x  , n 
n




 là C

k
n

2nk 1 x k ,
k

với k  ,0  k  n , suy ra hệ số của x 4 là Cn4 2 n  4 .
Theo đề bài suy ra Cn4 2n4  60  Cn4 2n  960  .
Tới đây ta dùng phương pháp thử trực tiếp đáp án và chỉ có n 6 thỏa phương trình *
Câu 14: Chọn A
Gọi , An , Bn lần lượt là tập các số chia hết, không chia hết cho 3 .
Với mỗi số thuộc A n có hai cách thêm vào cuối một chữ số 6 hoặc một chữ số 9 để được
A n1 và hai cách thêm một chữ số 7 hoặc một chữ số 8 để được B n1 .
Với mỗi số thuộc B n có một cách thêm vào cuối một chữ số 7 hoặc một chữ số 8 để được
A n1 và có ba cách thêm một chữ số để được B n1 .
Trang 12 – Website chuyên đề thi thử file word có lời giải



 An1  2 An  Bn
 Bn1  3 An1  4 An1
B

2
A


3
B

n
n
 n1

Như vậy 

Hay An  5 An1  4 An 2
Xét dãy số an  An , , ta có a 1  2, a 2  6, an  5an1  4an2 ; n  3 .
Nên an     .4n 
Suy ra có

2 1 n
 .4 .
3 3

42018  2
số chia hết cho 3 .
3

Mà E  42018 .
Vậy P 

42018  2 1 
1 
 .1  4035 
2018

3.4
3 2 

Kẻ MH  AI và MK  SH .
Chứng minh d  M ,  SAI    MK
Tính được MH 

2a
2a 15
 MK 
5
79

Câu 28: chọn A

Trang 13 – Website chuyên đề thi thử file word có lời giải


Từ giả thiết suy ra tam giác ABD đều cạnh a .
Gọi H là hình chiếu của S trên mặt phẳng  ABCD . Do SA = SB = SD nên suy ra H cách
đều các đỉnh của tam giác ABD hay H là tâm của tam gác đều ABD .
Suy ra HI 

1
a 3
a 15
AI 
và SH  SA2  AH 2 
3
6

6

Vì ABCD là hình thoi nên HI  BD . Tam giác SBD cân tại S nên SI  BD . Do đó

 SBD  ,  ABCD   SI , AI  SIH
Trong tam vuông SHI , có tan SIH 

SH
 5 .
HI

Câu 29: chọn D
y '   sin 2 x  .cosx   cos x  .sin 2 x
'

'

 2sin x.cos 2 x  sin 3 x
 sin x.  2cos 2 x  sin 2 x   sin x.  3cos3 x  1
Câu 30: chọn C
Vì đường tròn cần tìm có tâm K nằm trên đường thẳng d nên gọi K 6a +10;a 
Mặt khác đường tròn tiếp xúc với d1 , d2 nên khoảng cách từ tâm I đến hai đường thẳng này
bằng nhau và bằng bán kính R

Trang 14 – Website chuyên đề thi thử file word có lời giải


3  6a  10   4a  5
5




4  6a  10   3a  5

5
suy ra
a  0
 22a  35  21a  35  
 a  70
43

+ Với a  0 thì K 10;0 và R  7 suy ra  C  :  x  10  y 2  49
2

10  
70 
49
70
7

 10 70 
+ Với a 
thì k  ;
và R 
suy ra  C  :  x     y   

43  
43  5329
43
43


 43 43 
2

Vậy có hai đường tròn thỏa mãn có phương trình là  C  :  x  10  y 2  49 và
2

2

10
70
49
 C  :  x     y   
43  
43  5329


Câu 31: chọn C
Hàm số xác định và liên tục trên D 
Ta có: y ' 

4

  x  1

2

\ 1  .

 0, x  1 .


Hàm số đã cho đồng biến trên các khoảng ;1 và 1;.
Câu 32: chọn D
Tập xác định : D  R \  0  .

 x  1  y  1
x2  1
Có y '  2 ; y '  0  
.
x 0
 x  1  y  5
Suy ra : yCD  yCT  6 .
Câu 33 : chọn B
Từ bảng biến thiên ta suy ra: min f  x   16 3 tại x  4 3 .
1;48

Do đó x 0  4 3 và f  x0   16 3 .
Nên x 0 + f  x0  = 4 3 + 16 3 =20 3
Trang 15 – Website chuyên đề thi thử file word có lời giải


Câu 34 : chọn A
Nhìn bảng biến thiên ta thấy chỉ có duy nhất một tiệm cận đứng là x  0
Câu 35 : chọn A
Đặc trưng của đồ thị là hàm bậc ba nên loại C, D.
Hình dáng đồ thị thể hiện a  0 nên chỉ có A phù hợp.
Mặt khác xét hàm số y  x3  3x có

x  1
+ y '  3x 2  3; y '  0  

 x  1
Suy ra hàm số đồng biến trên hai khoảng ;1 và 1; ; hàm số nghịch biến trên
khoảng 1;1. Do đó chọn A.
Câu 36: chọn A
Phương trình f  x   m  2018  0  f  x   2018  m . Đây là phương trình hoành độ giao
điểm của đồ thị hàm số y  f  x  và đường thẳng y  2018 - m (có phương song song hoặc
trùng với trục hoành).

 2018  m  3
 m  2015
Dựa vào đồ thị, ta có: 

 2018  m  1  m  2019
Câu 37 : chọn B

x  1
Đạo hàm y '  3x 2  3; y '  0  3x 2  3  0  
 x  1
Lập bảng biến thiên ta thấy tọa độ điểm cực tiểu M 1;0 .
d : y  k  x  0   2  kx  y  2  0 Phương trình đường thẳng

Theo đề:

d  A, d   1 

k  2
k 1
2

 1  k  2  k 2  1


   k  2   k 2  1  3  4k  0  k 
2

3
4

Câu 38: chọn B
Trang 16 – Website chuyên đề thi thử file word có lời giải


Hoành độ giao điểm x1 , x2 , của đường thẳng d và đồ thị H  là nghiệm của phương trình

m6

x1  x2 

2x  3

2
 2 x  m  2 x 2   m  6  x   2m  3  0  
x2
 x .x  2m  3
 1 2
2
1
y' 
2
 x  2
k


2018
1

k

2018
2

 1 


  x  2 2 
1





1
 2 

 x1.x2  2  x1  x2   4 

2018

2018

 1 



  x  2 2 
2



2018



1
1
 2
.

  x  2 2  x  2 2 
1
2





2
 2 

  2m  3  2  m  6   8 

2018


2018

 22019

Dạt được khi ( x1  2 ) =   x2  2   x1  x2  4  m  6  8  m  2
Câu 39 : chọn C
Phương pháp: Lập hàm số chi phí theo một ẩn sau đó tìm giá trị nhỏ nhất của hàm số đó.
Cách giải: Gọi a là chiều dài cạnh đáy hình vuông của hình hộp chữ nhật và b là chiều cao
8
của hình hộp chữ nhật ta có a 2b  8  a, b  0   ab  .
a
Diện tích đáy hình hộp là a 2 và diện tích xung quanh là 4ab nên chi phí để làm thùng tôn là

100a 2  50.4ab  100a 2  200ab
8
1600
 100a 2  200.  100a 2 
a
a
16 

 100  a 2    nghìn đong 
a

Áp dụng BĐT Cauchy ta có: a 2 

16
8 8 cos i
8 8
 a 2    3. 3 a 2 . .  3.4  12 .

a
a a
a a

Dấu bằng xảy ra khi và chỉ khi a 2 

16
 a  2.
a

Vậy chi phí nhỏ nhất bằng 1200000 đồng khi và chỉ khi cạnh đáy hình hộp bằng 2m .
Câu 40 : chọn B
Trang 17 – Website chuyên đề thi thử file word có lời giải


m2  4

Có y ' 

. Đây là hàm phân thức với tử đã mang dấu dương nên hàm số đồng biến

 x  m
trên 1;    m2  4  0  m   ; 2    2;  
2

.

Tuy nhiên hàm số phải xác định trên 1;     m  1;    m  1  m  2
Câu 41: chọn A
Ta có y  x 4  2mx 2  2m2  m4 .

Để đồ thị có ba điểm cực trị thì phương trình y '  0  4 x3  4mx  0 phải có 3 nghiệm
phân biệt

`

m  0
4 x3  4mx  0   2
x  m
Khi đó điều kiện cần là m  0. Ta có ba nghiệm là x  0, x  m , x   m ,
Với x  0 thì y  m4  2m2
Với x   m thì y  m4  3m2
Do A thuộc trục tung nên A  0; m4  2m 2  Giả sử điểm B nằm bên phải của hệ trục tọa độ,
khi đó B



 

m ;m4  3m2 , C  m ; m4  3m2



Ta kiểm tra được AD  BC . Do đó để ABCD là hình thoi thì trước hết ta cần AB  CD


Ta có :
CD  
AB 

 


m ;  m4  3m2    m4  2m2  

 

m ; 3   m4  3m2  

m ; m 2



m ; m 4  3m 2  3



Trang 18 – Website chuyên đề thi thử file word có lời giải


Do đó:

AB  CD 



 

m ; m 2 




m ; m 4  3m 2  3  m 2  m 4  3m 2  3

 m2  1
 m  1
  m  4m  3  0   2

m   3
m  3
4

.

2

Do điều kiện để có ba điểm cực trị là m  0 nên ta chỉ có m  1 hoặc m 

3 .

Với m  1 A  0; 1 , B 1; 2  , C  1; 2  Ta có AB  1; 1  AB  2 Tương tự ta có BD
= CD = CA  2 . Như vậy ABCD là hình thoi. Vậy m  1 thỏa mãn yêu cầu bài toán.

9   1
Do m  1  ;2  ,  1;  ,  2;3 nên các đáp án A, B, C đều sai.
2
5  
Với m 

3 Trong trường hợp này B

BD = DC = CA =

bài toán



4

 



3;0 , C  4 3;0 , A  0;3 Ta kiểm tra được AB =

9  3 . Do đó ABCD cũng là hình thoi và m 

3 thỏa mãn yêu cầu

Nhận xét. Đối với bài toán thi trắc nghiệm đòi hỏi cần tiết kiệm thời gian thì chỉ cần xét
trường hợp m  1 thì chúng ta đã có thể kết luận được đáp án cần chọn là D mà không cần
xét thêm trường hợp m  3 .

Câu 42: chọn D
Phương pháp: Quan sát hình vẽ và đếm.
Cách giải: Hình đa diện trên có 9 mặt.
Câu 43: chọn D
Khối mười hai mặt đều là khối đa diện đều loại 5;3 .
Câu 44: chọn C

Trang 19 – Website chuyên đề thi thử file word có lời giải



VSABCD

1
1
a3 6
2
 SA.dt ABCD  a 6a 
3
3
3

Trang 20 – Website chuyên đề thi thử file word có lời giải



×