Tải bản đầy đủ (.doc) (14 trang)

Các dạng bài toán liên quan đến khảo sát hàm số

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (358.1 KB, 14 trang )

September 11, 2010
[CÁC DẠNG BÀI TOÁN LIÊN QUAN ĐẾN KSHS]
Dạng 1: CÁC BÀI TOÁN VỀ TIẾP XÚC
Cho hàm số
( )
xfy
=
,đồ thị là (C). Có ba loại phương trình tiếp tuyến như sau:
Loại 1: Tiếp tuyến của hàm số tại điểm
( ) ( )
0 0
;M x y C∈
.
− Tính đạo hàm và giá trị
( )
0
'f x
.
− Phương trình tiếp tuyến có dạng:
( ) ( )
0 0 0
'y f x x x y= − +
.
Chú ý: Tiếp tuyến tại điểm
( ) ( )
0 0
;M x y C∈
có hệ số góc
( )
0
'k f x=


Loại 2: Biết hệ số góc của tiếp tuyến là
k
.
− Giải phương trình:
( )
'f x k=
, tìm nghiệm
0 0
x y⇒
.
− Phương trình tiếp tuyến dạng:
( )
0 0
y k x x y= − +
.
Chú ý: Cho đường thẳng
: 0Ax By C∆ + + =
, khi đó:
− Nếu
( )
// :d d y ax b∆ ⇒ = +
⇒ hệ số góc k = a.
− Nếu
( )
:d d y ax b⊥ ∆ ⇒ = +
⇒ hệ số góc
1
k
a
= −

.
Loại 3: Tiếp tuyến của (C) đi qua điểm
( ) ( )
;
A A
A x y C∉
.
− Gọi d là đường thẳng qua A và có hệ số góc là k, khi đó
( ) ( )
:
A A
d y k x x y= − +
− Điều kiện tiếp xúc của
( ) ( )
à d v C
là hệ phương trình sau phải có nghiệm:
( ) ( )
( )
'
A A
f x k x x y
f x k

= − +


=


Tổng quát: Cho hai đường cong

( ) ( )
:C y f x=

( ) ( )
' :C y g x=
. Điều kiện để hai đường cong tiếp xúc với
nhau là hệ sau có nghiệm.
( ) ( )
( ) ( )
' '
f x g x
f x g x

=


=


.
1. Cho hàm số
4 2
2y x x= −
a. khảo sát và vẽ đồ thị (C) của hàm số.
b. Viết phương trình tiếp tuyến ∆ của (C):
i. Tại điểm có hoành độ
2x =
.
ii. Tại điểm có tung độ y = 3.
iii. Tiếp tuyến song song với đường thẳng:

1
: 24 2009d x y− +
.
iv. Tiếp tuyến vuông góc với đường thẳng:
2
: 24 2009d x y+ +
.
2. Cho hàm số
2
3
1
x x
y
x
− − +
=
+
có đồ thị là (C).
a. Khảo sát và vẽ đồ thị (C) của hàm số trên.
b. Viết phương trình tiếp tuyến của (C):
i. Tại giao điểm của (C) với trục tung.
ii. Tại giao điểm của (C) với trụng hoành.
iii. Biết tiếp tuyến đi qua điểm A(1;−1).
iv. Biết hệ số góc của tiếp tuyến k = −13.
3. Cho hàm số
2
1
1
x x
y

x
− −
=
+
có đồ thị (C).
a. Khảo sát và vẽ đồ thị (C) của hàm số trên.
b. Viết phương trình tiếp tuyến của (C) tại điểm x = 0.

1
September 11, 2010
[CÁC DẠNG BÀI TOÁN LIÊN QUAN ĐẾN KSHS]
c. Viết phương trình tiếp tuyến của (C) tại điểm có tung độ y = 0.
d. Tìm tất cả các điểm trên trục tung mà từ đó kẻ được hai tiếp tuyến đến (C).
4. Cho hàm số y = x
3
+ mx
2
+ 1 có đồ thị (C
m
). Tìm m để (C
m
) cắt d: y = – x + 1 tại ba điểm phân biệt A(0;1),
B, C sao cho các tiếp tuyến của (C
m
) tại B và C vuông góc với nhau.
Lời giải:
Phương trình hoành độ giao điểm của d và (C
m
) là: x
3

+ mx
2
+ 1 = – x + 1

x(x
2
+ mx + 1) = 0 (*)
Đặt g(x) = x
2
+ mx + 1 . d cắt (C
m
) tại ba điểm phân biệt

g(x) = 0 có hai nghiệm phân biệt khác 0.
( )
2
4 0
2
2
0 1 0
g m
m
m
g

∆ = − >
>


⇔ ⇔



< −
= ≠



.
Vì x
B
, x
C
là nghiệm của g(x) = 0
1
B C
B C
S x x m
P x x
= + = −



= =

.
Tiếp tuyến của (C
m
) tại B và C vuông góc với nhau nên ta có:
( )
( )

1
C B
f x f x
′ ′
= −
( )
( )
3 2 3 2 1
B C B C
x x x m x m⇔ + + = −

( )
2
9 6 4 1
B C B C B C
x x x x m x x m
 
⇔ + + + = −
 

( )
2
1 9 6 4 1m m m
 
⇔ + − + = −
 

2
2 10m⇔ =
5m⇔ = ±

(nhận so với điều kiện)
5. Cho hàm số
2
1x
y
x
+
=
. Tìm tập hợp các điểm trên mặt phẳng tọa độ để từ đó có thể kẻ đến (C) hai tiếp
tuyến vuông góc.
Lời giải:
Gọi M(x
0
;y
0
). Phương trình đường thẳng d qua M có hệ số góc k là y = k(x – x
0
) + y
0
.
Phương trình hoành độ giao điểm của (C) và d:
( )
( )
2
0 0
1
, 0
x
k x x y kx
x

+
= − + ≠
( )
( )
( )
2
0 0
1 1 0 *k x y kx x⇔ − − − + =
d tiếp xúc với (C):
( )
( )
2
0 0
1
4 1 0
k
y kx k





∆ = − − − =


( )
( )
2 2 2
0 0 0 0
0 0

1
2 2 4 0 I
k
x k x y k y
y kx



⇔ + − + − =




Từ M vẽ hai tiếp tuyến đến (C) vuông góc với nhau khi (1) có hai nghiệm phân biệt thỏa mãn:
1 2
1 2
, 1
1
k k
k k



= −


( )
0
2
0

2
0
2
0 0
0
4
1
0
x
y
x
y x






⇔ = −



− ≠


0
2 2
0 0
0 0
0

4
x
x y
y x



⇔ + =




.
Vậy tập hợp các điểm thỏa mãn yêu cầu bài toán là một đường tròn:
2 2
4x y+ =
loại bỏ bốn giao điểm của
đường tròn với hai đường tiệm cận.
6. Cho hàm số
2
1
x
y
x
=
+
. (ĐH Khối−D 2007)
a. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.
b. Tìm tọa độ điểm M thuộc (C), biết tiếp tuyến của (C) tại M cắt Ox, Oy tại A, B và diện tích tam giác OAB
bằng

1
4
ĐS:
1
; 2
2
M
 
− −
 ÷
 

( )
1;1M
.

2
September 11, 2010
[CÁC DẠNG BÀI TOÁN LIÊN QUAN ĐẾN KSHS]
7. Cho hàm số
2
1
2
x x
y
x
+ −
=
+
. (ĐH Khối−B 2006)

a Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b. Viết phương trình tiếp tuyến với đồ thị (C) biết tiếp tuyến đó vuông góc với tiệm cận xiên.
ĐS: b.
2 5 5y x= − ± −
.
8. Gọi (C
m
) là đồ thị của hàm số:
3 2
1 1
3 2 3
m
y x x= − =
(*) (m là tham số). (ĐH Khối−D 2005)
a. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (*) khi m=2.
b. Gọi M là điểm thuộc (C
m
) có hoành độ bằng −1. Tìm m để tiếp tuyến của (C
m
) tại M song song với
đường thẳng
5 0x y− =
ĐS: m=4.
9. Cho hàm số
( )
3 2
3 3
m
y x mx x m C= − − +
. Định m để

( )
m
C
tiếp xúc với trục hoành.
10. Cho hàm số
( )
( )
4 3 2
1
m
y x x m x x m C= + + − − −
. Định m để
( )
m
C
tiếp xúc với trục hoành.
11. Cho đồ thị hàm số
( )
2
4
:
1
x
C y
x

=
+
. Tìm tập hợp các điểm trên trục hoành sao cho từ đó kẻ được một tiếp
tuyến đến (C).

12. Cho đồ thị hàm số
( )
3 2
: 3 4C y x x= − +
. Tìm tập hợp các điểm trên trục hoành sao cho từ đó có thể kẻ
được 3 tiếp tuyến với (C).
13. Cho đồ thị hàm số
( )
4 2
: 2 1C y x x= − +
. Tìm các điểm M nằm trên Oy sao cho từ M kẻ được 3 tiếp tuyến
đến (C).
14. Cho đồ thị hàm số
( )
3
: 3 2C y x x= − +
. Tìm các điểm trên đường thẳng y = 4 sao cho từ đó có thể kẻ
được 3 tiếp tuyến với (C).
15. Cho hàm số y = 4x
3
– 6x
2
+ 1 (1) (ĐH Khối−B 2008)
a. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
b. Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết rằng tiếp tuyến đó đi qua điểm M(–1;–9).
Lời giải:
a. D=R, y’ = 12x
2
– 12x; y’ = 0 ⇔ x = 0 hay x = 1.
BBT :

b. Tiếp tuyến qua M(−1;−9) có dạng y = k(x + 1) – 9.
Phương trình hoành độ tiếp điểm qua M có dạng :
4x
3
– 6x
2
+ 1 = (12x
2
– 12x)(x + 1) – 9.
⇔ 4x
3
– 6x
2
+ 10 = (12x
2
– 12x)(x + 1) ⇔ 2x
3
– 3x
2
+ 5 = 6(x
2
– x)(x + 1).
⇔ x = –1 hay 2x
2
– 5x + 5 = 6x
2
– 6x ⇔ x = –1 hay 4x
2
– x – 5 = 0.
⇔ x = –1 hay x =

5
4
; y’(−1) = 24;
5 15
'
4 4
y
 
=
 ÷
 
.
Vậy phương trình các tiếp tuyến qua M là: y = 24x + 15 hay y =
15
4
x
21
4

.
Dạng 2: CÁC BÀI TOÁN VỀ CỰC TRỊ

x
−∞ 0 1 +∞
y'
+ 0 − 0 +
y
1 +∞
−∞ −1
3


CT
f(x)=4x^3-6x^2+1
-7 -6 -5 -4 -3 -2 -1 1
-6
-4
-2
2
x
y
32
461
yxx
=−+
September 11, 2010
[CÁC DẠNG BÀI TOÁN LIÊN QUAN ĐẾN KSHS]
Cho hàm sô
( )
xfy
=
,đồ thị là (C). Các vấn đề về cực trị cần nhớ:
− Nghiệm của phương trình
( )
' 0f x =
là hoành độ của điểm cực trị.
− Nếu
( )
( )
0
0

' 0
'' 0
f x
f x

=


<


thì hàm số đạt cực đại tại
0
x x=
.
− Nếu
( )
( )
0
0
' 0
'' 0
f x
f x

=


>



thì hàm số đạt cực tiểu tại
0
x x=
.
Một số dạng bài tập về cực trị thường gặp
− Để hàm số
( )
y f x=
có 2 cực trị
'
0
0
y
a ≠




∆ >


.
− Để hàm số
( )
y f x=
có hai cực trị nằm về 2 phía đối với trục hoành
. 0
CĐ CT
y y⇔ <

.
− Để hàm số
( )
y f x=
có hai cực trị nằm về 2 phía đối với trục tung
. 0
CĐ CT
x x⇔ <
.
− Để hàm số
( )
y f x=
có hai cực trị nằm phía trên trục hoành
0
. 0
CĐ CT
CĐ CT
y y
y y
+ >



>

.
− Để hàm số
( )
y f x=
có hai cực trị nằm phía dưới trục hoành

0
. 0
CĐ CT
CĐ CT
y y
y y
+ <



<

.
− Để hàm số
( )
y f x=
có cực trị tiếp xúc với trục hoành
. 0
CĐ CT
y y⇔ =
.
Cách viết phương trình đường thẳng đi qua hai điểm cực trị.
Dạng 1: hàm số
3 2
y ax bx cx d= + + +
Lấy y chia cho y’, được thương là q(x) và dư là r(x). Khi đó y = r(x) là đường thẳng đi qua 2 điểm cực trị.
Dạng 2: Hàm số
2
ax bx c
y

dx e
+ +
=
+
Đường thẳng qua hai điểm cực trị có dạng
( )
( )
2
'
2
'
ax bx c
a b
y x
dx e d d
+ +
= = +
+
1. Chứng minh rằng hàm số y =
( )
2 2 4
1 1x m m x m
x m
+ − − +

luôn có có cực trị với mọi m. Tìm m sao cho hai
cực trị nằm trên đường thẳng y=2x.
2. Cho hàm số
( )
3 2

1
2 1
3
y x mx m x= − + + −
. Định m để:
a.Hàm số luôn có cực trị.
b.Có cực trị trong khoảng
( )
0;+∞
.
c.Có hai cực trị trong khoảng
( )
0;+∞
.
3. Định m để hàm số
( )
3 2 2 2
3 1 2 4y x mx m x b ac= − + − + −
đạt cực đại tại x = 2.
4. Cho hàm số y = x
3
−3x
2
+3mx+3m+4.
a.Khảo sát hàm số khi m = 0.
b.Định m để hàm số không có cực trị.
c.Định m để hàm só có cực đại và cực tiểu.
5. Cho hàm số
3 2
3 9 3 5y x mx x m= − + + −

. Định m để đồ thị hàm số có cực đại cực tiểu, viết phương trình
đường thẳng đi qua hai điểm cực trị ấy.

4
September 11, 2010
[CÁC DẠNG BÀI TOÁN LIÊN QUAN ĐẾN KSHS]
6. Cho hàm số
( )
2
1 1x m x m
y
x m
+ + − +
=

. Chứng minh rằng đồ thị hàm số luôn có cực đại, cực tiểu với mọi
m. Hãy định m để hai cực trị nằm về hai phía đối với trục hoành.
7. Cho hàm số
( ) ( )
3 2
1 2 2 2y x m x m x m= + − + − + +
. Định m để đồ thị hàm số có hai cực trị đồng thời
hoành độ của điểm cực tiểu nhỏ hơn 1.
8. Cho hàm số
2 2
2 1 3x mx m
y
x m
+ + −
=


. Định m để đồ thị hàm số có hai cực trị nằm về hai phía đối với trục
tung.
9. Cho hàm số
( )
( )
3 2
1
2 1 2
3
m
y x mx m x m C= − + − − +
. Định m để hàm số có hai điểm cực trị cùng dương.
10. Cho hàm số
( )
2 2
2 1 4
2
x m x m m
y
x
+ + + +
=
+
(1). (ĐH Khối−A năm 2007)
a. Khảo sát sự biến thiên và vẽ đồ thị của đồ thị hàm (1) số khi m=−1.
b. Tìm m để hàm số (1) có cực đại và cực tiểu, đồng thời các điểm cực trị của đồ thị cùng với gốc tọa độ
O tạo thành tam giác vuông tại O.
ĐS:
4 2 6m = − ±

.
11. Cho hàm số
( )
3 2 2 2
3 3 1 3 1y x x m x m= − − + − − −
(1), m là tham số. (ĐH Khối−B năm 2007)
a. Khảo sát sự biến thiên và vẽ đồ thị của đồ thị hàm (1) số khi m=1.
b. Tìm m để hàm số (1) có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số (1) cách đều gốc tọa
độ.
ĐS : b
1
2
m = ±
.
12. Cho hàm số
( )
4 2 2
9 10y mx m x= + − +
(1) (m là tham số).
a. Khảo sát sự biến thiên và vẽ đồ thị của đồ thị hàm số khi m=1.
b. Tìm m để đồ thị hàm số (1) có ba điểm cực trị. (ĐH Khối−B năm 2002)
a.
f(x)=x^4-8x^2+10
-30 -25 -20 -15 -10 -5 5
-20
-15
-10
-5
5
10

x
y
b. ĐS :
3
0 3
m
m
< −


< <

13. Gọi (C
m
) là đồ thị của hàm số
( )
2
1 1
1
x m x m
y
x
+ + + +
=
+
(*) (m là tham số)
a. Khảo sát sự biến thiên và vẽ đồ thị của đồ thị hàm số khi m=1.
b. Chứng minh rằng với m bất kỳ, đồ thị (C
m
) luôn có hai điểm cực đại, cực tiểu và khoảng cách giữa

hai điểm đó bằng
20
.

5

×