ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
A - LÝ THUYẾT CHUNG
1. Định nghĩa
- Một biểu thức dạng a bi với a,b R ,i 2 1 được gọi là một số phức.
- Đối với số phức z a bi, ta nói a là phần thực, b là phần ảo của z.
- Tập hợp số phức kí hiệu là
2. Hai số phức bằng nhau
- Hai số phức bằng nhau nếu phần thực và phần ảo của chúng tương ứng bằng nhau.
a c
- Công thức: a bi c di
b d
Biểu diễn hình học của số phức.
- Điểm M a ;b trong hệ tọa độ vuông góc Oxy được gọi là điểm biểu diễn của số phức z a bi.
Môđun của số phức.
- Cho số phức z a bi có điểm biểu diễn là M a; b trên mặt phẳng tọa độ Oxy . Độ dài của
véctơ OM được gọi là mô đun của số phức z và kí hiệu là z .
- Công thức z OM a bi a 2 b2 .
3. Số phức liên hợp
- Cho số phức z a bi, số phức dạng z a bi được gọi là số phức liên hợp của z.
Phép cộng, phép trừ, phép nhân, phép chia.
- Cho số phức z1 a bi, z2 c di, ta có z1 z2 a bi c di a c b d i.
- Cho số phức z1 a bi, z2 c di, ta có z1 z2 a bi c di a c b d i.
- Cho số phức z1 a bi, z2 c di, ta có z1.z2 a bi . c di ac bd ad bc i.
- Cho số phức z1 a bi, z2 c di, (với z2 0 ) tacó:
z1 a bi a bi c di ac bd bc ad
2
2
i.
z2 c di c di c di
c d2
c d2
Phương trình bậc hai với hệ số thực.
Cho phương trình bậc hai ax 2 bx c 0 với a, b, c R và a 0. Phương trình này có biệt thức
b2 4ac, nếu:
- 0 phương trình có nghiệm thực x
b
.
2a
- 0 phương trình có hai nghiệm thực phân biệt x1,2
b
.
2a
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
- 0 phương trình có hai nghiệm phức x1,2
b i
.
2a
4. Acgumen của số phức z 0
ĐỊNH NGHĨA 1
Cho số phức z 0 . Gọi M là điểm trong mặt phẳng phức biểu diễn số z . Số đo (radian) của mỗi
góc lượng giác tia đầu Ox, tia cuối OM được gọi là acgumen của z.
CHÚ Ý
Nếu là một acgumen của z (hình dưới) thì gọi acgumen của z có dạng k 2 , k Z. (người ta
thường nói: Acgumen của z 0 xác định sai khác k 2 , k Z ).
5. Dạng lượng giác của số phức
Xét số phức z a bi 0 a, b . Kí hiệu r là mô đun của z và của một acgumen của z
(hình dưới) thì dễ thấy rằng: a r cos , b r sin .
Vậy z a bi 0 có thể viết dưới dạng z r cos + isin .
ĐỊNH NGHĨA
Dạng z r cos + isin , trong đó r 0, được gọi là dạng lượng giác của số phức z 0.
Dạng z a bi 0 a, b
Nhận xét. Để tìm
cho trước ta cần:
, được gọi là dạng đại số của số phức z.
dạng lượng giác z r cos +i sin của số phức z a bi 0 a, b khác 0
1. Tìm r : đó là mô đun của z, r a 2 b2 ; số r cũng là khoảng cách từ gốc O đến điểm M biểu
diễn số z trong mặt phẳng phức.
2. Tìm : đó là một acgumen của z; là số thực sao cho cos =
a
b
và sin ; số đó cũng là
r
r
số đo một góc lượng giác tia đầu Ox, tia cuối OM .
CHÚ Ý
1. Z 1 khi và chỉ khi Z cos +i sin ;
.
2. Khi z 0 thì z r 0 nhưng acgumen của z không xác định (đôi khi coi acgumen của 0 là số
thực tùy ý và vẫn viết 0 0 cos + isin .
3. Cần để ý đòi hỏi r 0 trong dạng lượng giác r cos +i sin của số phức z 0.
6. Nhân và chia số phức lượng giác
Ta đã công thức nhân và chia số phức dưới dạng đại số. Sau đây là định lý nêu lên công thức nhân
và chia số phức dưới dạng lượng giác; chúng giúp cho các quy tắc tính toán đơn giản về nhân và
chia số phức.
ĐỊNH LÝ
Nếu z r cos +i sin ; z ' r ' cos '+i sin '
Thì zz ' rr ' cos ' +i sin ' ;
r 0, r ' 0
z r
cos ' +i sin ' ; khi r 0
z' r'
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
Nói một cách khác, để nhân các số phức dưới dạng lượng giác, ta lấy tích các mô đun và tổng
acgumen; để chia các số phức dưới dạng lượng giác ta lấy thương các mô đun và hiệu các acgumen.
Chứng minh
zz ' r cos +i sin r ' cos '+i sin ' lim
x
rr ' cos.cos ' sin .sin ' i sin .cos '+cos.sin '
rr ' cos ' +i sin ' .
1 1
cos i sin . Theo công thức nhân số phức,
z r
z
1 r
Ta có:
z. cos ' +i sin ' .
z'
z' r'
Mặt khác, ta có
7. Công thức Moa-vrơ (Moivre)
Từ công thức nhân số phức dưới dạng lượng giác, bằng quy nạp toán học dễ dàng suy ra rằng với
mọi số nguyên dương n.
r cos +i sin r n cosn +i sin n
n
Và khi r 1, ta có
cos +i sin
n
cosn +i sin n
Cả hai công thức đó đều được gọi là công thức Moa – vrơ.
8. Căn bậc hai của số phức dưới dạng lượng giác
Từ công thức Moa – vrơ, dễ thấy số phức z r cos +i sin , r 0 có căn bậc hai là
r cos +i sin và r cos +i sin r cos( + )+i sin( ) .
2
2
2
2
2
2
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
B - BÀI TẬP TRẮC NGHIỆM
DẠNG 1: TÍNH TOÁN TRÊN SỐ PHỨC
5 z i
Câu 1: Cho số phức z thỏa mãn
A.
z 1
13
2 i 1 . Tính mô đun của số phức 1 z z .
B. 15
2
C.
17
Câu 2: Cho z1 , z2 là hai số phức liên hợp của nhau và thỏa mãn
z1
z22
D. 19
và z1 z2 2 3. Tính
môđun của số phức z1.
B. z1 3.
A. z1 5.
C. z1 2.
D. z1
5
.
2
2 6i
Câu 3: Cho số phức z
, m nguyên dương. Có bao nhiêu giá trị m 1;50 để z là số
3i
thuần ảo?
m
A. 24.
B. 26.
C. 25.
D. 50.
z2 1
Câu 4: Nếu z 1 thì
z
A. lấy mọi giá trị phức.
B. là số thuần ảo.
C. bằng 0.
D. lấy mọi giá trị thực.
Câu 5: Nếu z a; a 0 thì
z2 a
z
A. lấy mọi giá trị phức.
B. là số thuần ảo.
C. bằng 0.
D. lấy mọi giá trị thực.
Câu 6: Có bao nhiêu số phức z thỏa
A. 1.
z i
z 1
1?
1 và
2 z
iz
B. 2.
C. 3.
D. 4.
Câu 7: Cho hai số phức z1 , z2 thảo mãn z1 z2 1; z1 z2 3. Tính z1 z2
A. 1
B. 2
C. 3
D. 4
C. i
D. i
C. 2017 1009i.
D. 1008 1009i.
2
3
2008
Câu 8: Tính z i i i ... i
có kết quả:
A. 0
B. 1
2
3
2017
Câu 9: Tính S 1009 i 2i 3i ... 2017i .
A. S 2017 1009i.
B. 1009 2017i.
Câu 10: Cho số phức z có mô đun bằng 2017 và w là số phức thỏa mãn biểu thức
Môđun của số phức w bằng:
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
1 1
1
.
z w zw
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
A. 1
B. 2
Câu 11: Cho số phức z thoả mãn: z
A. 21008
C. 2016
D. 2017
z
6 7i
. Tìm phần thực của số phức z 2017 .
1 3i
5
B. 21008
C. 2504
D. 22017
Câu 12: Cho các số phức z1 , z2 khác nhau thỏa mãn: z1 z2 . Chọn phương án đúng:
A.
z1 z2
0.
z1 z2
B.
z1 z2
là số phức với phần thực và phần ảo đều khác 0 .
z1 z2
C.
z1 z2
là số thực.
z1 z2
D.
z1 z2
là số thuần ảo.
z1 z2
Câu 13: Cho hai số phức u,v thỏa mãn
A.
2984
B.
u v 10
và
3u 4v 2016
2884
C.
. Tính
M 4u 3v
2894
D.
.
24
Câu 4( Số phức).Cho các số phức z thỏa mãn z 2 .Biết rằng tập hợp các điểm biểu diễn
các số phức w 3 2i 2 i z là một đường tròn.Tính bán kính r của đường tròn đó.
A. 20
B.
20
C.
7
D. 7
Câu 14: Cho ba số phức z1 , z2 , z3 thỏa mãn z1 z2 z3 1 và z1 z2 z3 1 . Mệnh đề nào sau đây
là sai.
A. Trong ba số đó có hai số đối nhau.
B. Trong ba số đó phải có một số bằng 1.
C. Trong ba số đó có nhiều nhất hai số bằng 1.
D. Tích của ba số đó luôn bằng 1.
Câu 15: Cho số phức z
m 1
m
1 m 2i 1
A. 0
. Số các giá trị nguyên
B. 1
của m để z i 1 là
C. 4
D. Vô số
Câu 16: Cho z là số phức có mô đun bằng 2017 và w là số phức thỏa mãn
1 1
1
. Mô đun
z w zw
của số phức z là:
A. 2015
B. 1
Câu 17: Cho số phức z thỏa mãn z 1 . Đặt A
A. A 1 .
B. A 1 .
C. 2017
D. 0
2z i
. Mệnh đề nào sau đây đúng?
2 iz
C. A 1 .
D. A 1 .
Câu 18: Cho số phức z thỏa mãn điều kiện z 2 4 2 z . Khẳng định nào sau đây là đúng?
A.
3 1
3 1
z
.
6
6
B.
5 1 z 5 1.
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
6 1 z 6 1.
C.
2 1
2 1
z
.
3
3
D.
Câu 19: Cho z1 , z2 , z3 là các số phức thỏa mãn z1 z2 z3 0 và z1 z2 z3 1. Khẳng định nào
dưới đây là sai ?
A. z13 z23 z33 z13 z23 z33 .
B. z13 z23 z33 z13 z23 z33 .
C. z13 z23 z33 z13 z23 z33 .
D. z13 z23 z33 z13 z23 z33 .
Câu 20: Cho z1 , z2 , z3 là các số phức thỏa z1 z2 z3 1. Khẳng định nào dưới đây là đúng?
A. z1 z2 z3 z1 z2 z2 z3 z3 z1 .
B. z1 z2 z3 z1 z2 z2 z3 z3 z1 .
C. z1 z2 z3 z1 z2 z2 z3 z3 z1 .
D. z1 z2 z3 z1 z2 z2 z3 z3 z1 .
Câu 21: Tìm số phức z có z 1 và z i max :
B. 1
A. 1
C. i
Câu 22: Tìm phần thực của số phức z 1 i , n
n
D. i
thỏa mãn phương trình:
log 4 n 3 log 4 n 9 3
A. 5
B. 6
C. 7
Câu 23: Cho hai số phức phân biệt z1 ; z2 thỏa mãn điều kiện
D. 8
z1 z2
là số ảo. Khẳng định nào sau đây
z1 z2
đúng?
A. z1 1; z2 1
B. z1 z2
C. z1 z2
D. z1 z2
Câu 24: Trong mặt phẳng phức Oxy , các số phức z thỏa z 2i 1 z i . Tìm số phức z được biểu
diễn bởi điểm M sao cho MA ngắn nhất với A 1,3 .
A. 3 i .
B. 1 3i .
C. 2 3i .
D. 2 3i .
Câu 25: Trong các số phức z thỏa mãn z 1. Tìm số phức z để 1 z 3 1 z đạt giá trị lớn nhất.
4 3
4 3
A. z i, z i.
5 5
5 5
C. z
4 3
4 3
i, z i.
5 5
5 5
3
3
B. z i, z i.
5
5
3
4 3
D. z i, z i.
5
5 5
z1 z2 z3 0
2
2
2
Câu 26: Cho 3 số phức z1; z2 ; z3 thỏa
2 2 . Tính A z1 z2 z2 z3 z3 z1
z1 z2 z3
3
A.
2 2
3
B. 2 2
C.
8
3
Câu 27: Xét số phức z thỏa 2 z 1 3 z i 2 2 . Mệnh đề nào dưới đây đúng:
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
D.
8 3
3
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
A.
3
z 2
2
B. z 2
Câu 28: Xét số phức z thỏa mãn 1 2i z
A.
3
z 2.
2
B. z 2.
C. z
1
2
D.
1
3
z
2
2
10
2 i. Mệnh đề nào dưới đây đúng?
z
1
1
3
C. z .
D. z .
2
2
2
z 1
Câu 29: Gọi z1 , z2 , z3 , z4 là nghiệm của phương trình
1 . Tính giá trị của biểu thức:
2z i
4
P z12 1 z22 1 z32 1 z42 1 .
A. 1.
B.
19
.
7
C.
17
.
9
D. 2.
Câu 30: Tính module của z 1 2i 3i 2 4i 3 ... 2017.i 2016 .
A. z 2036164
B. z 2030113
C. z 2034145
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
D. z 2032130
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
HƯỚNG DẪN GIẢI
DẠNG 1: TÍNH TOÁN TRÊN SỐ PHỨC
5 z i
Câu 1: Cho số phức z thỏa mãn
A.
z 1
13
2 i 1 . Tính mô đun của số phức 1 z z .
B. 15
2
C.
17
D. 19
Hướng dẫn giải:
Giả sử z a bi
1
5 a bi i
a bi 1
2 i 5a 5i b 1 2a 2bi 2 ai bi 2 i
3a 2 b 0 a 1
3a 2 b i 5b 5 2b a 1 0
z 1 i
3b a 4 0 b 1
1 1 i 1 2i 1 2 3i 4 9 13
Chọn A.
Câu 2: Cho z1 , z2 là hai số phức liên hợp của nhau và thỏa mãn
z1
z22
và z1 z2 2 3. Tính
môđun của số phức z1.
B. z1 3.
A. z1 5.
C. z1 2.
D. z1
5
.
2
Hướng dẫn giải:
Gọi z1 a bi z2 a bi; a ; b
. Không mất tính
tổng quát ta gọi b 0.
Do z1 z2 2 3 2bi 2 3 b 3.
Do z1 , z2 là hai số phức liên hợp của nhau nên z1.z2 , mà
Ta có: z13 a bi a3 3ab2 3a 2b b3 i
3
z1
z13
z22 z1 z2 2
z13 .
b 0
3a 2b b3 0 2
a 2 1.
2
3a b
Vậy z1 a 2 b2 2.
Chọn C.
2 6i
Câu 3: Cho số phức z
, m nguyên dương. Có bao nhiêu giá trị m 1;50 để z là số
3i
thuần ảo?
m
A. 24.
B. 26.
C. 25.
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
D. 50.
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
Hướng dẫn giải:
2 6i
m
m m
Ta có: z
(2i) 2 .i
3i
z là số thuần ảo khi và chỉ khi m 2k 1, k
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Chọn C.
m
Câu 4: Nếu z 1 thì
(do z 0; m
*
).
z2 1
z
A. lấy mọi giá trị phức.
B. là số thuần ảo.
C. bằng 0.
D. lấy mọi giá trị thực.
Hướng dẫn giải:
Ta có:
z2 1
1
z
z
z z
z 2 z z là số thuần ảo.
z
z
z.z
z
Chọn B.
Câu 5: Nếu z a; a 0 thì
z2 a
z
A. lấy mọi giá trị phức.
B. là số thuần ảo.
C. bằng 0.
D. lấy mọi giá trị thực.
Hướng dẫn giải:
Ta có:
z 2 a2
a
a2 z
a2 z
z z
z 2 z z là số thuần ảo.
z
z
z .z
z
Chọn B.
Câu 6: Có bao nhiêu số phức z thỏa
A. 1.
z i
z 1
1?
1 và
2 z
iz
B. 2.
C. 3.
D. 4.
Hướng dẫn giải:
z 1
3
x
i z 1
z
1
i
z
x
y
3 3
2
z i.
Ta có:
2 2
4 x 2 y 3 y 3
z i 2 z
z i 1
2
2 z
Chọn A.
Câu 7: Cho hai số phức z1 , z2 thảo mãn z1 z2 1; z1 z2 3. Tính z1 z2
A. 1
B. 2
C. 3
D. 4
Nhận xét: Bài này nhìn vào có vẻ khá khó, nhưng các em cần phải bình tĩnh, chỉ cần gọi
z1 a1 bi1 ;z 2 a 2 b2i a1 a, 2 b,1 b,2 sau đó viết hết các giả thiết đề bài cho:
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
a12 b12 a2 2 b22 1
z1 z2 1
2
2
z
z
3
1 2
a1 a2 b1 b2 3
Và viết cái cần tính ra z1 z2 a1 a2 b1 b2 . Hãy quan sát cái cần tính và thấy
rằng chỉ cần bình phương lên là có thể dùng được giả thiết.
2
2
2
Hướng dẫn giải:
Ta có: z1 a1 b1i; z2 a2 b2i a1 , a2 , b1 , b2
a12 b12 a2 2 b22 1
2
2
z1 z2 1
2 a1b1 a2b2 1 a1 a2 b1 b2 1
2
2
z1 z2 3
a1 a2 b1 b2 3
Vậy: z1 z2 a1 a2 b1 b2 1.
2
2
2
Chọn A.
Câu 8: Tính z i i 2 i3 ... i 2008 có kết quả:
A. 0
C. i
B. 1
D. i
Hướng dẫn giải:
Ta có iz i 2 i3 ... i 2008 i 2009 và z i i 2 i3 ... i 2008 .
Suy ra z i 1 i 2009 i i i 2008 1 0 z 0
Chọn A.
Câu 9: Tính S 1009 i 2i 2 3i3 ... 2017i 2017 .
A. S 2017 1009i.
B. 1009 2017i.
C. 2017 1009i.
D. 1008 1009i.
Hướng dẫn giải:
Chọn C.
Ta có
S 1009 i 2i 2 3i 3 4i 4 ... 2017i 2017
1009 4i 4 8i8 ... 2016i 2016 i 5i 5 9i 9 ... 2017i 2017
2i 2 6i 6 10i10 ... 2014i 2014 3i 3 7i 7 11i11 ... 2015i 2015
504
505
504
504
n 1
n 1
n 1
n 1
1009 4n i 4n 3 4n 2 i 4n 1
1009 509040 509545i 508032 508536i 2017 1009i.
Cách khác:
Đặt
f x 1 x x 2 x3 .... x 2017
f x 1 2 x 3x 2 ... 2017 x 2016
xf x x 2 x 2 3x 3 ... 2017 x 2017 1
Mặt khác:
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
x 2018 1
x 1
2018 x 2017 x 1 x 2018 1
f x 1 x x 2 x 3 .... x 2017
f x
x 1
2018 x 2017 x 1 x 2018 1
xf x x.
2
2
x 1
Thay x i vào 1 và 2 ta được:
2018i 2017 i 1 i 2018 1
2018 2018i 2
S 1009 i.
1009 i
2017 1009i
2
2i
i 1
2
Câu 10: Cho số phức z có mô đun bằng 2017 và w là số phức thỏa mãn biểu thức
1 1
1
.
z w zw
Môđun của số phức w bằng:
A. 1
B. 2
C. 2016
D. 2017
Hướng dẫn giải:
z w zw 0
1 1
1
zw
1
0
Từ
z w zw
zw
zw
zw z w
2
1
3
z 2 w2 zw 0 z 2 zw w2 w2 0
4
4
2
2
1
3
1 i 3w
z w w2 z w
2
4
2 2
2
2
2
1 i 3
w i 3w
z
Từ z
z
w
w=
2
2 2
2
1 i 3
2
2
Suy ra: w
2017
2017
1 3
4 4
Chọn D.
Câu 11: Cho số phức z thoả mãn: z
A. 21008
z
6 7i
. Tìm phần thực của số phức z 2017 .
1 3i
5
B. 21008
C. 2504
D. 22017
Hướng dẫn giải:
Cho số phức z thoả mãn: z
z
6 7i
. Tìm phần thực của số phức z 2013 .
1 3i
5
Gọi số phức z a bi (a, b ) z a bi thay vào (1) ta có a bi
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
a bi 6 7i
1 3i
5
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
(a bi)(1 3i) 6 7i
10a 10bi a 3b i (b 3a) 12 14i
10
5
9a 3b i (11b 3a) 12 14i
a bi
9a 3b 12
a 1
11b 3a 14
b 1
a b 1 z 1 i z 2017 (1+i)4
504
1 i 4 1 i 21008 21008 i
504
Chọn B.
Câu 12: Cho các số phức z1 , z2 khác nhau thỏa mãn: z1 z2 . Chọn phương án đúng:
A.
z1 z2
0.
z1 z2
B.
z1 z2
là số phức với phần thực và phần ảo đều khác 0 .
z1 z2
C.
z1 z2
là số thực.
z1 z2
D.
z1 z2
là số thuần ảo.
z1 z2
Hướng dẫn giải:
Chọn D.
Phương pháp tự luận:
Vì z1 z2 và z1 z2 nên cả hai số phức đều khác 0 . Đặt w
z1 z2
và z1 z2 a , ta
z1 z2
có
a2 a2
z1 z2 z1 z2 z1 z2 z1 z2
w
2
w
2
z2 z1
z1 z2 z1 z2 a a
z1 z2
Từ đó suy ra w là số thuần ảo.
Chọn D.
Phương pháp trắc nghiệm:
Số phức z1 , z2 khác nhau thỏa mãn z1 z2 nên chọn z1 1; z2 i , suy ra
z1 z2 1 i
i
z1 z2 1 i
là số thuần ảo.
Câu 13: Cho hai số phức u,v thỏa mãn
A.
2984
B.
u v 10
và
3u 4v 2016
2884
. Tính
2894
C.
D.
Hướng dẫn giải:
Ta có z z.z . Đặt N 3u 4v .
2
Khi đó N 2 3u 4v 3u 4v 9 u 16 v 12 uv vu .
2
2
Tương tự ta có M 2 16 u 9 v 12 uv vu .
2
2
M 4u 3v
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
24
.
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
Do đó M 2 N 2 25 u v
2
2
5000 .
Suy ra M 2 5000 N 2 5000 2016 2984 M 2984 .
Câu 4( Số phức).Cho các số phức z thỏa mãn z 2 .Biết rằng tập hợp các điểm biểu diễn
các số phức w 3 2i 2 i z là một đường tròn.Tính bán kính r của đường tròn đó.
A. 20
B.
20
C.
7
D. 7
Hướng dẫn giải:
Chọn B.
Đặt w x yi, x, y
w 3 2i 2 i z x yi 3 2i 2 i z
z
x 3 y 2 i
2i
2x y 8 x 2 y 1
2x y 8 x 2 y 1
i
2
5
5
5
5
2
2
x 2 y 2 6 x 4 y 7 0 x 3 y 2 20
2
2
Bán kính của đường tròn là r 20
Câu 14: Cho ba số phức z1 , z2 , z3 thỏa mãn z1 z2 z3 1 và z1 z2 z3 1 . Mệnh đề nào sau đây
là sai.
A. Trong ba số đó có hai số đối nhau.
B. Trong ba số đó phải có một số bằng 1.
C. Trong ba số đó có nhiều nhất hai số bằng 1.
D. Tích của ba số đó luôn bằng 1.
Hướng dẫn giải:
Ta có: z1 z2 z3 1 1 z1 z2 z3 .
Nếu 1 z1 0 thì z2 z3 0 z2 z3 .
Nếu 1 z1 0 thì điểm P biểu diễn số phức 1 z1 z2 z3 không trùng với góc tọa độ O.
Gọi M là điểm biểu diễn của số phức z1 và A là điểm biểu diễn của số 1.
Khi đó ta có OA OM OP (do P là điểm biểu diễn của số 1 z1 ) nên OAPM là hình
bình hành. Mà z1 z2 z3 1 nên các điểm biểu diễn cho ba số z1 , z2 , z3 đều nằm trên
đường tròn đơn vị. Ta cũng có OA OM 1 nên OAPM là hình thoi. Khi đó ta thấy M, A là
giao điểm của đường trung trực đoạn OP với đường tròn đơn vị.
Tương tự do P cũng là điểm biểu diễn của z2 z3 , nếu M’ và A’ là hai điểm biểu diễn của số
z2 , z3 thì ta cũng có M’, A’ là giao điểm đường trung trực của OP và đường tròn đơn vị.
Vậy M ' M , A' A hoặc ngược lại. Nghĩa là z2 1, z3 z1 hoặc z3 1, z2 z1 .
Do đó A, B là mệnh đề đúng.
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
C đúng là hiển nhiên, vì nếu ba số đều 1 một thì tổng bằng 3.
D sai vì với z1 1, z2
2
2
2
2
i, z 3
i thỏa hai tính chất trên của đề bài nhưng
2
2
2
2
z1 z2 z3 1 .
Chọn D.
Câu 15: Cho số phức z
m 1
m
1 m 2i 1
A. 0
. Số các giá trị nguyên
B. 1
của m để z i 1 là
C. 4
D. Vô số
Hướng dẫn giải:
Ta có z i
z i
m 1 i 1 2mi m 3m 1 m 1 i
m 1
i
1 m 2i 1
1 m 2i 1
1 m 2mi
3m 1 m 1 i 3m 1 m 1 i
1
1 m 2mi
1 m 2mi
3m 1 m 1 i 1 m 2mi 3m 1 m 1 1 m 4m 2
2
5m2 6m 1 0 1 m
2
2
1
5
Vì m Không có giá trị của m thỏa mãn.
Câu 16: Cho z là số phức có mô đun bằng 2017 và w là số phức thỏa mãn
1 1
1
. Mô đun
z w zw
của số phức z là:
A. 2015
C. 2017
B. 1
D. 0
Hướng dẫn giải:
1 1
1
ta suy ra z 2 w 2 zw 0
z w zw
2
2
1 i 3
w i 3w
z
z
w
2 2
2
2
Từ
Lấy mô đun hai vế ta có z w 2017.
Chọn C.
Câu 17: Cho số phức z thỏa mãn z 1 . Đặt A
A. A 1 .
2z i
. Mệnh đề nào sau đây đúng?
2 iz
B. A 1 .
C. A 1 .
Hướng dẫn giải:
Chọn A.
Đặt Có a a bi, a, b
a2 b2 1 (do
z 1)
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
D. A 1 .
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
4a 2 2b 1
2 z i 2a 2b 1 i
A
2
2 iz
2 b ai
2 b a2
Ta chứng minh
Thật vậy ta có
4a 2 2b 1
2 b
2
2 b
2
2
1.
a2
4a 2 2b 1
2
2
1 4a 2 2b 1 2 b a 2 a 2 b 2 1
2
a2
2
Dấu “=” xảy ra khi a 2 b2 1 .
Vậy A 1 .
Câu 18: Cho số phức z thỏa mãn điều kiện z 2 4 2 z . Khẳng định nào sau đây là đúng?
A.
3 1
3 1
z
. B.
6
6
5 1 z 5 1.
C.
6 1 z 6 1. D.
2 1
2 1
z
.
3
3
Hướng dẫn giải:
Áp dụng bất đẳng thức u v u v , ta được
2 z 4 z 2 4 4 z z 2 z 4 0 z 5 1.
2
2
2 z z z 2 4 z 2 4 z 2 z 4 0 z 5 1.
2
2
Vậy, z nhỏ nhất là
5 1, khi z i i 5 và z lớn nhất là
5 1, khi z i i 5.
Chọn B.
Câu 19: Cho z1 , z2 , z3 là các số phức thỏa mãn z1 z2 z3 0 và z1 z2 z3 1. Khẳng định nào
dưới đây là sai ?
A. z13 z23 z33 z13 z23 z33 .
B. z13 z23 z33 z13 z23 z33 .
C. z13 z23 z33 z13 z23 z33 .
D. z13 z23 z33 z13 z23 z33 .
Hướng dẫn giải:
Chọn D.
Cách 1: Ta có: z1 z2 z3 0 z2 z3 z1
z1 z2 z3
3
z13 z23 z33 3 z1 z2 z1z3 z1 z2 z3 3z2 z3 z2 z3
z13 z23 z33 3z1 z2 z3 z13 z23 z33 3z1 z2 z3 .
z13 z23 z33 3z1 z2 z3 3 z1 z2 z3 3
Mặt khác z1 z2 z3 1 nên z1 z2 z3 3 . Vậy phương án D sai.
3
3
3
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
Cách 2: thay thử z1 z2 z3 1 vào các đáp án, thấy đáp án D bị sai
Câu 20: Cho z1 , z2 , z3 là các số phức thỏa z1 z2 z3 1. Khẳng định nào dưới đây là đúng?
A. z1 z2 z3 z1 z2 z2 z3 z3 z1 .
B. z1 z2 z3 z1 z2 z2 z3 z3 z1 .
C. z1 z2 z3 z1 z2 z2 z3 z3 z1 .
D. z1 z2 z3 z1 z2 z2 z3 z3 z1 .
Hướng dẫn giải:
Chọn A.
Cách 1: Kí hiệu Re : là phần thực của số phức.
Ta có
z1 z2 z3 z1 z2 z3 2 Re z1 z2 z2 z3 z3 z1 3 2 Re z1 z2 z2 z3 z3 z1 (1).
2
2
2
2
z1 z2 z2 z3 z3 z1 z1 z2 z2 z3 z3 z1 2 Re z1 z2 z2 z3 z2 z3 z3 z1 z3 z1 z1 z2
2
2
2
2
z1 . z2 z2 . z3 z3 . z1 2 Re z1 z2 z3 z2 z3 z1 z3 z1 z2
2
2
2
2
2
2
2
2
2
3 2Re z1 z3 z2 z1 z3 z2 3 2Re z1 z2 z3 z3 z3 z1 (2).
Từ 1 và 2 suy ra z1 z2 z3 z1 z2 z2 z3 z3 z1 .
Các h khác: B hoặc C đúng suy ra D đúngLoại B, C.
Chọn z1 z2 z3 A đúng và D sai
Cách 2: thay thử z1 z2 z3 1 vào các đáp án, thấy đáp án D bị sai
Câu 21: Tìm số phức z có
z 1
A. 1
và
z i max :
B. 1
D. i
C. i
Hướng dẫn giải:
Đặt z a bi thì z a 2 b2 ; z i a 2 b 1
Khi
2
đó
ta
có:
z 1 a 2 b2 1 b 1; z i a 2 b 1 a 2 b2 2b 1 2b 2 2
2
Do đó giá trị lớn nhất đạt được bằng 2 khi a 0; b 1; z i.
Chọn C.
Câu 22: Tìm phần thực của số phức z 1 i , n
n
thỏa mãn phương trình:
log 4 n 3 log 4 n 9 3
A. 5
B. 6
C. 7
D. 8
Hướng dẫn giải:
Điều kiện n 3, n
Phương trình: log 4 n 3 log 4 n 9 3 log 4 n 3 n 9 3 n 7 (so đk)
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
3
7
2
3
z 1 i 1 i 1 i 1 i 2i 8 8i
Vậy phần thực của số phức z là 8.
Chọn D.
Câu 23: Cho hai số phức phân biệt z1 ; z2 thỏa mãn điều kiện
z1 z2
là số ảo. Khẳng định nào sau đây
z1 z2
đúng?
A. z1 1; z2 1
B. z1 z2
C. z1 z2
D. z1 z2
Hướng dẫn giải:
z1 z2 z1 z2 0
Thì
z z z z
z1 z2
là số ảo 1 2 1 2 0.
z1 z2 z1 z2
z1 z2
z1 z2 z1 z2
0 z1 z2 z1 z2 z1 z2 z1 z2 0.
z1 z2 z1 z2
2 z1 z1 z2 z2 0 z1 z1 z2 z2 0 z1 z2 0.
Chọn C.
Câu 24: Trong mặt phẳng phức Oxy , các số phức z thỏa z 2i 1 z i . Tìm số phức z được biểu
diễn bởi điểm M sao cho MA ngắn nhất với A 1,3 .
A. 3 i .
B. 1 3i .
C. 2 3i .
D. 2 3i .
Hướng dẫn giải:
Gọi M x , y là điểm biểu diễn số phức z x yi x, y R
Gọi E 1, 2 là điểm biểu diễn số phức 1 2i
Gọi F 0, 1 là điểm biểu diễn số phức i
Ta có: z 2i 1 z i ME MF Tập hợp điểm biểu diễn số phức z là đường trung
trục EF : x y 2 0 .
Để MA ngắn nhất khi MA EF tại M M 3,1 z 3 i
Câu 25: Trong các số phức z thỏa mãn z 1. Tìm số phức z để 1 z 3 1 z đạt giá trị lớn nhất.
4 3
4 3
A. z i, z i.
5 5
5 5
C. z
4 3
4 3
i, z i.
5 5
5 5
3
3
B. z i, z i.
5
5
3
4 3
D. z i, z i.
5
5 5
Hướng dẫn giải:
Giả sử z x yi, x, y
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
Vì z 1 x 2 y 2 1 x 2 y 2 1
Khi đó:
1 z 3 1 z
x 1
2
x 1
1 x2 3
Xét hàm số f x 2
2
y2 3
x 1
2
x 1
2
y2
1 x2 2
1 x 3 1 x
1 x 3 1 x trên đoạn 1;1 ta có:
3
4
1
f ' x 2
; f ' x 0 x 5
2 1 x 2 1 x
4
Ta có: f 1 6; f 2 10
5
Vậy f max
4
3
4
x ;y
x
4
5
5
f 2 10
5
5
2
2
x 4 ; y 3
y 1 x
5
5
4 3
4 3
Vậy z i, z i.
5 5
5 5
Chọn A.
z1 z2 z3 0
2
2
2
Câu 26: Cho 3 số phức z1; z2 ; z3 thỏa
2 2 . Tính A z1 z2 z2 z3 z3 z1
z1 z2 z3
3
8
2 2
B. 2 2
C.
3
3
Hướng dẫn giải:
z1 z2 z3
8
2
2
2
Ta có: z1 z3 z2 A z1 z2 z3 .
3
z z z
2
3
1
A.
D.
8 3
3
D.
1
3
z
2
2
Chọn C.
Câu 27: Xét số phức z thỏa 2 z 1 3 z i 2 2 . Mệnh đề nào dưới đây đúng:
A.
3
z 2
2
B. z 2
C. z
1
2
Hướng dẫn giải:
Ta xét các điểm A 1;0 , B 0;1
và M x; y với M là điểm biểu diễn số phức z trong mặt
phẳng phức. Ta có: 2 z 1 3 z i 2
x 1
2
y 2 3 x 2 y 1 2MA 3MB .
2
Ta có: 2MA 3MB 2 MA MB MB 2 AB MB 2 2 MB 2 2 .
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
2 z 1 3 z i 2 2 . Mà theo giả thuyết ta có: 2 z 1 3 z i 2 2 .
Vậy 2 z 1 3 z i 2 2 . Dấu " " xảy ra khi và chỉ khi
M AB
M B M 0;1 z 1
MB 0
Câu 28: Xét số phức z thỏa mãn 1 2i z
3
z 2.
2
Hướng dẫn giải:
A.
B. z 2.
Ta có: z 2 i 2 z 1
10
2 i. Mệnh đề nào dưới đây đúng?
z
1
1
3
C. z .
D. z .
2
2
2
10
10
z
z
z 2 2 z 1
2
2
z 1 .
Chọn D.
z 1
Câu 29: Gọi z1 , z2 , z3 , z4 là nghiệm của phương trình
1 . Tính giá trị của biểu thức:
2z i
4
P z12 1 z22 1 z32 1 z42 1 .
A. 1.
B.
19
.
7
C.
17
.
9
D. 2.
Hướng dẫn giải:
4
4
2
2
2
2
Ta có: z 1 2 z i z 1 2 z i z 1 2 z i 0
2
2
z 1 2 z i z 1 2 z i z 1 2 z i 0
3z 1 i z 1 i 5 z 2 2 4i z 0
z1
1 i
2 4i
17
; z2 1 i; z3 0; z4
P
.
3
5
9
Chọn C.
2
3
2016
Câu 30: Tính module của z 1 2i 3i 4i ... 2017.i .
A. z 2036164
Hướng dẫn giải:
B. z 2030113
C. z 2034145
Ta có z 1 i ... i 2016 i 1 i ... 12015 ... i 2015 1 i i 2016
2016
i 2015 i 2 1 i 2016 i 1
i 2017 1 i i 1
...
i 1
i 1
i 1
i 1
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>
D. z 2032130
ĐĂNG KÍ KHÓA ONLINE “VIP LIVE” THÌ INBOX TRỰC TIẾP FB THẦY “ HỒ THỨC THUẬN “
THẦY SẼ ĐỒNG HÀNH CÙNG CÁC EM CHINH PHỤC MỤC TIÊU 8+ ĐẠI HỌC 2019 NÀY NHÉ
2017.i 2017 1 i ... i 2016
i 1
2017.i 2017 i 1 i 2017 1
i 1
2
2017.i 2018 2018.i 2017 1
2017 2018i 1
1009 1008i z 2034145 .
2i
2i
Chọn C.
SỰ HỌC NHƯ CON THUYỀN NGƯỢC SÓNG, KHÔNG TIẾN ẮT PHẢI LÙI
/>