Tải bản đầy đủ (.doc) (47 trang)

Đề thi HSG cấp tỉnh 18 môn Toán lớp 9 (kèm đáp án)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.7 MB, 47 trang )

ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
SỞ GD&ĐT VĨNH PHÚC
ĐỀ CHÍNH THỨC

KÌ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
LỚP 9 NĂM HỌC 2017-2018
ĐỀ THI MÔN: TỐN
Thời gian làm bài: 150 phút (khơng kể thời gian giao
đề)


a  2018

a  2018  a  1



Câu 1 (2,0 điểm). Rút gọn biểu thức P 
 2 a
a

1
a

2
a

1


Câu 2 (2,0 điểm).


2
Cho ba số thực dương x,y,z thỏa mãn: x  y  x  y  z ; x  y  z ; y  z



Chứng minh đẳng thức:

x ( x 
y ( y 

Câu 3 (2,0 điểm). Tìm số tự nhiên

2

z)
x

2
z)
y



z
z

sao cho

Câu 4 (2,0 điểm). Cho hệ phương trình
(m là tham số và x,y là ẩn số)

Tìm tất cả các giá trị nguyên của m để hệ phương trình có nghiệm (x,y) trong đó x,y là các số
nguyên.
Câu 5 (2,0 điểm). Giải phương trình
Câu 6 (2,0 điểm). Cho tam giác ABC vuông tại A, AB = 12 cm, AC = 16cm. Gọi I là giao
điểm các đường phân giác trong của tam giác ABC, M là trung điểm của cạnh BC. Chứng
minh rằng đường thẳng BI vng góc với đường thẳng MI.
Câu 7 (2,0 điểm). Cho hình thoi ABCD có góc
, O là giao điểm của hai đường
chéo. Gọi H là chân đường vng góc kẻ từ O đến đường thẳng AB. Trên tia đối của tia BC
lấy điểm M (điểm M không trùng với điểm B), trên tia đối của tia DC lấy điểm N sao cho
đường thẳng HM song song với đường thẳng AN.
a) Chứng minh rằng: MB.DN = BH.AD.
b) Tính số đo góc
Câu 8 (2,0 điểm). Cho đường tròn (O) cố định và hai điểm phân biệt B, C cố định thuộc
đường tròn (O). Gọi A là một điểm thay đổi trên đường trịn (O) (điểm A khơng trùng với
điểm B và C), M là trung điểm của đoạn thẳng AC. Từ điểm M kẻ đường thẳng (d) vng góc
với đường thẳng AB, đường thẳng (d) cắt đường thẳng AB tại điểm H. Chứng minh rằng khi
điểm A thay đổi trên đường tròn (O) thì điểm H ln nằm trên một đường trịn cố định.
Câu 9 (2,0 điểm). Cho a,b,c là các số thực dương thoả mãn điều kiện

1 1 1
  2 .
a b c

Chứng minh rằng:
Câu 10 (2,0 điểm). Cho hình vuông ABCD và 2018 đường thẳng thỏa mãn đồng thời hai điều
kiện:
1) Mỗi đường thẳng đều cắt hai cạnh đối của hình vng.
2) Mỗi đường thẳng đều chia hình vng thành hai phần có tỉ lệ diện tích bằng


1
.
3

Chứng minh rằng trong 2018 đường thẳng đó có ít nhất 505 đường thẳng đồng quy.
---------------------Hết---------------------Thí sinh khơng được sử dụng máy tính cầm tay. Cán bộ coi thi khơng giải thích gì thêm.

Trang 1


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
SỞ GD&ĐT VĨNH PHÚC

KÌ THI CHỌN HỌC SINH GIỎI
LỚP 9 NĂM HỌC 2017 – 2018
HƯỚNG DẪN CHẤM MƠN: TỐN
(Hướng dẫn chấm gồm 06 trang)


a  2018


Câu 1(2,0 điểm).Rút gọn biểu thức P 
a

2
a

1


Nội dung trình bày

a  2018  a  1

a  1  2 a

Điểm
0,5

Điều kiện:
0,5
Khi đó:
0,5
0,5
Câu 2(2,0 điểm).
Cho ba số thực dương x,y,z thỏa mãn: x  y  x  y 



Chứng minh đẳng thức:

x ( x 
y ( y 

z )2
x

2
z)
y




2

z ; x  y  z ; y z

z
z

Nội dung trình bày

Điểm
0,5

Ta có:
0,5

0,5

0,5
Câu 3(2,0 điểm).Tìm số tự nhiên
sao cho
Nội dung trình bày
Ta có:




nên


. Thay vào (1) ta được:
Lập luận tương tự ta có:
Thay vào (2) ta được:

Điểm
0,5
0,25
0,25
0,25
0,25

Trang 2


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.

Vậy



0,25
0,25

.

Câu 4(2,0 điểm).Cho hệ phương trình
(m là tham số và x,y là ẩn số)
Tìm tất cả các giá trị ngun của m để hệ phương trình có nghiệm (x,y) trong đó x,y là


các số ngun.
Nội dung trình bày
Từ phương trình thứ hai ta có: x = 2 – 2y thế vào phương trình thứ nhất được:
(3)
là các số nguyên

Hệ có nghiệm
Với

có nghiệm

là số nguyên.

Điểm
0,25
0,25
0,25
0,25

có nghiệm
0,25
0,25
0,25

Vậy có 2 giá trị

thoả mãn là 1; 2.

0,25


Câu 5(2,0 điểm).Giải phương trình
Nội dung trình bày

Điểm
0,25

Điều kiện xác định
Với điều kiện (*), phương trình đã cho tương đương với:

0,25
0,25
0,25
0,25
0,25
0,25

0,25
Đối chiếu với điều kiện (*) ta được
Câu 6(2,0 điểm). Cho tam giác ABC vuông tại A, AB = 12 cm, AC = 16cm. Gọi I là giao
điểm các đường phân giác trong của tam giác ABC, Mlà trung điểm của cạnh BC. Chứng
minh rằng đường thẳng BI vng góc với đường thẳng MI.

Trang 3


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.

Nội dung trình bày
Ta có


. Gọi E là giao điểm của BI với AC.

Điểm
0,5
0,25

Theo tính chất đường phân giác ta có:
0,25
Ta có

do:

Suy ra:
Mặt khác

hai tam giác

;
đồng dạng

; IC chung.

0,25
0,25
0,25
0,25

Câu 7(2,0 điểm). Cho hình thoi ABCD có góc
, O là giao điểm của hai đường
chéo. Gọi H là chân đường vng góc kẻ từ O đến đường thẳng AB. Trên tia đối của tia

BC lấy điểm M ( điểm M không trùng với điểm B), trên tia đối của tia DC lấy điểm N sao
cho đường thẳng HM song song với đường thẳng AN.
a) Chứng minh rằng
b) Tính số đo góc

Nội dung trình bày
a)Ta có

Điểm
0,25
0,25
0,25



0,25

Trang 4


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
0,25



b) Ta có:

0,25
Từ (1) và (2) ta có:
0,25


Ta lại có:
nên


0,25

Từ đó suy ra:

Câu 8 (2,0 điểm). Cho đường trịn (O) cố định và hai điểm phân biệt B, C cố định thuộc
đường tròn (O). Gọi A là một điểm thay đổi trên đường trịn (O) (A khơng trùng với B và
C), M là trung điểm của đoạn thẳng AC. Từ điểm M kẻ đường thẳng vng góc với đường
thẳng AB, cắt đường thẳng AB tại điểm H. Chứng minh rằng khi điểm A thay đổi trên
đường trịn (O) thì điểm H ln nằm trên một đường trịn cố định.

Nội dung trình bày
Gọi D là trung điểm của đoạn BC, vì tam giác BOC, AOC là các tam giác cân tại O
nên
.

Điểm
0,25

Ta có:
Bốn điểm O, D, C, M cùng nằm trên đường trịn

tâm Icố định, đường kính OC cố định.
Gọi E là điểm đối xứng với D qua tâm I, khi đó E cố định và DE là đường kính của
đường trịn
.

Nếu
- Với

0,25

- Với

, do

0,25
0,25

.

Khi đó
Vậy ta ln có:
kính BE cố định.

0,5

0,25

thẳng hàng. Suy ra
hoặc

hoặc

0,25

do đó H thuộc đường trịn đường


Câu 9(2,0 điểm). Cho a,b,c là các số thực dương thoả mãn điều kiện

.

Chứng minh rằng:
Nội dung trình bày

Trang 5

Điểm


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
0,25
Với

ta có :

,

.
Đẳng thức xảy ra khi
0,5

Ta có:

0,25
Đẳng thức xảy ra khi
0,25

Tương tự:

Đẳng thức xảy ra khi
0,25
Đẳng thức xảy ra khi
0,25

Vậy
0,25
Đẳng thức xảy rakhi
. Vậy BĐT được chứng minh.
Câu 10 (2,0 điểm).Cho hình vng ABCD và 2018 đường thẳng thỏa mãn đồng thời hai
điều kiện:
1) Mỗi đường thẳng đều cắt hai cạnh đối của hình vng.
2) Mỗi đường thẳng đều chia hình vng thành hai phần có tỉ lệ diện tích bằng

1
3

Chứng minh rằng trong 2018 đường thẳng đó có ít nhất 505 đường thẳng đồng quy.

Nội dung trình bày
Giả sử hình vng ABCD có cạnh là a ( a>0). Gọi M, N, P, Q lần lượt là trung điểm
của AB, BC, CD, DA. Gọi d là một đường thẳng bất kỳ trong 2018 đường thẳng đã
cho thỏa mãn u cầu bài tốn. Khơng mất tính tổng qt, giả sử d cắt các đoạn
thẳng AD, MP, BC lần lượt tại S, E, K sao cho
Từ

Điểm
0,5


0,25

ta suy ra được:

Trang 6


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
0,5
suy ra E cố định và d đi qua E.
0,25
Lấy F, H trên đoạn NQ và G trên đoạn MP sao cho
.
Lập luận tương tự như trên ta có các đường thẳng thỏa mãn điều kiện của đề bài phải
đi qua một trong bốn điểm cố định E, F, G, H.
Theo nguyên lý Dirichlet từ 2018 đường thẳng thỏa mãn điều kiện của đề bài phải có
ít nhất
đường thẳng đi qua một trong bốn điểm E, F, G, Hcố định,
nghĩa là 505 đường thẳng đó đồng quy.
------------------------Hết-------------------------

Trang 7

0,5


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
SỞ GIÁO DỤC VÀ ĐÀO TẠO
THANH HĨA


KÌ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
NĂM HỌC 2017-2018

ĐỀ CHÍNH THỨC

Mơn thi: TỐN - Lớp 9 THCS
Thời gian: 150 phút (khơng kể thời gian giao đề)
Ngày thi: 10 tháng 3 năm 2018
(Đề thi có 01 trang, gồm 05 câu)

Câu I (4,0 điểm).
1. Cho biểu thức: P 

x 2 x
x 1
1  2x  2 x


, với x > 0, x 1
x x  1 x x x x
x2  x

Rút gọn P và tìm tất cả các giá trị của x sao cho giá trị của P là một số nguyên.
2. Tính giá trị của biểu thức P 

1
3
4( x  1) x 2018  2 x 2017  2 x  1


tại x 
2
2 3  2 2 3 2
2 x  3x

Câu II (4,0 điểm).
1. Biết phương trình: (m – 2)x 2 – 2(m – 1)x + m = 0 có hai nghiệm tương ứng là độ
dài hai cạnh góc vng của một tam giác vng. Tìm m để độ dài đường cao ứng với cạnh
huyền của tam giác vuông đó bằng

2
5

 ( x  y ) 2 (8 x 2  8 y 2  4 xy  13)  5 0

2. Giải hệ phương trình: 
1
 2 x  x  y 1


Câu III (4,0 điểm).
1. Tìm nghiệm nguyên của phương trình: y2 – 5y + 62 = (y – 2)x2 + (y2 – 6y + 8)x.
2. Cho a, b là các số nguyên dương thỏa mãn p = a2 + b2 là số nguyên tố và p – 5
chia hết cho 8. Giả sử x, y là các số nguyên thỏa mãn ax 2 - by2 chia hết cho p. Chứng minh
rằng cả hai số x, y chia hết cho p.
Câu IV (6,0 điểm). Cho tam giác ABC có (O), (I), (I a) theo thứ tự là các đường tròn ngoại
tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh A của tam giác với các tâm
tương ứng là O, I, Ia . Gọi D là tiếp điểm của (I) với BC, P là điểm chính giữa cung BAC của
(O), PIa cắt (O) tại điểm K. Gọi M là giao điểm của PO và BC, N là điểm đối xứng với P qua
O.

1. Chứng minh IBIaC là tứ giác nội tiếp.
2. Chứng minh NIa là tiếp tuyến của đường tròn ngoại tiếp tam giác IaMP
3. Chứng minh:
.
Câu V (2,0 điểm).
Cho x, y, z là các số thực dương thỏa mãn x  z . Chứng minh rằng:

-------------------------- HẾT ---------------------------------

Trang 8


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
SỞ GIÁO DỤC VÀ ĐÀO TẠO
THANH HĨA
ĐỀ CHÍNH THỨC

KÌ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
NĂM HỌC 2017-2018
Môn thi: TỐN – Lớp 9 THCS
Thời gian: 150 phút (khơng kể thời gian giao đề)
Ngày thi: 10 tháng 3 năm 2018

HƯỚNG DẪN CHẤM VÀ THANG ĐIỂM

(Gồm có 05 trang)
Câu

I
4,0

điểm

NỘI DUNG

1. Cho biểu thức P 

x 2 x
x 1
1  2x  2 x


, với
x x  1 x x x x
x2  x

Điểm

2,5

Rút gọn P và tìm tất cả các giá trị của x sao cho giá trị của P là một số nguyên
Với điều kiện
, ta có:
0,50

0,50

0,50

0,50
0,50


Ta có với điều kiện

Do ngun nên suy ra
(loại).
Vậy khơng có giá trị của x để P nhận giá trị nguyên.

Trang 9


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
Chú ý 1: Có thể làm theo cách sau

, coi đây là phương trình bậc hai của
.
Nếu

vơ lí, suy ra

nên để tồn tại

thì phương trình trên
0,50


Do P ngun nên (P – 1)2 bằng 0 hoặc 1
+) Nếu

không thỏa mãn.


+) Nếu
Vậy khơng có giá trị nào của x thỏa mãn.
2.

Tính

giá

trị

của

biểu

khơng thỏa mãn

thức

tại

0,50


nên

0,50

là nghiệm của đa thức

Do đó

Chú ý 2: Nếu học sinh không thực hiện biến đổi mà dùng máy tính cầm tay để
thay số và tìm được kết quả đúng thì chỉ cho 0,5 đ.
II
4,0
điểm

1,5

1. Biết phương trình
có hai nghiệm tương ứng là
độ dài hai cạnh góc vng của một tam giác vng. Tìm m để độ dài

0,50

2,0

đường cao ứng với cạnh huyền của tam giác vng đó bằng
Phương trình
nghiệm khi và chỉ khi

có hai
Khi đó 2 nghiệm của phương trình là 0,50

Hai nghiệm đó là độ dài hai cạnh góc vng của tam giác vng suy ra
0,50
hoặc

.
0,50


Từ

hệ

thức

trong

Trang 10

tam

giác

vng

ta




ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.

Với

(thỏa mãn)
0,50

Với
Vậy


(loại)
là giá trị cần tìm.

 ( x  y ) 2 (8 x 2  8 y 2  4 xy  13)  5 0

2. Giải hệ phương trình:  2 x  1 1 (2)

x y


(1)

2,0

ĐKXĐ:
0,25
Chia phương trình (1) cho

ta được hệ

0,50

Đặt
Từ (4) rút

(ĐK:
), ta có hệ
, thế vào (3) ta được
hoặc


Trường hợp

0,25

.

0,25

loại vì
0,25

Với
(thỏa mãn). Khi đó ta có hệ
Giải hệ trên bằng cách thế
vào phương trình đầu ta được
0,50
III
4,0
điểm

. Vậy hệ có nghiệm duy nhất
1. Tìm nghiệm ngun của phương trình

2,0
0,25

Ta có

0,25

0,50
Nhận thấy
nên ta phải phân tích số 56 thành tích của
ba số nguyên mà tổng hai số đầu bằng số còn lại.
Như vậy ta có

0,25
0,25

Trang 11


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
0,25
0,25
Vậy phương trình có 6 nghiệm ngun như trên.
Chú ý 3: Học sinh có thể biến đổi phương trình đến dạng
(được 0,5đ), sau đó xét các trường hợp xảy ra.
Khi đó với mỗi nghiệm đúng tìm được thì cho 0,25 đ (tối đa 6 nghiệm = 1,5
đ)
2. Cho
là các số nguyên dương thỏa mãn
là số nguyên tố và
p-5 chia hết cho 8. Giả sử x,y là các số nguyên thỏa mãn
chia hết
cho p. Chứng minh rằng cả hai số
chia hết cho p.
Do
nên



0,50

nên

Nhận thấy

0,25

Do

nên
Nếu trong hai số
có một số chia hết cho thì từ (*) suy ra số thứ hai
cũng chia hết cho .
Nếu cả hai số
đều không chia hết cho thì theo định lí Fecma ta có :

0,25

. Mâu thuẫn với (*). Vậy cả hai số
IV
6,0
điểm

2,0



chia hết cho


.
Cho tam giác

theo thứ tự là các đường trịn ngoại tiếp,
đường trịn nội tiếp và đường tròn bàng tiếp đối diện đỉnh của tam giác
với các tâm tương ứng là
. Gọi là tiếp điểm của
với
, là
điểm chính giữa cung
của
,
cắt
tại điểm . Gọi
điểm của

là điểm đối xứng của qua

Trang 12

là giao

0,50

0,50


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.


1. Chứng minh:

2,0

là tứ giác nội tiếp

là tâm đường tròn bàng tiếp đối diện đỉnh A và I là tâm đường trịn nội tiếp
tam giác ABC , từ đó suy ra
( Phân giác trong và phân giác ngoài cùng một góc thì vng góc với nhau).
Xét tứ giác

Từ đó suy ra tứ giác
2. Chứng minh

là tứ giác nội tiếp đường trịn đường kính

là tiếp tuyến của đường trịn ngoại tiếp tam giác

Nhận thấy bốn điểm
).

là đường kính của
nên
,
tại
Áp dụng hệ thức lượng trong tam giác vuông

là trung điểm của

nên


2,0
0,25
0,25

ta có

là góc ngồi tại đỉnh I của tam giác ABI nên

Xét (O):

1,0

thẳng hàng (vì cùng thuộc tia phân giác của

Do



.

1,0

=

0,25
0,25

(cùng chắn cung NC)


0,25
Từ (1) và (2) ta có
=
nên tam giác
cân tại
Chứng minh tương tự tam giác NIC cân tại N
Từ đó suy ra là tâm đường trịn ngoại tiếp tam giác
của đường trịn ngoại tiếp tứ giác

Trang 13

0,25
, cũng chính là tâm

0,25


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
Vậy

0,25

là tiếp tuyến của đường tròn ngoại tiếp tam giác

2,0

3. Chứng minh:
.
Gọi F là tiếp điểm của đường tròn (I) với AB.
Xét hai tam giác

đồng dạng với
Suy ra
Ta có:

mà:
nên

Do

0,50

có:
.
,
suy ra

0,50

nên
đồng dạng với

(1).

là tiếp tuyến của đường tròn ngoại tiếp tam giác

nên
(2)

V
2,0

điểm

0,50
0,25
0,25

Từ (1) và (2) ta có
Cho
là các số thực dương thỏa mãn

Chứng minh rằng
2,0

0,25
Ta có

,

0,25

trong đó
0,25

Nhận xét rằng
Xét

0,25

0,25
Do đó


Đẳng thức xảy ra khi a = b.
0,25

Khi đó

Trang 14


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
0,25
Từ



suy ra điều phải chứng minh. Đẳng thức xảy ra khi
---------- Hết ------------

Chú ý:
- Các cách làm khác nếu đúng vẫn cho điểm tối đa, điểm thành phần giám khảo tự
phân chia trên cơ sở tham khảo điểm thành phần của đáp án.
- Đối với Câu IV (Hình học): Khơng vẽ hình, hoặc vẽ hình sai cơ bản thì không
chấm.
- Các trường hợp khác tổ chấm thống nhất phương án chấm.
------------------------Hết-------------------------

Trang 15

0,25



ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
SỞ GD & ĐT TRÀ VINH
ĐỀ CHÍNH THỨC

KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
LỚP 9 THCS NĂM HỌC 2017-2018
MƠN THI: TỐN
Thời gian: 150 phút (khơng kể thời gian giao đề)

Bài 1. (3.0 điểm) Giải hệ phương trình:

Bài 2.(2.0 điểm)
Dân số xã A hiện nay có 10000 ngưới. Ngưới ta dự đoán sau hai năm dân số xã A là
10404 người. Hỏi trung bính hằng năm dân số xã A tăng bao nhiêu phấn trăm ?
Bài 3.(3.0 điểm)
Cho ba số dương x, y, z thỏa điều kiện xy + yz + zx = 1. Tính giá trị của biểu thức
A x

(1  y 2 )(1  z 2 )
(1  z 2 )(1  x 2 )
(1  x 2 )(1  y 2 )

y

z
1  x2
1 y2
1 z2


Bài 4.(3.0 điểm)
Cho a, b, c là các số dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu
thức: P 

ab
bc
ca


c  ab
a  bc
b  ca

Bài 5.(2.0 diểm)
Tìm nghiệm nguyên của phương trình: x2 + 2y2 + 3xy + 3x + 5y = 15
Bài 6.(3.0 điểm)
Cho x, y là các số dương thỏa mãn x + y = 2. Chứng minh: x3y3 (x3 + y3)  2
Bài 7.(4.0 diểm)
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường trịn (O)và có AB < AC.
Lấy điểm M thuộc cung BC không chứa điểm A của đưởng trịn (O). Vẽ MH vng góc
với BC, MK vng góc với CA, MI vng góc với AB ( H thuôc BC, K thuộc AC, I thuộc
AB). Chứng minh:

BC
AC AB


MH MK MI

-----------------------------Hết--------------------


Trang 16


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.

SỞ GD & ĐT TRÀ VINH
ĐỀ CHÍNH THỨC

HƯỚNG DẪN CHẤM
KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
LỚP 9 THCS NĂM HỌC 2017-2018
MƠN THI: TỐN
Thời gian: 150 phút (khơng kể thời gian giao đề)

Bài 1. (3.0 điểm) Giải hệ phương trình

GIẢI: ĐKXĐ: x>1
Từ (1)
*Thế

vào (2), ta được:

(loại)

*Thế
vào (2), ta được:
Vậy hệ có nghiệm duy nhất (x=2; y=-1)

x=1 (loại) hoặc x=2


Bài 2.(2.0 điểm) Dân số xã A hiện nay có 10000 ngưới. Ngưới ta dự đoán sau hai năm dân
số xã A là 10404 người. Hỏi trung bính hằng năm dân số xã A tăng bao nhiêu phấn trăm ?
GIẢI
Gọi x là tỉ lệ tăng dân số hằng năm (x>0)
Số dân sau một năm: 10000(x+1)
Số dân sau hai năm: 10000(x+1).(x+1)
Vì sau hai năm số dân là 10404 nên ta có phương trình: 10000(x+1) =10404
Hay x +2x - 0,0404 = 0 (x=0,02 hoặc x=-2,02)
Vậy tỉ lệ tăng dân số là 2%
Bài 3.(3.0 điểm) Cho ba số dương x, y, z thỏa điều kiện xy+yz+zx=1. Tính giá trị của
biểu thức A x

(1  y 2 )(1  z 2 )
(1  z 2 )(1  x 2 )
(1  x 2 )(1  y 2 )

y

z
.
1  x2
1 y2
1 z2

GIẢI
Ta có:
Tương tự :
Do đó: A = x(y+z)+y(z+x)+z(x+y)=2(xy+yz+zx) = 2.1 = 2
Bài 4.(3.0 điểm) Cho a, b, c là các số dương thỏa mãn a+b+c=1. Tìm giá trị lớn nhất của

P

ab
bc
ca


c  ab
a  bc
b  ca

GIẢI
Theo điều đề bài ta có: 1-a>0 ; 1-b>0 ; 1-c>0. Nên theo BĐT Cơ-si, ta có:

Trang 17


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.

Vậy maxP =

tại a = b = c =

Bài 5.(2.0 điểm)
Tìm nghiệm nguyên của phương trình: x2 + 2y2 + 3xy + 3x + 5y = 15 (*)
GIẢI

Để phương trình có nghiệm ngun thì
Giải phương trình nghiệm ngun ta được y=-15 hoặc y=17
*Với y=-15 thì x=12 hoặc x=30

*Với y=17 thì x=-18 hoặc x=-36
Vậy phương trình có 4 nghiệm: (12;-15),(30;-15),(-18;17)và (-36;17)
Bài 6.(3.0 điểm) Cho x, y là các số dương thỏa mãn x + y = 2. Chứng minh:
GIẢI
Do x, y>0 và x+y=2 nên
Theo BĐT Cơ-si ta có:

Hay
Vậy
Dấu = xảy ra khi x=y=1
Bài 7.(4.0 diểm) Cho tam giác ABC có ba góc nhọn nội tiếp trong đường trịn (O)và có
AB
Trang 18


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
vng góc với BC, MK vng góc với CA, MI vng góc với AB ( H thc BC, K thuộc
AC, I thuộc AB). Chứng minh:

BC
AC AB


MH MK MI

GIẢI

Ta có:


Mà:
Từ (1),(2),(3),(4) suy ra:
------------------------Hết-------------------------

Trang 19


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO

TIỀN HẢI

ĐỀ KHẢO SÁT HỌC SINH GIỎI LỚP 9
NĂM HỌC 2017–2018
MƠN: TỐN 9
(Thời gian làm bài 150 phút)

Bài 1 (4,0 điểm). Tính giá trị của các biểu thức sau:
a) A  4  10  2 5  4  10  2 5
b) B 

(a  bc)(b  ca)
(c  ab)(b  ca)
(c  ab)( a  bc)


c  ab
a  bc
b  ca


(Với a, b, c là các số thực dương và a + b + c = 1)
Bài 2 (3,0 điểm)
a) Tìm các số a, b sao cho đa thức f(x) = x 4 + ax3 + bx – 1 chia hết cho đa thức x 2 –
3x + 2.
b) Chứng minh rằng: B = 4x(x + y)(x + y + z)(x + z) + y 2z2 là một số chính phương
với x, y, z là các số nguyên.
Bài 3 (4,0 điểm)
a) Tìm m để phương trình:

2m  1
m  3
x 2

vơ nghiệm.

b) Giải phương trình:

.

c) Tìm nghiệm ngun dương của phương trình:

xy yz zx
  3
z
x
y

Bài 4 (7,0 điểm)
Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vng góc với BC tại H. Gọi D,

E lần lượt là hình chiếu của H trên AB, AC.
a) Biết AB = 6cm, HC = 6,4cm. Tính BC, AC.
b) Chứng minh rằng DE3 = BC.BD.CE
c) Đường thẳng kẻ qua B vuông góc với BC cắt HD tại M, Đường thẳng kẻ qua C
vng góc với BC cắt HE tại N. Chứng minh rằng M, A, N thẳng hàng.
d) Chứng minh rằng BN, CM, DE đồng qui.
Bài 5 (2,0 điểm)
Cho đa thức f(x) = x4 + ax3 + bx2 + cx + d (Với a, b, c, d là các số thực)
Biết f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị biểu thức A = f(8) + f(-4)
. –––––––––––––––Hết––––––––––––––––
Họ và tên thí sinh: .................................................................................
Số báo danh: .................................................Phịng số:.........................

Trang 20


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
PHÒNG GIÁO DỤC - ĐÀO TẠO
TIỀN HẢI

BÀI

KỲ KHẢO SÁT SINH GII NM HC 2017-2018
P N BIU IM CHM
mÔN: TON 9
(Đáp án và biểu điểm chấm gồm 03 trang

Ý

NỘI DUNG

Ta có A  4  10  2 5  4  10  2 5 > 0
=> A2 4  10  2 5  4  10  2 5  2 16  (10  2 5 )

a
2.0

0.5

=> A2 8  2 6  2 5

0.25

=> A2 8  2 ( 5  1) 2

0.25

=> A2 8  2 5  2
=> A2 6  2 5
=> A2 ( 5  1) 2

0.25
0.25
0.25
0.25

=> A  5  1 , (do A > 0)

1

ĐIỂM


Vì a, b, c dương và a+b+c=1 nên biểu thức B có nghĩa và 0 < a,b,c <
1. Ta có:

0.25
0.25

b
2.0

0.5
0.25

Ta có: x2 – 3x + 2 = (x – 1)(x – 2). Theo bài ra: f(x)
f(x) chia hết cho x – 1 => f(1) = 0
=>a + b = 0 =>b = –a
(1)
f(x) chia hết cho x – 2 => f(2) = 0
=>8a + 2b = –15
(2)

0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25


Từ (1) và (2) => 8a + 2(–a) = –15 => a = – => b =

0.25

2

Thử lại: (x4 – x3 + x – 1):(x2 – 3x + 2) = x2 + x –

0.25
0.25

3

Vậy a = – , b =
B = 4x(x + y)(x + y + z)(x + z) + y2z2
B= 4(x2 + xy + xz)(x2 + xy + xz + yz) + y2z2
B= 4(x2 + xy + xz)2 + 4(x2 + xy + xz).yz + y2z2
B= (2x2 + 2xy + 2xz + yz)2
Vì x, y, z là số nguyên nên 2x2 + 2xy + 2xz + yz là số ngun
B là số chính phương
ĐKXĐ:

(vì 0 < a,b,c < 1)
Tính đúng: B = 2

a
2.0

1.0


a

Trang 21

0.25
0.25
0.25
0.25
0.25


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.
0.25
0.25
+ Xét m = 3, phương trình (*) trở thành 0.x = 5 (vơ lí)
=> m = 3 phương trình đã cho vơ nghiệm
1.5

+ Xét

, phương trình (*) có nghiệm

Để phương trình đã cho vơ nghiệm thì
Vậy với m = 3, m = ½ thì phương trình đã cho vô nghiệm.
ĐKXĐ:

0.25

0.25
0.25

0.25
0.25
0.25
0.25

B
1.5

0.25
0.25
Áp dụng BĐT Cosi cho các số dương ta có:
0.25
C
1.0

Vì x, y, z là các số ngun dương nên từ (1) =>x = y = z = 1
Thử lại : Đúng.
Vậy nghiệm nguyên dương của phương trình là (x;y;z) = (1;1;1)

0.25
0.25
0.25

Đặt BH = x (0 < x < 6) =>BC = x + 6,4
AB2 = BH.BC =>62 = x(x + 6,4)
=>x = 3,6
=>BC = 10cm

0.25
0.5

0.75
0.25

4

a
2.5

Trang 22


ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.

b
2.0

=>AC = 8cm
Chứng minh tứ giác ADHE là hình chữ nhật => DE = AH
Chứng minh: BH2 = BD.BA, CH2 = CE.CA
AH2 = HB.HC =>AH4 = HB2.HC2 = BD.BA.CE.CA
=>AH4 = BD.CE.BC.AH
=>AH3 = BD.CE.BC
Vậy DE3 = BD.CE.BC
Chứng minh
, HD = AE
Gọi giao điểm của NA với HD là M’.
Ta có:

c
1.5


0.75
0.5
0.5
0.5
0.25
0.25
0.5
0.25

0.25
0.25

d
1.0

5

2.0

=>M’ trùng M =>M, A, N thẳng hàng
Có BM//CN, BD // NE, MD // CE
=> BDM ~ NEC => BD/NE = DM/EC
(1)
Gọi I là giao của MC với DE => DI/EI = DM/EC
(2)
Gọi I’ là giao của BN với DE
DI’/EI’ = BD/NE
(3)
Từ (1), (2), (3) => DI/EI = DI’/EI’ => I và I’ trùng nhau

Vậy BN, CM, DE đồng qui.
Xét đa thức g(x) = f(x) – 10x =>bậc của đa thức g(x) bằng 4
Từ giả thiết => g(1) = g(2) = g(3) = 0.
Mà g(x) có bậc 4 nên g(x) = (x – 1)(x – 2)(x – 3)(x – a) (với a là số
thực nào đó).
=>f(x) = (x – 1)(x – 2)(x – 3)(x – a) + 10x

0.25
0.5
0.25
0.25
0.25
0.25
0.25
0.25
0.5

=>f(8) + f(–4) = 5.6.7.(8 – a + 4 + a) + 40
0.25
Vậy f(8) + f(–4) = 2560.
0.25
*) Mọi cách giải khác đúng vẫn cho điểm tối đa theo thang điểm.
*) Tổ giám khảo bám sát biểu điểm thảo luận đáp án và thống nhất.
*) Chấm và cho điểm từng phần, điểm của toàn bài là tổng các điểm thành phần khơng làm
trịn.
-------------------Hết--------------------

Trang 23



ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.

SỞ GIÁO DỤC VÀ ĐÀO TẠO
LẠNG SƠN
ĐỀ THI CHÍNH THỨC

KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
LỚP 9 THCS NĂM HỌC 2017 – 2018
Mơn thi: Tốn 9 THCS
Thời gian: 150 phút
Ngày thi: 05/4/2018
(Đề thi gồm 01 trang, 05 câu)

Câu 1 (4,0 điểm). Cho biểu thức:
x x x4 x 4 x x x4 x 4
A

với x �0, x �1, x �4 .
23 x  x x
23 x  x x
a) Rút gọn biểu thức A.
(2  3) 7  4 3
.
2 1
Câu 2 (4,0 điểm). Cho phương trình: x 2  2mx  2m  1  0 .
a) Chứng minh rằng phương trình đã cho ln có nghiệm.
b) Gọi x1 , x2 là các nghiệm của phương trình. Tìm giá trị nhỏ nhất của biểu
thức:
2 x1 x2  3
B 2

.
x1  x22  2(1  x1 x2 )
Câu 3 (4,0 điểm).
a) Giải phương trình: x 2  4 x  1  3 x  1  0 .
b) Cho f ( x) là đa thức với hệ số nguyên. Biết f (2017). f (2018)  2019 . Chứng
minh rằng phương trình f ( x)  0 khơng có nghiệm nguyên.
Câu 4 (6,0 điểm). Cho tam giác nhọn ABC có AC  AB nội tiếp đường trịn (O). Kẻ
phân giác trong AI của tam giác ABC ( I �BC ) cắt (O) ở E. Tại E và C kẻ hai tiếp
tuyến với (O) cắt nhau ở F, AE cắt CF tại N, AB cắt CE tại M.
a) Chứng minh tứ giác AMNC nội tiếp đường tròn.
1
1
1


b) Chứng minh
.
CN CI CF
c) Gọi AD là trung tuyến của tam giác ABC, kẻ DK//AI ( K �AC ) . Chứng minh
2AK  AC  AB .
Câu 5 (2,0 điểm). Trường trung học phổ thơng A tổ chức giải bóng đá cho học sinh
nhân ngày thành lập đoàn 26 – 3 . Biết rằng có n đội tham gia thi đấu vịng trịn một
lượt (hai đội bất kỳ đấu với nhau đúng một trận). Đội thắng được 3 điểm, đội hòa được
1 điểm và đội thua không được điểm nào. Kết thúc giải, ban tổ chức nhận thấy số trận
thắng thua gấp bốn lần số trận hòa và tổng số điểm của các đội là 336. Hỏi có tất cả
bao nhiêu đội bóng tham gia?
--------------------------------Hết-------------------------------b) Tính giá trị của biểu thức A khi x 

Trang 24



ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN - LỚP 9.

SỞ GIÁO DỤC VÀ ĐÀO TẠO
LẠNG SƠN

ĐÁP ÁN ĐỀ THI HỌC SINH GIỎI CẤP TỈNH
LỚP 9 THCS NĂM HỌC 2017 – 2018

Câu
1a

Nội dung
Đặt t  x , t �0, t �1, t �2 khi đó:
t 3  t 2  4t  4 t 3  t 2  4t  4
� A

2  3t  t 3
2  3t  t 3
(t  1)(t  2)(t  2) (t  1)(t  2)(t  2)
� A

(t  1)(t  1)(t  2) (t  1)(t  1)(2  t )
t  2 t  2 2t 2  4
2
� A

 2
2 2
t 1 t 1 t 1

t 1
2
� A2
x 1

1b

(2  3) 7  4 3 (2  3) (2  3) 2 (2  3)(2  3)


2 1
2 1
2 1
1
�x
 2 1
2 1
2
2
 2
2 2
Do đó: A  2 
2 11
2
phương trình: x 2  2mx  2m  1  0 có a + b + c = 0 nên có hai nghiệm:
x1  1, x2  2m  1 . Chứng tỏ PT ln có nghiệm m
(hoặc tính theo  để biện luận)
Do PT ln có nghiệm nên theo ĐL Vi-et ta có:
x1  x2  2m, x1.x2  2m  1
2(2m  1)  3 4m  1


Suy ra: B 
( x1  x2 )2  2 4m 2  2
Nhận thấy rằng mẫu số của B ln dương, do đó để B nhỏ nhất thì ta chỉ xét
4m  1  0 hay m  1 / 4 , đặt t  m  1 / 4  0, (nên t  0)
Vậy m  t  1 / 4 thay vào B, ta được:
4(t  1 / 4)  1
4t
B
 2
2
4(t  1 / 4)  2 4t  2t  9 / 4
4t
Để B nhỏ nhất thì C  2
phải lớn nhất, C>0
4t  2t  9 / 4
4t 2  2t  9 / 4
1 9
Để C lớn nhất thì D 
t  
nhỏ nhất
4t
2 16t
9
1
� 9 �1
t
 2
Áp dụng BĐT Cô si: D  �
� �2. t.

16t 2
� 16t � 2

2a

2b

x

Trang 25


×