Tải bản đầy đủ (.doc) (2 trang)

phương pháp tìm nghiệm nguyên

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (74.42 KB, 2 trang )

Phương pháp 1 Phân tích
Ví dụ : Tìm nghiệm nguyên của phương trình
...
*Phân tích thành tổng các bình phương, lập phương :
Ví dụ Tìm nghiệm nguyên của phương trình
....
Phương pháp 2 Nhận xét về ẩn số
1,Nếu các ẩn x,y,z,t... có vai trò như nhau thì ta có thể giả sử
hoặc ngược lại.
2, Nếu các ẩn có cấu trúc giống nhau như lũy thừa cùng bậc, các số nguyên liên tiếp thì ta sẽ
khử ẩn để đưa về dạng quen thuộc hoặc PT ít ẩn hơn
Ví dụ: Tìm nghiệm nguyên các phương trình :
a,x+y+z=xyz
b, 5(xy+yz+xz)=4xyz
Phương pháp 3 "Kẹp" giữa 2 số bình phương, lập phương, các tích các số nguyên liên tiếp
Ví dụ : Tìm nghiệm nguyên phương trình sau:
Ta thấy ...
Phương pháp 4 Sử dụng phép chia hết và phép chia có dư
(còn nữa)
Bài tập (Phương pháp 4) : Tìm x,y Z
a, =304197519751995
b, =
c, =1995
d, (x,y Z+)
e, (x,y Z+)
g, (x,y Z+)
Phương pháp 5 Phương pháp xuống thang :
Ví dụ : Tìm x,y,z Z thỏa mãn
Ta thấy chỉ có x=y=z=0 thỏa mãn
*Với phương pháp này thường cho ta bộ nghiệm bằng 0
Phương pháp 6 Phương pháp thế


Ví dụ như bài toán cho dữ kiện a+b+c=0 thì ta có thể viết a=-(b+c) ; b=-(a+c) ; c-(a+b) rồi áp
dụng vào bài toán
Phương Pháp 7 : Tích 2 số tự nhiên liên tiếp là 1 số chính phương thì 1 trong 2 số có 1 số bằng
0.
Vd : ( )
=> hoặc là hoặc là
Bài tập áp dụng :
1/ ( )
2/ ( )
Phương pháp 8 : Sử dụng tính chẵn lẻ: (Phương pháp này ko chắc ko cần VD )
Phương pháp 9 : Dùng cách viết dưới dạng liên phân số
VD :Tìm nghiệm nguyên của phương trình :
=
(x+y)+ =5+
(x+y)+ =5+
Vì sự phân tích trên là duy nhất nên
Bài tập : Tìm nghiệm nguyên của phương trình :
a, =z
b,
c,

×