Tải bản đầy đủ (.doc) (4 trang)

ĐỀ THI THAM KHẢO HỌC KÌ - ĐỀ SỐ 1

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (84.49 KB, 4 trang )

Đề Kiểm Tra Học Kì 1 - Thời Gian Làm Bài : 90 Phút
Tác Giả : Vũ Đình Bảo – ĐH Kinh Tế Tp.HCM
Câu 1 :Cho đường thẳng (d) :
x -2y + 4 = 0 và điểm A (4,1). Tìm tọa độ
hình chiếu của A xuống (d)
A. (,) B. (,)
C. (,) D. (,)
Câu 2 : Trong Oxy cho (d) :3x + 2y + 1
=0 ; điểm A(1,2). Viết phương trình đường
thẳng (d’) đối xứng của (d) qua A.
A. 2x + 3y -15 = 0 B.3x + 2y -15 = 0
C. 3x + 2y +15 = 0 D.3x + 2y -5 = 0
Câu 3 : Cho y=e
x
sinx. Chọn câu đúng :
A. y’’ – 2y’ + 2y = 0 B. y’ – 2y’’ + 2y = 0
C. y’’ – 2y’ + 3y = 0 C. A. y’ – 2 + 2y = 0
Câu 4 : Cho hàm số
y = x
3
– 2(2-m)x
2
+ 2(2-m)x + 5
Tìm m để hàm số luôn luôn đồng biến
A. không có m
B. Với mọi m
C. m <1 & m thuộc [2 ;3]
D. m<1 & m < 2 hay m > 3
Câu 5 : Cho hàm số
y = x
4


– mx
3
– 2(m + 1)x
2
– mx + 1
xác định m để hàm số có đúng 1 cực trị
A. m thuộc [-4 ;] B. Với mọi m / {1}
C. Không có m D. m thuộc [-1 ; 9]
Câu 6 : Tìm Max, Min của hàm số
y = x + cos
2
x trên 0 ≤ x ≤ п/4
A.max = , min = 1
B. max = , min = -1
C. max = п + 2, min = 1
D.max = п/4, min = 0
Câu 7 : Cho (E) : 2x
2
+ 12y
2
= 24. viết
phương trình Hypebol (H) có 2 đường tiệm
cận y = ± 2x và có 2 tiêu điểm là tiêu điểm
của (E) .
A. 4x
2
– y
2
= 8 B. 2x
2

– y
2
= 8
C. 8x
2
– y
2
= 8 D. 4x
2
–2y
2
= 8
Câu 8 : Hãy biện luận số nghiệm của
phương trình sau đây theo m
x
2
+ 2x + 5 = (m
2
+ 2m + 5)(x + 1)
A.m ≠ -1
B.m ≠ -1 và -2 < m < 0
C.-2 < m < 0
D. Với mọi m
Câu 9 : Tìm Max, Min của
y = 2sin
2
x + 4sinxcosx +
A. max = 2 + 1, min = -1
B. max = 2 - 1, min = 1
C. max = 2 + 1, min = 1

D. max = 2 - 1, min = 1
Câu 10 :Cho đường thẳng (d) :
x -2y + 4 = 0 và điểm A (4,1). Tìm tọa độ
A’ đối xứng của A qua (d)
A. (,) B. (,)
C. (,) D. (,)
Câu 11 : Cho (d) :2x + y + 1 = 0 và A(0,3),
B(1,5). Tìm M trên (d) sao cho
MA - MB nhỏ nhất :
A. (-1,1) B. (,)
C.(-2,3) D. (1,1)
Câu 12 : Lập phương trình chính tắc của
Elip có độ dài trục lớn bằng 4, các đỉnh
nằm trên trục nhỏ và các tiêu điểm của (E)
cùng nằm trên 1 đường tròn
A. x
2
+ 4y
2
= 8B. 4x
2
+ y
2
= 8
C. x
2
+ 4y
2
= 4 D. 4x
2

+ y
2
= 4
Câu 13 : Viết phương trình đường tròn (C)
qua điểm A(-2,1) và tiếp xúc với đường
thẳng 3x – 2y - 6 = 0 tại M(0 ;-3)
A (x + 15/7)
2
+ (y -11/7)
2
= 325/49
B. (x - 15/7)
2
+ (y -11/7)
2
= 325/49
C. (x - 15/7)
2
+ (y +11/7)
2
= 325/49
D. (x + 15/7)
2
+ (y +11/7)
2
= 325/49
Câu 14 : Viết phương trình đường tròn có
tâm nằm trên (d) : 4x + 3y – 2 = 0 và tiếp
xúc với đừơng thẳng sau :
(d

1
) : x + y + 4 = 0 và (d
2
) : 7x – y + 4 = 0
A. (x + 4)
2
+ (y – 6)
2
= 18
và (x – 2)
2
+ (y +2)
2
= 8
B. (x + 4)
2
+ (y – 6)
2
= 8
và (x – 2)
2
+ (y +2)
2
= 18
C. (x + 2)
2
+ (y – 6)
2
= 18
và (x – 4)

2
+ (y +2)
2
= 8
D. (x + 4)
2
+ (y – 2)
2
= 18
và (x – 2)
2
+ (y +2)
2
= 8
Câu 15 : Cho y = x
3
– ax
2
+ x + b. tìm a và
b để đồ thị hàm số nhận I(1,1) làm điểm
uốn
A. a = 2, b = 3 B . a =3, b = 2
C. a = b =2 D. a = b = 3
Câu 16 : Tìm Max, Min của y = (ln
2
x)/x
trên đoạn [1 ;e
3
]
A.max = 0, min = 4/e

3
B.max = 4/e
3
, min = 9/e
3
C.max = 9/e
3
, min = 0
D.max = e
3
, min = 9/e
3
Câu 17 : Cho y = x
3
– 3x + 2 (C)
Gọi (d) là đường thẳng đi qua A(3 ;20) có
hệ số góc là m. Tìm m để đồ (C) giao với
(d) tại 3 điểm phân biệt
Đề Thi Chỉ Mang Tính Chất Tham Khảo Dành Cho Giáo Viên và Học Sinh THPT
Đề Kiểm Tra Học Kì 1 - Thời Gian Làm Bài : 90 Phút
Tác Giả : Vũ Đình Bảo – ĐH Kinh Tế Tp.HCM
A. m > B. m ≠ 24
C. m > và m ≠ 24 D. m < và m = 24
Câu 18 : Lập phương trình đừơng tròn (C)
qua A(4 ;2) và tiếp xúc với 2 hệ tục tọa độ.
A. (x-2)
2
+ (y-2)
2
= 4

và (x-10)
2
+ (y-10)
2
= 100
B. (x-10)
2
+ (y-2)
2
= 4
và (x-10)
2
+ (y-10)
2
= 10
C. (x-2)
2
+ (y-2)
2
= 4
và (x-10)
2
+ (y-10)
2
= 10
D. (x-2)
2
+ (y-2)
2
= 2

và (x-10)
2
+ (y-10)
2
= 100
Câu 19 : Viết phương trình chính tắc của
Hypebol, viết (H) tiếp xúc với 2 đừơng
thẳng : 5x – 6y – 16 = 0,13x – 10y – 48 = 0
A.x
2
– 4y
2
= 16 B. 4x
2
– y
2
= 16
C. 8x
2
– y
2
= 16 D. x
2
– 2y
2
= 16
Câu 20 :(d) :2x - 3y + 15 = 0 ;
(d’) : x – 12y + 3 = 0
Viết phương trình đường thẳng đi qua giao
điểm của 2 đừơng thẳng trên và vuông góc

với đường thẳng x – y – 100 = 0
A. 7x + 7y -60 = 0 B.6x + 6y -70 = 0
C. 7x + 7y 660 = 0 D.3x + 3y -5 = 0
Câu 21 : Lập phương trình tiếp tuyến với
(E) 18x
2
+ 32y
2
= 576 tại điểm M(4 ;3) ta
được :
A. 3x + 4y – 24 = 0 B. 4x + 3y -24 = 0
C. 4x + 3y + 24 = 0 D. 18x + 32y -24 = 0
Câu 22 : Tìm m để tam giác tạo bởi 2 trục
tọa độ và tiệm cận xiên của đồ thị hàm số
có diện tích bằng 4 :
y = (x2 + mx – 2)/(x – 1)
A. m = 6
B. m = -2
C. m = 6 hay m = -2
D. m = -6 hay m = 2
Câu 23 : Viết phương trình của Parabol
biết có đỉnh là O, tiêu điểm nằm trên trục
Ox và cách đỉnh 1 doạn bằng 3
A. y
2
= ± 12x B. y
2
= ± 2x
C. y
2

= 12x D. y
2
= 2x
Câu 24 : Cho hàm số
y = x
4
– mx
2
+ m -1. Xác định m sao cho
hàm số cắt trục hoành tại 4 điểm phân biệt
A. m > 1 và m ≠ 2 B . m ≠ 2
C. m < 1 và m ≠ -2 C. m > 2
Câu 25 : cho y = ln(x
2
+ mx + m)
Có đồ thị là (C), với mọi x thuộc R, hãy xác
định m để đồ thị không có điểm uốn
A. 0 < m < 4 B. 0≤ m ≤ 4
C. m < 0 hay m > 4 D. Với mọi m
Câu 26 : Cho Hypebol (H) có 2 tiệm cận
vuông góc với nhau. Tính tâm sai của (H) :
A. Không tính được B
C D. 1,5
Câu 27 : Cho hàm số
y = (x
2
+ 2x + 2)/(x + 1)
Viết phương trình tiếp tuyến của đồ thị đi
qua I(-1,0)
A.y = 3x + 3 B.y = -x + 19

C. y = -2 D. Không có tiếp tuyến
Câu 28 : Cho 2 đường tròn
(C1) : x
2
+ y
2
+ 2x – 6y + 6 = 0
(C2) : x
2
+ y
2
- 4x + 2y – 4 = 0
Chọn câu đúng
A. (C1) và (C2) có 2 điểm chung
B. (C1) và (C2) không có điểm chung
C. (C1) tiếp xúc ngoài với (C2)
D. (C1) tiếp xúc trung với (C2)
Câu 29 : viết phương trình tiếp tuyến của
đồ thị (C) có phương trình :
y = -x
3
+ 3x
2
– 3, biết tiếp tuyến này vuông
góc với đừơng thẳng có hệ số góc là 1/9
A.y = -9(x+1)+1 và y = -9(x-3)-3
A.y = -9(x+1)+10 và y = -(x-3)-3
A.y = -9x+1 và y = -9(x-3)-3
A.y = -9(x+1)+1 và y = -(x-3)-3
Câu 30 : 2 cạnh của hình bình hành có

phương trình là :
x – 3y = 0 và 2x + 5y + 6 = 0
Một đỉnh của hình bình hành là C(4,-1).
Viết phương trình 2 cạnh còn lại
A. 2x + 5y – 3 = 0 và x – 3y – 7 = 0
B. 4x + 10y – 15 = 0 và 3x – 6y – 17 = 0
C. 2x + 5y + 3 = 0 và 2x – 6y – 7 = 0
A. 5x + 10y – 3 = 0 và x – 3y – 7 = 0
Câu 31 : Cho hàm số y = biện luận số giao
điểm của đường thẳng y = m và đồ thị hàm
số theo m. Chọn phát biểu sai
A. y = 2 không có điểm chung
B. y > 2 có 1 điểm chung
C. y > -2 có 1 điểm chung
D. y < 2 có 1 điểm chung
Câu 32 : Phương trình tiếp tuyến tại điểm
M(3 ;4) với đừơng tròn :
(C) : x
2
+ y
2
– 2x – 4y – 3 = 0
A. x + y – 7 = 0 B. x + y + 7 = 0
Đề Thi Chỉ Mang Tính Chất Tham Khảo Dành Cho Giáo Viên và Học Sinh THPT
Đề Kiểm Tra Học Kì 1 - Thời Gian Làm Bài : 90 Phút
Tác Giả : Vũ Đình Bảo – ĐH Kinh Tế Tp.HCM
C. x – y – 7 = 0 D. x + y + 3 = 0
Câu 33 : Cho đồ thị hàm số y = x
2
/(x+1).

Tìm mệnh đề sai
A. (C) có 2 trục đối xứng
B. (C) có 1 tâm đối xứng
C. (C) có 2 điểm cưc trị
D. (C) có 1 tiệm cận ngang
Câu 34 : Cho hàm số
y = x
3
– 3mx
2
+3(m
2
– 1)x. Tìm m để hàm
số cực đại tại x = 1
A. m = 2
B. m = 0
C. m = 0 hay m =2
D. m ≠ 0 hay m ≠ 2
Câu 35 : Cho y = x
4
– ax
2
+ 3 đồ thị là (C).
Tìm a để đồ thị hàm số có 2 điểm uốn
A. a < 0 B. a <1
C. a > 0 D. a >1
Câu 36 :Viết phương trình tiếp tuyến của
Parabol : y
2
=2x, biết tiếp tuyến vuông góc

với x + y + 99 = 0
A. 2x – 2y - 1 = 0 B. 2x – 2y + 3 = 0
C. 2x – 2y + 1 = 0 D. 4x – 4y + 1 = 0
Câu 37 : Tìm m để phương trình sau đây
có 3 nghiệm phân biệt :
x3 + 3x2 -9x + m = 0
A. -27 < m < 5B. -5 < m < 27
C. -5 ≤ m ≤ 27 D. m ≠ 0
Câu 38 : Cho y = (1-x)(x+2)
2
Tìm mệnh đề sai :
A. (C) có 2 điểm cực trị
B. (C) có 1 điểm uốn
C. (C) có 1 tâm đối xứng
D. (C) có 1 trục đối xứng
Câu 39 : Cho hàm số :
y = mx – 2m + 6 +
Kết luận nào sau đây sai :
A.m = thì hàm số không có tiệm cận
B. m ≠ 0 và m ≠ thì hàm số có 1 tiệm cận
C. m = 0 thì hàm số có 2 tiệm cận
D. m ≠ 0 và m ≠ thì hàm số có 2 tiệm cận
Câu 40 : cho (d) : 3x – 2y + 1 = 0. Lập
phương trình đừơng thẳng (d’) đi qua
M(1,2) và tạo với (d) một góc 45 độ
A. 2x + 5y = 3 = 0 và 2x – 6y – 7 = 0
B. 5x + y - 7 = 0 và x – 5y + 9 = 0
C. x + 5y - 7 = 0 và 5x - y + 9 = 0
D. 5x + 4y - 7 = 0 và 4x – 5y + 9 = 0
Câu 41 : Viết phương trình đường tròn (C)

đi qua A(9 ;9) và tiếp xúc với trục Oy tại
điểm K(0 ;6)
A. x
2
+ y
2
– 10x – 12y + 6 = 0
B. x
2
+ y
2
– 10x – 2y + 3 = 0
C. x
2
+ y
2
– 10x – 12y + 36 = 0
D. x
2
+ y
2
– 10x – 36y + 12 = 0
Câu 42 : Viết phưong trình tiếp tuyến
chung của 2 elíp sau :
(E1) : 4x
2
+ 5y
2
= 20, (E2) : 5x
2

+ 4y
2
= 20
A. x ± y ± 3 = 0 B. x ± y ± 6 = 0
A. x ± 2y ± 3 = 0 A. 2x ± y ± 6 = 0
Câu 43 :Cho hàm số
y = (x
2
+ x -1)/(x +2)
Viết phương trình tiếp tuyến của hàm số
trên đi qua điểm uốn.
A. y = x + 1 B. y = 3x – 5
C. y = x + 3 D. không có tiếp tuyến
Câu 44 : Trong 4 parabol sau đây có điểm
gì khác
(1)y
2
= x, (2) y
2
= -x, (3) x
2
= -y, (4) x
2
= y
A. Tâm sai B.Đỉnh
C. đường chuẩn D. Tham số tiêu
Câu 45 : Tính khoảng cách từ M(0 ;3) đến
đường thẳng
xcosa + ysina + 3(2 –sina) = 0
A

B.6
C.3sina
D.
Câu 46 : Với giá trị nào của m thì đường
thẳng : 2x + 2y + m = 0 tiếp xúc với
Parabol : y
2
= 2x.
A.1 B.-1 C.2 D.-2
Câu 47 : Viết phương trình đừơng thẳng đi
qua giao điểm của 2 đường tròn
(C1) : x
2
+ y
2
– 4x = 0
(C2) : x
2
+ y
2
– 8x – 6y + 16 = 0
A. 2x + 3y – 16 = 0
B. 2x + 3y – 8 = 0
C. 2x + y – 16 = 0
D. 2x + 3y – 1 = 0
Câu 48 : Viết pt đường thẳng đi qua 2 điểm
cực trị của hàm số :
y = 2x
3
+ 3(m -1)x

2
+ 6(m – 2)x – 1
A.y = -(m – 3)
2
x – m
2
+3m - 3
B.y = -(m – 3)x – m
2
+3m – 3
C.y = -(m – 3)
2
x – m +3m – 3
D. y = -(m – 3)
2
x – m
2
+3m
Câu 49 : Định m để hàm số
Đề Thi Chỉ Mang Tính Chất Tham Khảo Dành Cho Giáo Viên và Học Sinh THPT
Đề Kiểm Tra Học Kì 1 - Thời Gian Làm Bài : 90 Phút
Tác Giả : Vũ Đình Bảo – ĐH Kinh Tế Tp.HCM
y = x3 – 3x2 + 3mx + 1 – m có cực đại và
cực tiểu với hoành độ các điểm cực trị đều
nhỏ hơn 2
A. 0 < m < 1 B. m < 1
C. m < 0 hay m > 1 C. Không có m
Câu 50 : Cho (d) :2x + y + 1 = 0 và A(0,3),
B(1,5). Tìm M trên (d) sao cho
MA + MB lớn nhất

A. (,) B. (,)
C. (,) D. (,)
Đề Thi Chỉ Mang Tính Chất Tham Khảo Dành Cho Giáo Viên và Học Sinh THPT

×