Tải bản đầy đủ (.docx) (70 trang)

Chuyên đề hình học không gian bồi dưỡng học sinh giỏi toán

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.79 MB, 70 trang )

CHUYÊN ĐỀ HÌNH HỌC KHÔNG GIAN BỒI DƯỠNG HỌC SINH GIỎI
Bài 1.
Xét các hình chóp n – giác S . A1 A2 ... An   ( n là số tự nhiên tùy ý lớn hơn 2 ) thỏa mãn đồng thời
các điều kiện sau:
A A ... A
a/ Đáy 1 2 n có tất cả các cạnh đều bằng 1 .
b/

� A  SA
� A  ...  SA
� A  60 0
SA
1 2
2 3
n 1

Tìm giá trị lớn nhất, nhỏ nhất độ dài đường cao SH của hình chóp nêu trên.
Hướng dẫn giải
S . A1 A2 ... An  
Chứng minh nếu hình chóp
tồn tại thì khi đó hình chóp là đều:
Chứng minh rằng các cạnh bên bằng nhau
Đặt : SA1 = x1 ; SA2 = x2 ; ..... ; SAn = xn .
Dùng định lý cosin trong các tam giác SA1 A2 ; SA2 A3 ; ...; SAn A1 ta có:
x22 = 1 + x12 - 2 x1 cos 600 = 1 + x12 - x1
x32 = 1 + x22 - 2 x2 cos600 = 1 + x22 - x2

.......................................................
xn2 = 1 + xn2- 1 - 2 xn- 1cos600 = 1 + xn2- 1 - xn- 1
x12 = 1 + xn2 - 2 xn cos600 = 1 + xn2 - xn .


�x22 = f ( x1 )



x32 = f ( x2 )




...............



�3


xn2 = f ( xn- 1 )



1
3


2
2
x
,
x
,

...,
x

;
+�

1
2
n

2
f ( x) = x - x +1 = ( x - ) +


2

x
=
f
(
x
)


1
n
2
4
Đặt
, ta có hệ: �

với
�3

� ; ��

2
�f  x  đồng biến.
Trên �
Do đó:

x1 �x2

Thật vậy: nếu

thì vô lý.

x1  x2 � f  x1   f  x2  � x 22  x 32 � x 2  x 3 � ... � x n  x1
. Ta có x1  x1 ( vô lý)

Tương tự nếu x1  x 2 cũng suy ra điều vô lý: x1  x1 . Vậy x1  x2 .

Trang 1


Do

x1  x2

2
2

x  x2  ...  xn  1
ta được x1  x1  x1  1 � x1  1 . Từ đó ta được: 1
.

SA1  SA2  ...  SAn  1
là đa giác đều. Từ
suy ra hình vuông góc H của S lên
đáy cách đều các đỉnh của đáy. Đa giác A1 A2 ... An có các cạnh bằng nhau và nội tiếp trong một đường tròn nên
Chứng minh đáy

A1 A2 ... An

là đa giác đều.
a) Tìm SH lớn nhất, nhỏ nhất.
b) Chứng minh n  6 .Ta có các mặt bên của hònh chóp là các tam giác đều cạnh 1 .
0
0
0
Ngoài ra: 60  A1SA2  A1 HA2 ; 60  A2 SA3  A2 HA3 ; ...; 60  An SA1  An HA1 .
Do đó:


n.600  3600 � n  6

 n  2 .

Tính SH và tìm giá trị lớn nhất, nhỏ nhất của SH :

SA12  HA12 .SA1  1; HA1 
Xét tam giác vuông SHA1 : SH 

2

SH 2  1 

1
2sin


n.

1�
� 1�
�
1

1 �
1  cot g 2 � �
3  cot g 2 �
, SH=
3  cot g 2

4�
4� 4�
4�
2
4
4sin 2
n  3; 4;5 .
n
1


n  3 : SH 

2
3 ;

2
n  4 : SH  2 ;

n  5 : SH 

1
1

2 2 5 .

1
1
2


Do đó giá trị lớn nhất của SH là 3 , giá trị nhỏ nhất của SH là 2 2 5 .
Bài 2.
Cho hình lập phương ABCD. A ' B ' C ' D ' cạnh a .Gọi E , G , K lần lượt là trung điểm của các cạnh
A ' D ', B ' C ' và AA' . H là tâm của hình vuông DCDC ' . M , N là hai điểm lần lượt ở trên hai đường thẳng
AD và EG sao cho MN vuông góc với KH và cắt KH .Tính độ dài đoạn MN theo a .
Hướng dẫn giải
D’

C’


E

G

A’

H

I

M

B’

E1
E1
A

M

H1

D
I1

C
G1

N1

B

H1

D

A

C

I1
N1

G1

B

Trang 2


Xác định đoạn MN

 ABCD  .
Gọi E1 , N1 , G1 , H1 là hình chiếu vuông góc của E , N , G, H trên mặt phẳng
KH  NN1
KH  MN1
AH1  MN1
I
Do KH  MN (gt) và K
suy ra

, suy ra
tại 1 .
Mà theo giả thiết MN cắt KH tại I suy ra II1 // NN1 mà I là trung điểm của đoạn MN nên I1 phải là
MN1
trung điểm của
.
Từ đó suy ra cách dựng hai điểm M , N .
Tính độ dài MN
Đặt

  DAH1 � H1 AN1  E1 N1M   .

1
1
3
AE1
5
 a

AN

1
cos 2 6 .
Xét tam giác vuông DAH , ta có: sin   5 � tg  2 � cos2  5
5 1
a 5
a 5
a.

� MN1 

AIN1
IN  AN1 sin   6
6
3 .
5
Xét tam giác vuông
, ta có: 1
.
2
a
(Cách khác: Gọi P là trung điểm của CG1 , suy ra được N1 ở trên AP , suy ra E1 N1  3 .)
E1 N1 a 5
5
14
a 14

� MN 2  NN12  MN12  a 2  a 2  a 2 � MN 
cos 
3
9
9
3 .
Cách khác: Dùng phương pháp tọa độ trong không gian....
MN1 

Bài 3.
Cho hình chóp tứ giác đều S . ABCD có cạnh đáy a  12, 54 (cm) ,các cạnh bên nghiên với đáy một
0
góc   72 . Tính thể tích và diện tích xung quanh của hình chóp S . ABCD .
Hướng dẫn giải


Chiều cao của hình chóp:

SH 

a 2
tg720 �27,29018628
2

1
V  a2h �1430,475152 cm3
3





Thể tích của hình chóp:
Trung đoạn của hình chóp
a2
2
d  SH 
�28,00119939
4

1
Sxq  .4a.d �702,2700807 cm2
2
Diện tích xung quanh của hình chóp:





Trang 3


Cho hình chóp tứ giác đều S . ABCD có cạnh đáy a  12, 54 (cm) , a  12, 54 (cm) ,các cạnh bên
0
nghiên với đáy một góc   72 .
Bài 4.

a) Tính thể tích hình cầu

 S1 

nội tiếp hình chóp S . ABCD .

b) Tính diện tích của hình tròn thiết diện của hình cầu
cầu

 S2 

 S1 

cắt bởi mặt phẳng đi qua các tiếp điểm của mặt

với các mặt bên của hình chóp S . ABCD .
Hướng dẫn giải

SH  27.29018628; IH 


SH .MH
 4.992806526  R
MH  MS
(bán kính mặt cầu nội tiếp)

S  V
Thể tích hình chóp 1 :

S

4
  R 3 �521.342129 (cm 3 )
3

SM �28, 00119939
K

MH  6, 27; IK  IH

Khoảng cách từ tâm I đến mặt phẳng đi qua các tiếp điểm của
của hình chóp:
d  EI 

720

 S1 

I


A

D

H

B
M

với các mặt bên

C

S

IH 2
 4.866027997
SH  IH

2
2
Bán kính đường tròn giao tuyến: r  EK  R  d �1,117984141
2
Diện tích hình tròn giao tuyến: S �74,38733486 (cm )

E

K

I


M

H

12, 24  cm 
Một thùng hình trụ có đường kính đáy ( bên trong) bằng
đựng nước
4,56  cm 
cao lên
so với mặt trong của đáy. Một viên bi hình cầu được thả vào trong thùng thì mực nước
dâng lên sát với điểm cao nhất của viên bi (nghĩa là mặt nước là tiếp diện của mặt cầu). Hãy tính bán kính
của viên bi.
Hướng dẫn giải
4
 R 2 h   x 3   R 2 .2 x � 4 x 3  6 R 2 x  3R 2 h  0 (0  x  R )
3
Ta có phương trình :
Bài 5.

Với R, x, h lần lượt là bán kính đáy của hình trụ, hình cầu và chiều cao ban đầu của cột nước.
3
Bấm máy giải phương trình: 4 x  224, 7264 x  512,376192  0 (0  x �6,12)

Trang 4


x1 �2,588826692; x2 �5,857864771
Ta có:
( AB) : 5 x  3 y  8  0; ( AC ) : 3 x  8 y  42  0;

( BC ) : 2 x  5 y  3  0

 T  có một cạnh bằng a và các
B. Xét hai độ dài khác nhau a, b . Tìm điều kiện của a, b để tồn tại tứ diện
 T  này, hãy xác định mặt phẳng    sao cho thiết diện của mặt phẳng
cạnh còn lại đều bằng b .Với tứ diện


và tứ diện

T

Điều kiện độ dài

là một hình vuông

a, b

V 

.Tính diện tích của hình vuông

V 

theo a và b .

:

 T  tồn tại. Gọi AB là cạnh bằng a , các cạnh AC , AD, BC , BD, CD đều cùng bằng b .
+ Giả sử tứ diện

Gọi I là trung điểm cạnh CD .Tam giác AIB là tam giác cân:
AB  a; AI  BI 

+Ngược lại với:

b 3
2 . Từ AB  AI  BI

0ab 3

Suy ra: 0  a  b 3

.Dựng tam giác đều

BCD

cạnh

b

với chiều cao BI .

AB  a , nằm trong mặt phẳng chứa BI và vuông góc với mặt phẳng  BCD  .Ta
Dựng tam giác cân AIB có

 BCD  . Tứ diện ABCD thỏa điều kiện bài toán.
có: A  mp

A


a

Q
M

P

B

D
I

N
C

Xác định mặt phẳng

 :
Trang 5


+ Giả sử thiết diện

MNPQ là hình vuông . Các mặt của tứ diện  T  lần lượt chứa các đoạn giao tuyến

MN , NP, PQ, QM được gọi tên là mặt  I  , mặt  II  , mặt  III  , mặt  IV 
.

Do


MN // PQ; MQ // NP nên cạnh chung của mặt  I  và mặt  III  ; cạnh chung của mặt  II  và mặt  IV 

nằm trên hai đường thẳng song song với mp

 .

Ngoài ra hai đường thẳng này vuông góc với nhau, vì
+ Do

MN vuông góc MQ .

a khác b nên tứ diện  T  chỉ có một cặp cạnh đối vuông góc , đó là AB và CD .

Vì vậy mặt phẳng



phải song song với AB và CD .


+ Gọi giao điểm của mp
Ta có:

MN 

MA
với AC , BC , BD, AD , lần lượt là M , N , P, Q .Đặt: k  MC .

a
kb

a
MQ 
k
MN

MQ
1 k ;
1  k . Từ
b.
ta có :

ab 2
(
)
MNPQ là : a  b
+ Diện tích của hình vuông

........................................................................................................................................
Cho hình chóp tứ giác S . ABCD , có đáy là một hình bình hành. Gọi G là trọng tâm tam giác SAC .
M là một điểm thay đổi trong miền hình bình hành ABCD .Tia MG cắt mặt bên của hình chóp tại điểm N
MG NG
Q

NG MG
.Đặt
1/ Tìm tất cả các vị trí của điểm M sao cho Q đạt giá trị nhỏ nhất.

Bài 6.

2/ Tìm giá trị lớn nhất của Q .

Hướng dẫn giải

Trang 6


s

N
C'

D'

N'
H
G

D

A
O

C

M
B

1/

Q
+


MG NG
MG NG

�2

1
NG MG
.Dấu bằng khi và chỉ khi NG MG
.

 ABCD  tại tâm O của hình bình hành ABCD . Gọi K là trung điểm của SG . Từ K dựng
+ SG cắt mp
mặt phẳng song song với mp
phẳng song song với mp

 ABCD 

 ABCD 

A, B, C , D
cắt SA, SB, SC , SD lần lượt tại 1 1 1 1 . Từ N dựng mặt

cắt SG tại N ' .

NG N ' G NG

;
1
� N ' trùng K � N thuộc cạnh hình bình hành A1 B1C1 D1

OG MG
Ta có : MG
Nối

NK cắt cạnh hình bình hành A1 B1C1 D1 tại P , ta có : PM // SG
.

+ Từ đó

Q  2 khi và chỉ khi M thuộc cạnh hình bình hành A1' B1' C1' D1'

A1' B1' C1' D1' là hình chiếu song song của hình bình hành A1 B1C1 D1 lên mp  ABCD 
theo phương

SG .

2/
+ Miền hình bình hành

ABCD hợp bởi các miền tam giác OAB, OBC , OCD, ODA

M thuộc miền hình bình hành ABCD nên M thuộc một trong bốn miền tam giác này. Chẳng hạn M
thuộc miền OAB . M �A  N �C ' ; M �B  N �D ' ; M �O  N �S .

Trang 7


Do đó N thuộc miền SC ' D ' và N ' thuộc đoạn SH , với C ', D ' và H lần lượt là trung điểm của
SC , SD và SO .


HG N ' G SG
1 NG

Do đó: HG �N ' G �SG . Vì vậy: OG  OG  OG hay 2 MG �2 .
NG
+Đặt : x  MG

Ta có :

Q

1 �

1
�� ; 2 �

2 �.
x x với x �

�1 �
�� ; 2 �� x  1
Q '  0 vàø x �2 �
.

� �1 �
� 5
MaxQ  Max �
Q� �
; Q  2  ; Q  1 �
2.

� �2 �

5
Q là : 2 . Đạt khi M trùng với O hoặc các đỉnh A, B, C , D
+Giá trị lớn nhất của
.
S
S
Cho tứ diện ABCD có diện tích các tam giác ADB và ADC là b và c . Mặt phẳng phân giác của
 ADB  và  ADC  cắt BC tại M .  là góc giữa hai mặt  ADB  và  ADC  .
nhị diện tạo bởi hai mặt
Chứng minh:
Bài 7.

MB Sb

MC
Sc
a/

b/ Diện tích S m của tam giác ADM là:

Sm 

2Sb .Sc .cos
Sb  Sc


2
.


Hướng dẫn giải
Câu a:
+ Do M ở trên mặt phẳng phân giác của góc nhị
diện cạnh AD nên khoảng cách từ M đến hai mặt phẳng

 ADB  ,  ADC 

bằng nhau và kí hiệu là d .

+ Do đó:
MB dt(DBM) VADBM Sb .d Sb




MC dt(DCM) VADCM Sc .d Sc
Câu b:

Trang 8


+ Tính công thức thể tích tứ diện:
1
1
1
sin 2Sb .Sc .sin 
VABCD  Sc .BH  Sc .BK.sin   Sc .BK.AD.

3

3
3
AD
3AD

+

VABCD  VADBM  VADCM

A

, áp dụng công thức tính thể tích trên ta suy ra:



2Sb .Sc .sin  2Sb .Sm .sin 2 2Sc .Sm .sin 2


3AD
3AD
3AD

Rút gọn, được:

Sm 

2Sb .Sc .cos
Sb  Sc

K



2

C

D

.

M
S

d  MN , PQ 
 MN , PQ  lần
Với hai đường thẳng MN , PQ chéo nhau trong không gian, kí hiệu

lượt là khoảng cách và góc giữa hai đường thẳng MN , PQ .
Bài 8.

d  AB, CD   d  AC , BD   d  AD, BC 
a/ Chứng minh rằng nếu tứ diện ABCD thỏa điều kiện:
thì trong ba số:

cotg  AB, CD  ; cotg  AC , BD  ; cotg  AD, BC 

có một số bằng tổng hai số còn lại.

d  AB, CD   d  AC , BD   d  AD, BC 
b/ Chứng minh rằng nếu tứ diện ABCD thỏa điều kiện:



 AB, CD    AC , BD    AD, BC 

thì nó là hình chóp tam giác đều.
Hướng dẫn giải

a/

C
D

B1




Dựng hình hộp ngoại tiếp tứ diện AC1 BD1 B1 DA1C .
d  AB, CD   d  AC , BD   d  AD, BC 
Giả thiết
suy ra các mặt của hình hộp cùng diện tích S .
a  AB, a1  CD, AC  b, BC  b1 , AD  c ,
Đặt
BC  c1 , AD1  z, AC1  y , AB1  x



Từ hình bình hành

AC1 BD1


.

A1
D1

A

C1

ta có:

Trang 9


a 4 a12
  y2
4 4
a 2  a12  2  y 2  z 2  ; cos  AB, CD  
1
a.a1
2
cos  AB, CD  



Chú ý:

y2  z2


b/







a.a1

S  dtAC1 BD1  a1a sin  AB, CD 

Tương tự:



B

cot g  AC, BD  

z2  x 2
2S

; 

. Do đó:
x 2  y2

cot g  AB, CD  


y2  z2
2S

2S

cotg  AB, CD   cotg  AC , BD   cotg  AD, BC   cotg  AD, BD 
Nếu x �y �z thì
.
Các trường hợp khác cũng có kết quả như thế.

 AB, CD    AC , BD    AD, BC 
Từ các kết quả câu a/ nếu thêm
cotg  AB, CD   cotg  AC , BD   cotg  AD, BC   0
thì
.
Suy ra các cặp cạnh đối của tứ diện ABCD vuông góc đôi một.

a 2  a12  b2  b12  c 2  c12
(Do x = y = z)

a.a1  b.b1  c.c1

Lúc này ta cũng có:
 a, a1   b, b1   c, c1 . Vì vậy phải có ít nhất một mặt của tứ diện ABCD là một tam giác
Suy ra
đều. Từ đó ABCD là hình chóp tam giác đều.

Trong không gian cho ba tia Ox, Oy , Oz không đồng phẳng và ba điểm A, B, C ( khác điểm O )
a 
a 0

lần lượt trên Ox, Oy, Oz .Dãy số (an) n là một cấp số cộng có 1
và công sai d  0 . Với mỗi số n
nguyên dương, trên các tia Ox, Oy, Oz theo thứ tự lấy các điểm An , Bn , Cn sao cho
Bài 9.

OA  an .OAn ; OB  an 1.OBn ; OB  an  2 .OCn .Chứng minh các mặt phẳng  An , Bn , Cn  luôn luôn đi qua một
đường thẳng cố định.
Hướng dẫn giải
+ Phát biểu và chứng minh mệnh đề:
Nếu hai điểm X , Y phân biệt. Điều kiện cần và đủ để điểm S thuộc đường thẳng XY là tồn tại cặp
số thực x, y thỏa:

Trang 10


uuu
r
uuur
uuur
OS  xOX  yOY


�x  y  1

a 
+Từ giả thiết: n

, với điểm O tùy ý.

là cấp số cộng công sai d  0 nên:


a n 1  a n  d

a n 1 a n
 1
d
d
.

+ áp dụng nhận xét trên, ta có:
uur a uuuur a uuuur
OI  n 1 OBn  n OA n
d
d
thì I �An Bn .



uuur
uuuur uuur
uuuur
OA  a n OA n ; OB  a n 1 OBn ( do a n , a n 1  0)

uuur uuur
uur OB OA 1 uuur
OI 

 AB , n=1,2...
d
d

d
Thế vào trên ta được:
suy ra I cố định, nên đường thẳng An Bn
luôn đi qua một điểm cố định I .
+ Tương tự, chứng minh được:
uur 1 uuu
r
OJ

BC
d
 Bn Bn luôn đi qua một điểm cố định J xác định bởi:
.
uuur 1 uuur
OK 
AC
AnCn
2d

luôn đi qua một điểm cố định K xác định bởi:
AB , BC , AC
Vậy các đường thẳng n n n n n n lần lượt đi qua ba điểm I , J , K cố định.

+Chứng minh ba điểm thẳng hàng:
uur 1 uuur uur 1 uuu
r uuur 1 uuur
OI  AB OJ  BC OK 
AC
d
d

2d
Ta có:
,
,
.
uuur 1 uuur 1 uuur uuu
r
uur
uur 1 uur uur
1
OK 
AC 
(AB  BC) 
(d.OI  d.OJ)  (OI  OJ)
2d
2d
2d
2
Do đó:

Vậy I , J , K thẳng hàng. Điều này chứng tỏ mặt phẳng An BnCn luôn đi qua một đường thẳng cố định.
Bài 10. Trong không gian cho ba mặt phẳng cố định có một điểm chung duy nhất. M là một điểm của
không gian, các đường thẳng đi qua M song song với hai mặt phẳng cắt mặt phẳng còn lại lần lượt tại
A, B, C . Biết MA  MB  MC  1998 .Tìm tập hợp các trọng tâm của tam giác ABC .
Hướng dẫn giải

Trang 11


+ Gọi O là giao điểm của 3 mặt phẳng. a, b, c là 3 giao tuyến . Dùng tính chất hình hộp và tính chất trọng

uuuur 2 uuur
OM ' = OM
3
tâm, ta có:
, với M " là trọng tâm của ABC .

U
_
B
_
C
_
M'
_

M
_
C
_

O
_
A
_

V
_

+ Tìm tập hợp các điểm M :
Ba mặt phẳng chia không gian làm 8 miền. Ta chỉ cần xét một miền: Gọi U , V, �thuộc a, b, c :

OU  �  OV  1998.
uuur
uuur
uuur
uuur
Chứng minh được: M thuộc miền trong tam giác UV� khi và chỉ khi: OM = xOU + yOV + zOW với
x  y  z 1.

Mà MA  MB  MC  1998 � x  y  z  1 .
Do đó: Tập các điểm M là miền trong của tam giác UV�.
Suy ra các điểm M ' ( trọng tâm của tam giác ABC ) là ảnh của miền trong tam giác UV� qua phép vị
2
tựtâm O tỉ 3

Bài 11. Cho hình chóp S . ABCD , đáy ABCD là hình chữ nhật có AB  a, BC  b , SA  SB  SC  SD  c .
K là hình chiếu vuông góc của P xuống AC .
a/ Tính độ dài đoạn vuông góc chung của SA và BK .
b/ Gọi M , N lần lượt là trung điểm của đoạn thẳng AK và CD . Chứng minh: Các đường thẳng BM và
MN vuông góc nhau.

Trang 12


Hướng dẫn giải

S
_

N
_


D
_

C
_
K
_

M
_

_
O
A
_

B
_

a) + Theo giả thiết ta được:


BK � SAC 

SO   ABCD  �  SAC    ABCD 

.

và B BK  AC � BK  SA .


+ Gọi H là hình chiếu của K xuống SA

� HK  SA và HK  BK ( vì HK � SAC  )
 HK là đoạn vuông góc chung của SA và BK .
Suy ra được: BH  SA và HBK vuông tại K .
1
1
1
a 2b2
2



BK

2
AB2 BC2
a 2  b2 .
+ Do ABC vuông đỉnh A nên: BK

+ SAB cân đỉnh S , BH là đường cao nên

HB 

SI.AB

SA

c2 


a2
.a
4

c

+ Do HBK vuông tại K nên:
HK 2  HB2  BK 2 

HK 2 

(4c 2  a 2 )a 2
a 2b 2

4c 2
a 2  b2

(4c 2  a 2  b 2 )a 4
a 2 (4c 2  a 2  b 2 )

HK

4c 2 (a 2  b 2 )
2c
(a 2  b 2 )

uuuu
r uuur uuur
b) + 2BM  BA  BK ( vì M là trung điểm của AK )

uuuu
r uuur uuu
r uuur 1 uuur uuur uuu
r 1 uuur
MN  MB  BC  CN  (AB  KB)  BC  BA
2
2
+

Trang 13


uuuu
r 1 uuur uuu
r
MN  KB  BC
2
+
.

+ Do đó:
uuuu
r uuuu
r uuur uuur uuur uuu
r
4BM.MN  (BA  BK).(KB  2BC)
uuur uuur uuur uuur uuur uuur uuur uuu
r
= BA.KB  2BA.BC  BK.KB  2BK.BC
uuur uuur uuur uuur uuur uuu

r
= BA.KB  BK.KB  2BK.BC
uuur uuur uuur
uuur
= KB.(BA  BK  2.BC)
uuur uuur uuu
r uuur uuur
= KB.(BA  BC  BK  BC)
uuur uuur uuur uuur uuur uuur uuur
= KB.(CA  CK)  KB.CA  KB.CK  0
Vậy: BK  MN .
( Có thể tính và áp dụng định lý Pythagor).
Bài 12. Cho tứ diện ABCD cóhai cạnh đối bằng b, c và các cạnh còn lại bằng a .
a/ Tìm giá trị nhỏ nhất của tổng các khoảng cách từ một điểm tùy ý trong không gian đến các đỉnh của tứ
diện.
b/ Giả sử tứ diện ABCD thay đổi vị trí trong không gian nhưng có ba đỉnh A, B, C lần lượt ở trên mặt
cầu cố định và đồng tâm.Chứng minh rằng đỉnh D luôn ở trong một hình cầu cố định khi độ dài a, b, c
thay đổi thỏa các giả đã cho.
Hướng dẫn giải

D

a)
 Ta có thể giả sử AD  b, BC  c và các cạnh còn lại
bằng a . Gọi I , J lần lượt là trung điểm của các cạnh

A’

AD, BC . Ta dễ dàng suy ra I vuông góc với AD và


BC và IJ chính là trục đối xứng của tứ diện.
 Lấy M tùy ý trong không gian, M ' là điểm đối xứng
của M qua IJ suy ra trung điểm K của MM ' chính là

D’

I
K0

C

A
J
B

hình chiếu của M trên đường thẳng IJ và ta có:

2  MA  MB  MC  MD   MA  MB  MC  MD  M ' A  M ' B  M ' C  M ' D

  MA  M ' A    MB  M ' B    MC  M ' C    MD  M ' D 

Trang 14


�2 KA  2 KB  2 KC  2 KD  1

.

( Do tính chất: trung tuyến của một tam giác thì bé hơn nữa tổng
của hai cạnh cùng xuất phát từ một đỉnh của nó).


MA  MB  MC  MD �KA  KB  KC  KD
 Bài toán trở thành tìm điểm K trên IJ sao cho KA  KB  KC  KD bé nhất.
 BCI  dựng hình thang BCD ' A ' sao cho IJ là trung điểm của hai đáy và
 Trong mặt phẳng
IA  IA ', ID  ID ' . Ta thấy rằng: với K tùy ý trên I thì KA  KA ' và KD  KD ' . Do đó:
KA  KB  KC  KD  KA ' KB  KC  KD '   KA ' KC    KB  KD '  �A ' C  BD '
.
 Do đó:

K
 Vậy KA  KB  KC  KD nhỏ nhất khi K chính là giao điểm 0 của hai đường chéo A ' C và BD ' .
 Tính

IJ : IJ 2  DJ 2  ID2  DC2  JC 2  ID 2  a 2 
2

c2 b 2
c2 b 2
 � IJ  a 2  
4 4
4 4 .

2

2
2
bc
�BC  A ' D ' � 2 �b  c � 2 c b
BD ' : BD '2  �


IJ


a


 a2 



2
4 4
2 .


�2 �
 Tính

2
 Tổng các khoảng cách nhỏ nhất là: d  2BD '  4a  2bc .
b)
r, r , r
 Gọi 1 2 3 là bán kính các mặt cầu tâm O và lần lượt đi qua các đỉnh A, B, C . Ta có:
OD  OC  DC  OC  AB  OC  OA  OB  r1  r2  r3

. Do đó D ở trong hình cầu cố định tâm O , bán
R  r1  r2  r3
kính
.

Bài 13.
Cho tam giác ABC có góc A nhọn. M là điểm di động trên BC . P, Q lần lượt là hình chiếu
 ABC  sao cho:
vuông góc của M lên AB, AC .Tìm tập hợp các điểm S không phụ thuộc mặt phẳng
g  SA, PQ   g  SP, AQ   g  SQ, AP 
.
g  a, b 
( ký hiệu
là góc giữa hai đường thẳng a, b )

Hướng dẫn giải
+ Với tứ diện ABCD ta chứng minh:

g  AB, CD   g  AD, BC   g  AC , BD  � AB  CD

và AD  BC , AC  BD .

uuur uuur uuur uuur uuur uuur
Thật vậy ta có đẳng thức: AB.CD  AC.DB  AD.BC  0 . Từ đó nếu:
g  AB, CD   g  AD, BC   g  AC , BD   

thì

 AB.CD  1 AC.DB   2 AD.BC  cos  0
Trang 15


Với 1 ,  2 nhận giá trị 1 hay 1 . Mặt khác ta có bất đẳng thức đối với các cạnh của tứ diện là:
AB.CD  1 AC.DB   2 AD.BC �0 , nên   900 .
+


g  SA, PQ   g  SP, AQ   g  SQ, AP   900

 ABC  là trực tâm tam giác
khi và chỉ khi hình chiếu S lên

APQ .
BM
t
+ Đặt BC
. Gọi E , F là hình chiếu của B và C lên AC , AB . Ta có:
uuuu
r uuur uuuu
r uuur uuu
r uuur uuur
MH  MP  MQ  MB  BP  MC  CQ mà ta có:
uuu
r uuu
r uuur
uuu
r uuur
uuu
r uuur uuuu
r uuuu
r uuu
r
uuu
r
BP  tBE, CQ  (1  t)CE, MB  (1  t)BC, BH  BM  MH  tBF  (1  t)BE


uuur uuur uuu
r uur
+Suy ra: EH  BH  BE  tEF . Tập hợp các điểm H là đoạn EF .
Vậy tập hợp các điểm S là dải mặt phẳng ở giữa hai đường thẳng a, b lần lượt đi qua E , F và vuông góc
mặt phẳng

 ABC  .

 P  chứa cạnh BC và cắt cạnh AD của tứ diện tại E . Gọi
Bài 14. Cho tứ diện đều ABCD . Mặt phẳng
x, y lần lượt là góc tạo bởi  P  với các mặt phẳng  BCD  và  ABC 
a, cm

cos  x  y  

b, Cho
Bài 15.

tan x 

1
3

5 2
7 . Tính tỉ số thể tích 2 tứ diện ABCE và BCDE

Cho hình chóp S . ABCD đáy ABCD là hình thang

 AD PBC 


và AD  2 BC . Gọi M , N lần

CP
 DMN  cắt SC tại P . Tính tỉ số CS .
lượt là trung điểm của SA, SB . Mặt phẳng
Bài 16.

Cho tam giác đều ABC :

2
2
2

1. M là điểm nằm trong tam giác sao cho MA  MB  MC . Hãy tính góc BMC.

 ABC  sao cho tứ diện SABC đều, gọi I , K là trung điểm
2. Một điểm S nằm ngoài mặt phẳng
của các cạnh AC và SB . Trên đường thấng AS và CK ta chọn các điểm P, Q sao cho
PQ // BI . Tính độ dài PQ biết cạnh của tứ diện có độ dài bằng 1 .

Trang 16


Bài 17. Trong mặt phẳng   cho đường tròn  C  Đường kính AB cố định và điểm M di động trên  C  .
Gọi S là điểm cố định trên đường thẳng vuông góc với mp   tại A . Hạ các đường AI , AJ lần lượt vuông
góc với SM và SB .
2.1 Chứng minh rằng AI  IJ .
2.2

Bài 18.


Tìm quỹ tích của điểm I khi M di động trên  C  .

B C D cạnh a .
Cho hình lập phương ABCD. A����
AC � A�
B
a. Tính góc giữa hai đường thẳng

.
N P
A�
M  BN  DP
A��
B BC DD�
, lần lượt là các điểm thuộc các cạnh
,
,
sao cho
.
MNP
M N
Chứng minh rằng trọng tâm tam giác
luôn thuộc một đường thẳng cố định khi
, ,
P
thay đổi.

b. Gọi


Bài 19.

M

,

Cho hình lăng trụ ABCD. A1 B1C1 D1 có đáy ABCD là hình thoi M , N lần lượt là trung điểm của

BB1 và CD . Mặt phẳng  A1MC  cắt AB tại E .
a. Chứng minh tam giác ACE là tam giác vuông.
KC
 A MN  cắt CC1 tại K . Tính tỉ số KC1 .
b. Mặt phẳng 1
OAB.O1 A1 B1
AA1  a 2 .
Cho lăng trụ đứng
có đáy là tam giác vuông cân tại O , OA  OB  a ,
Gọi M là trung điểm của OA .

Bài 20.

a. Xác định thiết diện giữa lăng trụ và mặt phẳng
b. Tính diện tích thiết diện vừa tìm được theo a .
Bài 21.

đi qua M , vuông góc với A1 B .

Cho tứ diện ABCD có AB vuông góc với AC và chân đường vuông góc hạ từ A đến mặt phẳng

 BCD 

Bài 22.

 P

BC  CD  DB  �6  AB 2  AD 2  AC 2 

BCD
là trực tâm của tam giác
. Chứng minh rằng
.
2

Cho tứ diện ABCD . Gọi M , N , P, Q lần lượt là trung điểm AB, AD, CD, BC .

Trang 17


a. Chứng minh tứ giác MNPQ là hình bình hành. Tìm điều kiện của tứ diện để MNPQ là hình thoi.

   và tứ diện ABCD .
b. Mặt phẳng  đi qua N và song song với AB, CD . Xác định thiết diện của
Thiết diện là hình gì?
Hướng dẫn giải
1/ (1,5
A
điểm)
0,5
M

N


0,5

F

E

B

D
P

Q

0,25
0,25

C

0,5

MN // BD �
�� MN // PQ
PQ
//
BD

*
* Tương tự MQ // NP
Kết luận: Tứ giác MNPQ là hình bình hành

* MNPQ là hình thoi khi AC = BD
2 / (1
điểm)

Bài 23.

*
*

   � ABD   NE � NE // AB
   � ACD   NF � NF // CD

0,25
0,25

� Thiết diện là tứ giác NEQF

0,25

* Tứ giác NEQF là hình bình hành

0,25

Cho hình chóp S . ABCD có đáy là nửa lục giác đều với cạnh a ( a  0 ). Cạnh SA vuông góc với

SM
đáy và SA  a 3 . M là một điểm khác B trên SB sao cho AM  MD . Tính tỉ số SB .
Hướng dẫn giải

Trang 18



S
H
D

A

B

C

Đặt hình chóp vào hệ trục toạ độ như hình vẽ. Suy ra ta có:

A   0;0;0  D   2a;0;0 
,
,

�a a 3 �
B�
�2 ; 2 ;0 �

S  0;0; a 3
�. Suy ra phương trình của SB là
và �






2x 2 y z  a 3


a a 3
a 3
Gọi

M  x0 ; y0 ; z0 

thuộc cạnh SB , ta có:


�y 0  3x0

�z0  a 3  2 3x0 .
uuuu
r uuuur

Mặt khác AM  DN  AM .DM  0
� x02  2ax0  y02  z02  0 � x0 

3a
8

�3a 3a 3 a 3 � uuur 3 uur
SM 3
�M�

�8 ; 8 ; 4 �
�� SM  4 SB



hay SB 4
Cho hình chóp tứ giác S . ABCD có đáy ABCD là hình bình hành tâm O và các cạnh bên có độ
dài bằng nhau. Một mặt phẳng ( ) thay đổi và luôn cắt các cạnh bên của chóp, gọi giao điểm của ( )
với các cạnh bên SA, SB, SC , SD lần lượt là M , N , P, Q . Đặt x  SM , y  SN , z  SP , t  SQ . Chứng

Bài 24.

1 1 1 1
  
minh rằng: x z y t .

Trang 19


Bài 25.

Cho hình chóp S . ABCD có đáy ABCD là hình vuông tâm O , cạnh bằng a , mặt bên SAB là tam

giác đều và mp

 SAB 

vuông góc với mp

 ABCD  .

d�
O,  SBC  �

A,  SCD  �

�, d �

�, d  AC , SB  .
b. Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp S . ABCD .

a. Tính các khoảng cách:

Bài 26.

 P  chứa AB và vuông góc với mặt phẳng  SCD  cắt hình chóp đã cho theo
c. Mặt phẳng
thiết diện hình gì? Tính diện tích thiết diện theo a .
Cho hình chóp S . ABC có đáy ABC là tam giác đều cạnh 2a , SA vuông góc với mặt phẳng
 ABC  và SA  3a . Gọi O là trọng tâm của tam giác ABC , H là hình chiếu vuông góc của điểm
O lên mặt phẳng  SBC  .
1/. Chứng minh rằng : H là trực tâm của tam giác SBC .
 ABC  .
2/. Tính góc giữa đường thẳng OH và mặt phẳng
Hướng dẫn giải
S

3a

K

C
H
A


M

O
2a
B

1/. Gọi M là trung điểm của cạnh BC .
Do ABC đều, G là trọng tâm của ABC nên ta có AM  BC .
Do

SA   ABC 

 ABC  .
nên AM là hình chiếu vuông góc của SM lên
Trang 20


Theo Định lí ba đường vuông góc ta có SM  BC .

 SBC  nên OH  BC và OM  BC Suy ra HM  BC .
Mặt khác do H là hình chiếu vuông góc của O lên
Suy ra SH  BC (1)
* Do ABC đều nên ta có CO  AB
Do

SA   ABC 

Từ đó suy ra


nên SA  OC .

OC   SAB 

.

Suy ra SB  OC .
Mặt khác

OH   SBC  � OH  SB

Từ đó ta có

SB   COH 

.

Suy ra CH  SB   (2)
Từ (1) và (2) suy ra H là trực tâm của SBC .

 SBC  .
2/. Gọi K là hình chiếu vuông góc của điểm A lên
Do đó ta có OH // AK .

 ABC  .
Ta có đường thẳng AM là hình chiếu vuông góc của đường thẳng AK lên
 ABC  bằng góc giữa đường thẳng AK và  ABC  bằng góc giữa hai
Vì vậy góc giữa đường thẳng OH và
đường thẳng


 AK , AM 


bằng góc KAM .

0
0






Do KAM  AMS  90 và ASM  AMS  90 nên KAM  ASM

Xét SAM vuông tại A có AM  a 3 , SA  3a .

Suy ra

tan �
ASM 

Từ đó ta có góc 

AM
3
� tan �
ASM 
��
ASM  300

AS
3

OH ,  ABC    300

.

Trang 21


Kết luận:
Bài 27.

Bài 28.

 OH ,  ABC    30

0

.

Cho tứ diện ABCD có các cặp cạnh đối bằng nhau từng đôi một AB  CD; AC  BD; AD  BC .
Chứng minh với mọi điểm M trong không gian ta đều có:
MA2  MB 2  MC 2 � MD 2
Cho hai đường thẳng d , d �chéo nhau và vuông góc với nhau nhận OI làm đường vuông góc
chung ( O thuộc d và I thuộc d �). Trên d lấy điểm A cố định, trên d �
lấy hai điểm M , N di
 d , M  vuông góc với mặt phẳng  d , N  .
động sao cho mặt phẳng
a/. Chứng minh trực tâm tam giác AMN cố định.

b/. Xác định M , N để diện tích tam giác AMN là nhỏ nhất.

Bài 29.

Bài 30.

Bài 31.

Bài 32.

Bài 33.

 P  đi qua trọng tâm M của tứ diện, cắt
Cho tứ diện S . ABC có SA  SB  SC  1 , mặt phẳng
cạnh SA, SB, SC lần lượt tại D, E , F (khác S ).
uuur 1 �1 uuu
r 1 uur 1 uuu
r�
SM  � SD 
SE 
SF �
4 �SD
SE
SF
�.
Chứng minh rằng:
1
1
1



Tìm giá trị lớn nhất của biểu thức : SD.SE SE.SF SF .SD .
Cho hình chóp S . ABCD , có đáy ABCD là hình chữ nhật với AB  a 2, BC  a và
SA  SB  SC  SD  2a . Gọi K là hình chiếu vuông góc của B trên AC và H là hình chiếu
vuông góc của K trên SA .
1/. Chứng minh rằng SA  BK .

 BKH  .
2/. Tính góc giữa đường thẳng SB và mặt phẳng
0 �
0

Cho góc tam diện Sxyz thỏa mãn góc xSy  121 ; xSz  59 . Trên tia Sx lấy điểm A sao cho

SA  a cho trước. Trên tia phân giác của góc xSy
lấy điểm B thỏa mãn SB  a 3 .

Tính các góc của tam giác SAB .
0
Cho hình thang vuông ABCD có A  D  90 , AB  2a, CD  a, AD  3a và M là điểm bất kỳ
thuộc đoạn thẳng AD .
1/. Xác định vị trí của điểm M để hai đường thẳng BM và CM vuông góc với nhau.
mp  BCD 
2/. Lấy điểm S thuộc đường thẳng vuông góc với
tại M sao cho SM  AM , xét mặt
 P  qua điểm M và vuông góc với SA . Mặt phẳng  P  cắt hình chóp SABCD theo thiết
phẳng
diện là hình gì ? Tính diện tích của thiết diện theo a, x biết x  AM và 0  x  �3a ?.
Cho tứ diện ABCD có các đường cao AA ', BB ', CC ', DD '  đồng qui tại một điểm thuộc miền trong
của tứ diện. Các đường thẳng AA ', BB ', CC ', DD '  lại cắt mặt cầu ngoại tiếp tứ diện ABCD theo

thứ tự tại

A1 , B1 , C1 , D1

. Chứng minh:
AA� BB� CC � DD� 8




AA1 BB1 CC1 DD1 3

Trang 22


Cho hỡnh chúp SABCD cú ỏy ABCD l hỡnh bỡnh hnh. M , N ln lt l trung im ca AB , SC .
SMN v SBD .
a/. Tỡm giao tuyn ca
MI
SBD


b/. Tỡm giao im I ca MN v
, tớnh t s MN .
Hng dn gii

Bi 34.

S


J
N
A

D

I
M
K
B
a/. Trên

ABCD

C

gọi K là giao điểm của MC và BD .

SMN và SBD .
Ta có: S là điểm chung thứ nhất của 2 mp
Mặt khác:

K SBD
- K BD nên
SMN
MC SMN
SN nên C
- C
do đó
.

SMN .
MC nên K
- K

K là điểm chung thứ 2 của 2 mp SMN và SBD .
Vậy: giao tuyến của
b/. Trên

SMN

SMN và SBD là SK .

gọi I là giao điểm của SK và MN .

Trang 23


SK , mà
Ta có: I

SK SBD

nên

I
SBD

.

SBD .

Vậy I là giao điểm của MN và
Gọi J là trung điểm của SK thì JN là đờng trung bình của tam giác SKC nên
JN //

1
KC
2
.

Mặt khác dễ thấy K là trọng tâm tam giác ABC nên

MK

1
KC
2
. Do đó: JN // MK .

IM MK
MI 1

1

JN
Suy ra: IN
nên : MN 2 .

Bi 35.

o


Cho hỡnh thoi ABCD cú BAD 60 , AB 2a. Gi H l trung im AB . Trờn ng thng d
ABCD ti H ly im S thay i khỏc H . Trờn tia i ca tia BC
vuụng gúc vi mt phng
1
BM BC.
4
ly im M sao cho

a 3
.
2 Chng minh ng thng SM vuụng gúc vi mt phng SAD .
a/. Khi
SAD cú s o ln nht.
b/. Tớnh theo a di ca SH gúc gia SC v
Hng dn gii
SH

S

M

B

C

K
H
I


A

N

D

Trang 24


a/. Ta có

MB 

1
a 1

�  600
BC   HB, HBM
 HAD
4
2 2

� HBM vuông tại M .
a 3
.
2
Gọi N là giao của HM và AD .
� HM  HB.sin 60o 

a 3

2 � SMN vuông tại S .
Ta có:
�SH  AD ( SH  ( ABCD))
� AD  ( SMN ) � AD  SM

�MN  DA ( AD / / BC )
Kết hợp với SM  SN � SM  ( SAD)
HN  HM  SH 

 SAD  ; K là hình chiếu vuông góc của H lên SN ; I là giao của HC với AD
b/. Gọi  là góc giữa SC và
. Lấy E đối xứng với I qua K .
Vì AD  ( SMN ) � AD  HK . Kết hợp với HK  SN � KH  ( SAD) .
Mà HK là đường trung bình của tam giác ICE nên HK // CE .

 SAD  . Ta có
Suy ra CE  ( SAD ) tại E . Suy ra SEC vuông tại E và SE là hình chiếu của SC trên

  CSE
.
Đặt x  SH ( x  0) . Tam giác SHN vuông tại H và HK là đường cao nên
HK 

SH .HN
3ax
2 3ax

� CE 
2
2

SN
3a  4 x
3a 2  4 x 2 .

CH 2  CM 2  MC 2 

25a 2 3a 2

 7a 2
4
4

2
2
2
2
Tam giác SHC vuông tại H nên SC  SH  CH  x  7 a .
EC
2 3ax
2 3ax
sin  


SC
(4 x 2  3a 2 )( x 2  7 a 2 )
(4 x 4  21a 4 )  31a 2 x 2
.

Trang 25



×