Tải bản đầy đủ (.doc) (4 trang)

Đề đáp án ôn tập vào THPT 2009-2010

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (77.71 KB, 4 trang )

Đề 2
Bài 1: Cho biểu thức: P =
( )









+








+
+



1
122
:
11
x


xx
xx
xx
xx
xx
a,Rút gọn P
b,Tìm x nguyên để P có giá trị nguyên.
Bài 2: Cho phơng trình: x
2
-( 2m + 1)x + m
2
+ m - 6= 0 (*)
a.Tìm m để phơng trình (*) có 2 nghiệm âm.
b.Tìm m để phơng trình (*) có 2 nghiệm x
1
; x
2
thoả mãn
3
2
3
1
xx

=50
Bài 3: Cho phơng trình: ax
2
+ bx + c = 0 có hai nghiệm dơng phân biệt x
1
,

x
2
Chứng minh:
a,Phơng trình ct
2
+ bt + a =0 cũng có hai nghiệm dơng phân biệt t
1
và t
2
.
b,Chứng minh: x
1
+ x
2
+ t
1
+ t
2


4
Bài 4: Cho tam giác có các góc nhọn ABC nội tiếp đờng tròn tâm O . H là
trực tâm của tam giác. D là một điểm trên cung BC không chứa điểm A.
a, Xác định vị trí của điẻm D để tứ giác BHCD là hình bình hành.
b, Gọi P và Q lần lợt là các điểm đối xứng của điểm D qua các đờng
thẳng AB và AC . Chứng minh rằng 3 điểm P; H; Q thẳng hàng.
c, Tìm vị trí của điểm D để PQ có độ dài lớn nhất.
Bài 5: Cho hai số dơng x; y thoả mãn: x + y

1

Tìm giá trị nhỏ nhất của: A =
xyyx
5011
22
+
+
Đáp án
Bài 1: (2 điểm). ĐK: x
1;0

x

a, Rút gọn: P =
( )
( )
( )
1
12
:
1
12
2




x
x
xx
xx

z
<=> P =
1
1
)1(
1
2

+
=


x
x
x
x
b. P =
1
2
1
1
1

+=

+
xx
x
Để P nguyên thì
)(121

9321
0011
4211
Loaixx
xxx
xxx
xxx
==
===
===
===

Vậy với x=
{ }
9;4;0
thì P có giá trị nguyên.
Bài 2: Để phơng trình có hai nghiệm âm thì:
( )
( )







<+=+
>+=
++=
012

06
06412
21
2
21
2
2
mxx
mmxx
mmm

3
2
1
0)3)(2(
025
<







<
>+
>=

m
m

mm
b. Giải phơng trình:
( )
50)3(2
3
3
=+
mm










=
+
=

=+=++
2
51
2
51
0150)733(5
2
1

22
m
m
mmmm

Bài 3: a. Vì x
1
là nghiệm của phơng trình: ax
2
+ bx + c = 0 nên ax
1
2
+ bx
1
+ c
=0. .
Vì x
1
> 0 => c.
.0
1
.
1
1
2
1
=++







a
x
b
x
Chứng tỏ
1
1
x
là một nghiệm dơng của ph-
ơng trình: ct
2
+ bt + a = 0; t
1
=
1
1
x
Vì x
2
là nghiệm của phơng trình:
ax
2
+ bx + c = 0 => ax
2
2
+ bx
2

+ c =0
vì x
2
> 0 nên c.
0
1
.
1
2
2
2
=+








+








a

x
b
x
điều này chứng tỏ
2
1
x
là một nghiệm dơng
của phơng trình ct
2
+ bt + a = 0 ; t
2
=
2
1
x

Vậy nếu phơng trình: ax
2
+ bx + c =0 có hai nghiẹm dơng phân biệt x
1
; x
2
thì
phơng trình : ct
2
+ bt + a =0 cũng có hai nghiệm dơng phân biệt t
1
; t
2

. t
1
=
1
1
x
; t
2
=
2
1
x
b. Do x
1
; x
1
; t
1
; t
2
đều là những nghiệm dơng nên
t
1
+ x
1
=
1
1
x
+ x

1


2 t
2
+ x
2
=
2
1
x
+ x
2


2
Do đó x
1
+ x
2
+ t
1
+ t
2


4 Bài 4
a. Giả sử đã tìm đợc điểm D trên cung BC sao cho tứ giác BHCD là hình bình
hành . Khi đó: BD//HC; CD//HB vì H là trực tâm tam giác ABC nên
CH

AB

và BH
AC
=> BD
AB

và CD
AC
.
Do đó:

ABD = 90
0


ACD = 90
0
.
Vậy AD là đờng kính của đờng tròn tâm O
Ngợc lại nếu D là đầu đờng kính AD
của đờng tròn tâm O thì
tứ giác BHCD là hình bình hành.
b) Vì P đối xứng với D qua AB nên

APB =

ADB
nhng


ADB =

ACB nhng

ADB =

ACB
Do đó:

APB =

ACB Mặt khác:

AHB +

ACB = 180
0
=>

APB +

AHB = 180
0

Tứ giác APBH nội tiếp đợc đờng tròn nên

PAB =

PHB



PAB =

DAB do đó:

PHB =

DAB
Chứng minh tơng tự ta có:

CHQ =

DAC
Vậy

PHQ =

PHB +

BHC +

CHQ =

BAC +

BHC = 180
0
Ba điểm P; H; Q thẳng hàng
c). Ta thấy


APQ là tam giác cân đỉnh A
Có AP = AQ = AD và

PAQ =

2BAC không đổi nên cạnh đáy PQ
đạt giá trị lớn nhất AP và AQ là lớn nhất hay AD là lớn nhất
H
O
P
Q
D
C
B
A
 D lµ ®Çu ®êng kÝnh kÎ tõ A cña ®êng trßn t©m O

×