đáp án:
Câu I: (2,0đ)
1. Tính
4. 25
= 2.5 = 10
2. Giải hệ phơng trình:
2 4
3 5
x
x y
=
+ =
< = >
2
2 3 5
x
y
=
+ =
< = >
2
1
x
y
=
=
Vậy hệ phơng trình có nghiệm duy nhất (x;y) = (2;1) .
Câu II: (2,0đ)
1.
x
2
- 2x +1 = 0
<=> (x -1)
2
= 0
<=> x -1 = 0
<=> x = 1
Vậy PT có nghiệm x = 1
2.
Hàm số trên là hàm số đồng biến vì: Hàm số trên là hàm bậc nhất có hệ số
a = 2009 > 0. Hoặc nếu x
1
>x
2
thì f(x
1
) > f(x
2
)
Câu III: (1,0đ)
Lập phơng trình bậc hai nhận hai số 3 và 4 là nghiệm?
Giả sử có hai số thực: x
1
= 3; x
2
= 4
Xét S = x
1
+ x
2
= 3 + 4 = 7; P = x
1
.x
2
= 3.4 = 12 =>S
2
- 4P = 7
2
- 4.12 = 1 > 0
Vậy x
1
; x
2
là hai nghiệm của phơng trình: x
2
- 7x +12 = 0
Câu IV(1,5đ)
Đổi 36 phút =
10
6
h
Gọi vận tốc của ô tô khách là x ( x >10; km/h)
Vận tốc của ôtô tải là x - 10 (km/h)
Thời gian xe khách đi hết quãng đờng AB là:
x
180
(h)
Thời gian xe tải đi hết quãng đờng AB là:
10
180
x
(h)
Vì ôtô khách đến B trớc ôtô tải 36 phút nên ta có PT:
0300010
)10(10.180)10(610.180
180
10
6
10
180
2
=
=
=
xx
xxxx
xx
553025
302530005
'
2'
==
=+=
x
1
= 5 +55 = 60 ( TMĐK)
x
2
= 5 - 55 = - 50 ( không TMĐK)
Vậy vận tốc của xe khách là 60km/h, vận tốc xe tải là 60 - 10 = 50km/h
Câu V:(3,0đ)
1/
.
A
B
C
D
M
I
O
H
K
a)
AHI vuông tại H (vì CA
HB)
AHI nội tiếp đờng tròn đờng kính AI
AKI vuông tại H (vì CK
AB)
AKI nội tiếp đờng tròn đờng kính AI
Vậy tứ giác AHIK nội tiếp đờng tròn đờng kính AI
b)
Ta có CA
HB( Gt)
CA
DC( góc ACD chắn nửa đờng tròn)
=> BH//CD hay BI//CD (1)
Ta có AB
CK( Gt)
AB
DB( góc ABD chắn nửa đờng tròn)
=> CK//BD hay CI//BD (2)
Từ (1) và (2) ta có Tứ giác BDCI là hình bình hành( Có hai cặp cạnh đối song song)
Mà DI cắt CB tại M nên ta có MB = MC
=> OM
BC( đờng kính đi qua trung điểm của dây thì vuông góc với dây đó)
2/ Cách 1:
Vì BD là tia phân giác góc B của tam giác ABC;
nên áp dụng tính chất đờng phân giác ta có:
ABBC
BC
AB
BC
AB
DC
AD
2
4
2
===
Vì
ABC vuông tại A mà BC = 2AB nên
^ACB = 30
0
; ^ABC = 60
0
Vì ^B
1
= ^B
2
(BD là phân giác) nên ^ABD = 30
0
Vì
ABD vuông tại A mà ^ABD = 30
0
nên BD = 2AD = 2 . 2 = 4cm
=>
12416
222
=== ADBDAB
Vì
ABC vuông tại A =>
341236
22
=+=+=
ABACBC
Vì CH là tia phân giác góc C của tam giác CBD; nên áp dụng tính chất đờng phân giác
ta có:
DHBH
HB
DH
HB
DH
BC
DC
3
34
4
===
Ta có:
34)31(
3
3433
3
4
=+
=
=+
=
=+
BH
HDBH
HDBH
HDBH
HDBH
)13(32
2
)13(34
)31(
34
=
=
+
=
BH
. Vậy
cmBH )13(32
=
Cách 2: BD là phân giác =>
2
2
2 2
2 2
4 4
AD AB AB AB
DC BC BC AB AC
= = =
ữ
+
2
2 2 2
2
4
4( 36) 16 8 4.36
16 36
AB
AB AB AB
AB
= + = =
+
D
A
B
C
E H
1
2
2
1
Câu VI:(0,5đ)
Cách 1:Vì xyz -
16
0
x y z
=
+ +
=> xyz(x+y+z) = 16
P = (x+y)(x+z) = x
2
+xy + xz + yz = x(x+y+z) + yz
áp dụng BĐT Côsi cho hai số thực dơng là x(x+y+z) và yz ta có
P = (x+y)(x+z) = x(x+y+z) + yz
816.2)(2
==++
zyxxyz
; dấu đẳng thức xẩy ra khi
x(x+y+z) = yz .Vậy giá trị nhỏ nhất của P là 8
Cách 2: xyz=
16
x y z+ +
=>x+y+z=
16
xyz
P=(x+y)(x+z)=x
2
+xz+xy+yz=x(x+y+z)+yz=x.
16
xyz
+yz=
16 16
2 . 8yz yz
yz yz
+ =
(bđt cosi)
Vây GTNN của P=8