Vai trò của các ký hiệu toán học trong nhận thức khoa học
11/04/2007
Trên cơ sở nghiên cứu lịch sử phát triển của toán học, chúng ta nhận thấy rằng, kết cấu logic và sự phát triển của các lý thuyết toán học ngày càng
phụ thuộc vào việc sử dụng các ký hiệu toán học và sự cải tiến các ký hiệu đó. Ngày nay, chúng ta đã có đầy đủ căn cứ để khẳng định rằng, các ký
hiệu toán học không những chỉ là phương tiện thuận lợi cho việc nghiên cứu khoa học nói chung và toán học nói riêng, mà chúng còn có một giá trị
nhận thức luận to lớn. Sở dĩ các ký hiệu toán học có vai trò quan trọng như vậy là do nội dung khách quan của chúng quy định.
Như chúng ta đã biết rằng, trong lịch sử toán học, vào đầu thế kỷ thứ V, khi người ấn Độ đưa ký hiệu vào để chỉ số 0 thì họ đã có thể xoá bỏ được hệ thống tính từng
cấp và phát triển hệ thống tính thập phân mà tính ưu việt của nó trong tính toán đã được hàng trăm triệu người trên hành tinh chúng ta sử dụng hàng ngày. Đồng thời,
khi nhà khoa học nổi tiếng người Đức là Lépnít đưa ra ký hiệu vi phân và tích phân thì toán học đã thực sự đổi mới. Thật vậy, nếu như trước đây lời giải của nhiều bài
toán về tính diện tích, thể tích, cơ học, thiên văn học… đòi hỏi những nỗ lực to lớn mà chỉ những nhà toán học lỗi lạc mới có thể giải được, thì khi các ký hiệu của
Lépnít xuất hiện, nhìn chung chúng đã được giải quyết, mặc dù đó là sự giải quyết một cách máy móc. Như vậy, với những ký hiệu toán học, chúng ta có thể giải quyết
được những nhiệm vụ gắn liền với thực tiễn. Do ký hiệu toán học có nội dung khách quan đích thực. Ở đây, vấn đề là ở chỗ, nội dung ấy được thể hiện như thế nào
trong quá trình nghiên cứu khoa học của chúng ta.
Chúng ta đều biết rằng, nhiều nhà triết học duy tâm thường khẳng định tư duy của con người không có khả năng đưa ra các chân lý khách quan. Song, trên thực tế họ lại
luôn minh chứng cho nhận thức luận duy tâm của mình bằng cách sử dụng hệ thống ký hiệu và công thức toán học do các nhà toán học đưa ra. Giải thích việc sử dụng
hệ thống này, các nhà triết học duy tâm cho rằng, đối tượng của toán học mang tính trừu tượng cao, trong khi quy luật phát triển của toán học lại rất phức tạp, ngôn ngữ
ký hiệu thì ngày càng được sử dụng nhiều trong toán học, nên các chân lý toán học không có tính khách quan. Từ đó, họ coi toán học chỉ là một hệ thống ký hiệu đã
được lựa chọn từ trước một cách thích hợp và căn cứ vào đó để minh chứng cho học thuyết của mình. Bác bỏ quan niệm đó, các nhà triết học duy vật đã dựa vào toàn bộ
quá trình phát triển của tri thức khoa học để chỉ ra sai lầm của chủ nghĩa duy tâm về đối tượng của toán học và phân tích một cách đúng đắn nội dung, ý nghĩa của các
ký hiệu toán học.
Theo quan điểm duy vật biện chứng, các ký hiệu toán học, trước hết được sử dụng để ghi lại các khái niệm và các mệnh đề toán học. Chẳng hạn, trong số học các số tự
nhiên, các ký hiệu 1, 2, 3… biểu thị đặc điểm về lượng của nhóm đối tượng chứa một, hai, ba… đối tượng. Các ký hiệu >, = , < biểu diễn những sự tương quan, chẳng
hạn 1<2 (1 bé hơn 2). Đồng thời, người ta còn sử dụng đấu hiệu các phép tính số học như: +, - , x, : để biểu thị những mối liên hệ có thể có giữa các số tự nhiên. Tất cả
các ký hiệu nói trên cho phép ta diễn đạt một cách hoàn toàn chính xác nhiều mệnh đề của số học các số tự nhiên. Ví dụ, ký hiệu (3 x 5) -7 = 4 x 2 biểu diễn một mệnh
đề số học.
Trong đại số học, người ta thường dùng các ký hiệu là các chữ như a, b, c,..., x, y, z... để biểu đạt các thông số và những đại lượng biến thiên. Chẳng hạn, trong phương
trình ax
2
+ bx + c = 0, mỗi hệ số a, b, c có thể nhận bất kỳ giá trị thực nào, còn ẩn số x cần tìm là thuộc tập hợp các số phức. Việc sử dụng các ký hiệu về đại lượng biến
thiên cho phép ta diễn đạt ở dạng tổng quát các quy luật của đại số và cả các quy luật của các lý thuyết toán học khác. Ví dụ:
a + b + c = (a + b) + c = a + (b + c)
(a + b).c = a.c + b.c
a
n
- b
n
- (a - b). (a
n-1
+ a
n-2
b + ... + ab
n-2
+ b
n-1
)
Trong thực tế, nếu chúng ta khảo sát những sự thể hiện khác nhau của cùng một tiêu đề xuất phát thì không những chỉ các khái niệm về đối tượng của lý thuyết thay đổi,
mà cả các khái niệm về sự tương quan và liên hệ giữa chúng cũng thay đổi. Chẳng hạn, trong hệ tiên đề pêanô, các ký hiệu >, =, <, +, -, x, : sẽ có ý nghĩa khác nhau tuỳ
theo ký hiệu 1 , 2 , 3 ... biểu thị các số tự nhiên về lượng hay về thứ tự. Ví dụ, ký hiệu 3 < 4 nếu biểu thị về lượng thì có nghĩa là 3 bé hơn 4, song nếu biểu thị về thứ tự
thì có nghĩa là 3 đứng trước 4.
Như vậy, có thể nói, các ký hiệu toán học cho phép ta ghi lại một cách cô đọng và dưới dạng dễ nhận thức những mệnh đề rất rườm rà trong ngôn ngữ thông thường.
Nhờ đó, ta có thể dễ nhớ và có khả năng nắm được nội dung của chúng. Đồng thời, các ký hiệu này còn được sử dụng một cách có hiệu quả trong toán học để ghi lại các
khái niệm và các mệnh đề, mỗi khi chúng phản ánh được những tương quan về lượng và những hình dạng không gian nhất định của thế giới hiện thực. Chính vì vậy,
trước khi sử dụng những ký hiệu vào những lập luận của mình, nhà toán họe cần chỉ rõ mỗi ký hiệu như thế biểu thị cái gì, nếu không sẽ dẫn đến những hiểu biết sai
lệch điều mà các ký hiệu muốn nói và như vậy, mọi lập luận trong toán học sẽ không thể tiếp tục tiến hành. Chỉ khi ý nghĩa của các ký hiệu đã được thiết là một cách
chính xác, chúng ta mới có khả năng hiểu được điều mà các quan hệ muốn diễn đạt.
Trong toán học, vai trò của các ký hiệu rất giống với vai trò của tiếng nói thông thường trong xã hội. Điều này được thể hiện ở chỗ, tiếng nói của các ký hiệu toán học
cho phép các nhà toán học trao đổi với nhau và trao đổi với những người khác về chân lý toán học, về việc tổ chức nghiên cứu khoa học. Nhà toán học nổi tiếng người
Nga - Lôbasépxki đã nhận định rằng, cũng như tiếng nói thông thường có khả năng làm cho sự hiểu biết của chúng ta thêm phong phú nhờ lĩnh hội được ý kiến của
những người khác, tiếng nói của các ký hiệu toán học là một phương tiện hoàn hảo hơn, chính xác và sáng sủa hơn để người này truyền cho người kia những khái niệm
mà họ lĩnh hội được, những chân lý mà họ tìm thấy. Nhưng ở đây, cần phải thấy một điều đặc biệt quan trọng là, tiếng nói của các ký hiệu toán học không thể tồn tại
được nếu không có tiếng nói thông thường. Tiếng nói thông thường có nội dung phong phú hơn tiếng nói của các ký hiệu toán học. Tất cả những mệnh đề toán học được
diễn tả bằng tiếng nói của ký hiệu đều có thể diễn tả bằng tiếng nói thông thường. Nhưng điều ngược lại thì không đúng, mọi mệnh đề được diễn tả bằng tiếng nói thông
thường không phải lúc nào cũng có thể diễn tả bằng tiếng nói của các ký hiệu toán học. Tiếng nói của các ký hiệu toán học chỉ là một công cụ bổ sung cho tiếng nói
thông thường, nó được sử dụng trong toán học và một phần trong các ngành khoa học khác mà ở đó, có ứng dụng toán học. Việc ký hiệu hoá toán học không đơn thuần
là một vấn đề hình thức, một cách viết tắt thuận lợi, mặc dù không bao giờ được xem thường khía cạnh đó. Ngôn ngữ toán học cho phép ta nói ngắn gọn nhiều điều mà
nếu diễn tả bằng ngôn ngữ thông thường sẽ rất dài đòng, phức tạp. Ở đây, chúng ta có thể nhận thấy tính ưu việt của việc sử dụng các ký hiệu toán học, nếu so sánh công
thức của bất đẳng thức Bunhiacốpxki:
(a
2
+ a
2
+ ... + a
2
).(b
2
+ b
2
+ … + b
2
) > (a
1
b
1
+ a
2
b
2
+… +a
n
b
n
)
2
. Với cách diễn đạt nội dung của nó bằng lời. Rõ ràng, việc phát biểu công thức này bằng lời sẽ dài dòng
hơn rất nhiều, và nếu so sánh cách chứng minh bất đẳng thức trên bằng ký hiệu với cách chứng minh bằng lời thì chúng ta càng nhận thấy sự thuận tiện của việc sử dụng
các ký hiệu toán học.
Tuy nhiên, không phải lúc nào các ký hiệu toán học cũng có thể biểu diễn một cách ngắn gọn nội dung toán học và các khoa học khác. Các ký hiệu toán học sẽ không
thực hiện được nhiệm vụ chủ yếu này của chúng, nếu chúng chỉ là những biểu hiện ngắn gọn của những dạng ngôn ngữ đài dòng hơn. Chẳng hạn, việc xây dựng cơ học
cổ điển đã diễn ra với việc sử dụng các véctơ để diễn tả chuyển động. Theo đánh giá của Anhxtanh, ở đây toàn bộ công việc đã làm chỉ là chuyển những sự kiện đã được
thừa nhận từ trước thành một ngôn ngữ phức tạp và kỳ lạ. Nhưng, theo ông, chính cái ngôn ngữ kỳ lạ là véctơ ấy đã dẫn đến những điều khái quát quan trọng mà trong
đó, véctơ giữ vai trò nòng cốt.
Vấn đề đáng lưu tâm là ở chỗ, các ký hiệu toán học chỉ có tính ưu việt khi chúng đảm bảo vai trò hàng đầu của mình trong nhận thức khoa học. Điều đó được thể hiện ở
việc tham gia giải quyết các nhiệm vụ của chúng. Chẳng hạn, trong đại số học, với các biểu thức bằng chữ, chúng ta dễ dàng thực hiện được các phép tính và biến đổi từ
dạng này sang trạng khác. Việc giải một bài toán đại số dẫn tới một hệ hai hoặc ba phương trình tuyến tính mà nếu diễn đạt bằng lời, sẽ không thực hiện được trong khi
đó, với các ký hiệu đại số, lời giải của nó được tìm thấy rất nhanh.
Sự tồn tại trong toán học các phép tính, các thuật toán khác nhau cho phép chúng ta giải theo một quy tắc nhất định hàng loạt bài toán mà khoa học tự nhiên và kỹ thuật
thường xuyên đặt ra, đó chính là nét đặt trưng của toán học. Để cho các phép toán dẫn đến lời giải của những bài toán xác định, chúng ta cần phải xây dựng những chỉ
dẫn chính xác để trên cơ sở đó, từ những cái đã cho lúc đầu mà thu được kết quả cần tìm.
Trong các tập Bản thảo toán học, Mác đã nghiên cứu riêng toán học và để lại nhiều tư tưởng quý giá về các vấn đề mà chúng ta quan tâm. Trong đó, những tư tưởng của
Mác về cái gọi là "cuộc cách mạng trong phương pháp" có ý nghĩa đặc biệt quan trọng về mặt phương pháp luận. Trong khi phân tích những quan niệm khác nhau về cơ
sở của phép tính vi phân, Mác đã khẳng định rằng, việc sử dụng các ký hiệu trở thành bí ẩn và khó hiểu nếu ngay từ đầu chúng được coi là cái đã cho, đã có sẵn. Điều
khẳng định của Mác đã xảy ra đối với các nhà sáng lập phép tính vi phân - Niutơn và Lépnít cùng những người kế tục gần gũi các ông. Trong khi tìm các đạo hàm và vi
phân của hàm số, ngay từ đầu, họ đã coi số gia của đối số như là các vi phân. Khi lấy vi phân một hàm số xác định y = f(x) , một bộ phận nào đó được bỏ đi coi như vô
cùng nhỏ, nhưng nếu số hạng bỏ đi khác 0 thì việc bỏ nó là một phép toán không hợp pháp; nếu có (dx) = 0 thì khi đó, cả (dy) cũng bằng 0 và đẳng thức của chúng ta
biến thành đồng nhất thức 0 = 0. Như vậy, số hạng bỏ đi đồng thời phải là 0 và không là 0. Lẽ đương nhiên là ở đây, không có phép biện chứng nào cả. Trái lại, chính
điều này đã đi đến chỗ gán cho các vi phân những tính chất bí ẩn đặc biệt nào đó, khác với các tính chất của các đại lượng thông thường. Vin vào đó, nhà triết học duy
tâm Béccơly đã lấy cớ để gọi chúng một cách châm biếm và hài hước là "bóng ma của những đại lượng chết".
Để vứt bỏ tấm màn bí ẩn ở các khái niệm và ký hiệu của phép tính vi phân, theo Mác, cần phải làm cho ký hiệu đặc trưng đối với phép tính .vi phân không xuất hiện như
là điểm xuất phát, mà như là kết quả của quá trình hoạt động thực tế không chứa một chút gì là ký hiệu. Mác cho rằng, điểm xuất phát phải nằm trong giới hạn của đại
số thông thường mà chưa yêu cầu những thuật toán đặc biệt của phép tính vi phân và các ký hiệu của nó. Ở đây, điều mà chúng ta cần lưu ý là ở chỗ, Mác đã chỉ rõ
những việc cần phải làm để tìm ra đạo hàm của một hàm số xác định (y = f (xi) Trước hết, Mác lập các số gia hữu hạn Δx và Δy. Trong khi một số nhà triết học duy
tâm, chẳng hạn như Alembécxơ, coi các số gia đó như những cái đã tồn tại từ trước, bất luận sự biến đổi nào của các biến số, thì Mác, trái lại, coi chúng như là kết quả
biến đổi của các biến số.
Mác coi việc khử các số gia là công đoạn diễn ra do kết quả biến đổi ngược của các biến số x và y, còn việc lấy vi phân một hàm số là một phép toán bao gồm cả công
đoạn tính và khử các số gia hữu hạn. Mác viết: "Lúc đầu là việc tính các số gia và sau đó là việc khử chúng, như vậy sẽ dẫn đến không có gì hết. Tất cả những khó khăn
trong việc hiểu phép vi phân (cũng như trong việc hiểu phủ định của phủ định nói chung) chính là ở chỗ, làm sao thấy được ở điểm nào, nó khác với thủ tục đơn giản
như thế và vì vậy, nó dẫn đến kết quả thực tế nào".
Như vậy, hệ số vi phân bằng ký hiệu xuất hiện không phải như điểm xuất phát, mà như sự phản ánh của việc tìm ra đạo hàm trong một quá trình đại số đích thực nào đó,
không chứa một ký hiệu đặc trưng cho phép tính vi phân nào. Mác viết: "Sự bất hạnh tiên thiên hay các ký hiệu không còn mang tính chất khủng khiếp vì giờ đây, nó chỉ
xuất hiện như là biểu hiện của một quá trình mà nội dung thực tế đã được hiểu rõ".
Nghiên cứu lịch sử hình thành và phát triển của phép tính vi phân, Mác đã áp đụng quan điểm toàn diện trong việc phân tích và lặp lại phép biện chứng của các đại
lượng biến đổi và qua đó, đã chứng minh tính hiệu quả của phép biện chứng duy vật trong sự phát triển của nhận thức toán học. ông viết: "Hệ số vi phân bằng ký hiệu
như thế trở thành điểm xuất phát độc lập mà ta chỉ cần tìm cái tương đương thực tế của nó. Như vậy, sự mở đầu được chuyển từ một cực là đại số sang cực kia là ký
hiệu và do đó, phép tính vi phân cũng xuất hiện như một phép tính đặc thù nào đó, như một thao tác độc lập trên một mảnh đất riêng".
Trong quan điểm của Mác, một vấn đề nổi lên là phương pháp đã có sự đổi hướng, bản thân phương pháp đại số đã biến thành phương pháp vi phân đối lập với nó. Nếu
như trước đây, chúng ta đi từ quá trình toán học thực tế về việc tính đạo hàm đến biểu thức bằng ký hiệu của nó (tức là từ đối tượng đến cái bóng của nó) thì giờ đây,
xuất phát từ ký hiệu đã cho, chúng ta tìm hệ thức thực tế phù hợp với nó (tức là chúng ta đi từ cái bóng đến đối tượng như Mác nói). Và, theo Mác, bước ngoặt đó trong
phương pháp là không thể tránh khỏi, là tiến bộ. Trong lịch sử toán học, đã có nhiều nhà khoa học, chẳng hạn, Lagơrăng, trong khi cố gắng phát triển phép tính vi phân
từ các hệ thức đại số thông thường đã không tới được phép tính vi phân, bởi họ đã không đổi ngược quan hệ giữa đại số và phép tính vi phân.
Tư tưởng của Mác về cuộc cách mạng trong phương pháp có một ý nghĩa phương pháp luận to lớn đó là chỉ ra biện pháp loại bỏ sự thần bí gắn với các ký hiệu. Điều đó
có ý nghĩa quyết định trong giai đoạn nhận thức hiện nay và cho phép chúng ta hiểu rõ cội nguồn của tất cả những bế tắc mà thực chứng luận hiện đại và quan niệm đề
cao ngôn ngữ toán học một cách thái quá đã mắc phải. Đồng thời, những tư tưởng đó còn chỉ rõ tính tất yếu và tính chất tiến bộ của một thực tế là, khi nhà nghiên cứu
sử đụng toán học, điểm xuất phát không phải là đi từ các dữ kiện thực tế đến ký hiệu của chúng, mà đi từ các hình thức ký hiệu đến cái tương đương thực tế của chúng.
Với những thành tựu của cuộc cách mạng trong phương pháp, vai trò của các ký hiệu đã thay đổi một cách cơ bản: Từ biện pháp ghi lại các hiện tượng đã biết, ký hiệu
biến thành biện pháp để tìm ra cái chưa tìm được. Đồng thời, chính nhờ điều đó mà tính chất "tác chiến" của ký hiệu toán học đã tìm thấy vai trò to lớn của nó. Vì vậy,
có thể nói, quan điểm coi vi phân như một ký hiệu "tác chiến" của Mác có ý nghĩa rất quan trọng trong nhận thức toán học. Từ đó, chúng ta có thể đưa ra một ký hiệu
"tác chiến" mới là dy = f '(x)dx để diễn đạt hình thức ký hiệu chung của phép lấy vi phân.
Như vậy, từ lập trường của chủ nghĩa duy vật biện chứng, chúng ta nhận thấy rằng, trong toán học, người ta có khả năng sử dụng tiếng nói của ký hiệu chính là do đặc
điểm về đối tượng nghiên cứu của nó. Cụ thể là, toán học nghiên cứu những hình dạng và quan hệ của các đối tượng trong thế giới hiện thực mà trong những giới hạn đã
biết, chúng không phụ thuộc vào nội dung thực tế của đối tượng. Ngày nay, trong toán học, nhất thiết chúng ta phải dùng đến tiếng nói của các ký hiệu, bởi nhờ đó, ta có
thể ghi lại một cách ngắn gọn và rõ ràng các khái niệm và mệnh đề của các lý thuyết toán họe. Đồng thời, việc sử dụng các ký hiệu còn cho phép phát triển được cả
những phép tính và những thuật toán, tức là những cái cất lõi để xây dựng nên các phương pháp và các mệnh đề toán học. Như vậy, về thực chất, việc sử dụng các ký
hiệu toán học là một thí nghiệm đã được lý tưởng hoá, chúng mô tả dưới dạng thuần tuý những điều đã được thực hiện hay có thể thực hiện được một cách gần đúng
hoặc chính xác trong thực tế. Chính vì vậy mà việc sử dụng các ký hiệu toán học có khả năng phát hiện ra các chân lý toán học mới. Tuy nhiên, chúng ta cần lưu ý rằng,
tất cả những điều nói trên chỉ có thể thực hiện được trong trường hợp hệ thống ký hiệu toán học đó thể hiện đúng đắn các tính chất và tương quan cơ bản, xác định của
thế giới hiện thực. Toán học nghiên cứu các quan hệ về lượng và hình dạng không gian của các đối tượng trong thế giới đang tồn tại, có nghĩa là nó nghiên cứu những
cái không phụ thuộc vào nội dung vật chất của chúng.
Trên cơ sở đó, các đối tượng mà chúng ta đang nghiên cứu trong toán học, như số học, đại số, hình học… và các liên hệ như cộng, trừ, nhân, chia… có thể thay thế được
bằng những ký hiệu mà ý nghĩa của chúng không hề bị xuyên tạc và thu hẹp lại. Điều này đã được nhiều nhà toán học khẳng định, trong số đó có cả những nhà toán học
duy tâm. Chẳng hạn, Lépnít đã nhận xét rằng, cần phải quan tâm đến vấn đề làm cho những ký hiệu trở nên thuận tiện hơn cho việc phát minh. Điều này thường xảy ra
khi các ký hiệu diễn tả một cách ngắn gọn và phản ánh một cách sâu sắc nhất thực chất của sự vật, khi đó việc làm của tư duy sẽ giảm đến mức kỳ diệu.
Để phát triển khoa học, thế hệ sau phải "đứng lên vai" thế hệ trước, chiếm lấy toàn bộ kiến thức mà các thế hệ trước đã tích luỹ. Song, sự phát triển ngày càng nhanh của
khoa học lại làm cho quá trình tiếp nhận kiến thức trở nên phức tạp hơn. Trước sự phát triển như vũ bão của cuộc cách mạng khoa học và công nghệ hiện đại, lượng
thông tin khoa học từng ngày, từng giờ rất lớn, vì vậy không chỉ mỗi nhà bác học không thể sử dụng nổi, mà cả tập thể nghiên cứu cũng không thể sử dụng nổi lượng
thông tin ấy. Điều đó đã dẫn tới một thực tế là, việc phát hiện ra một sự kiện mới hoặc lập ra một lý thuyết mới còn dễ hơn là biết được rằng, chúng đã được phát hiện
hay đã được xây dựng chưa. Do sự phát triển như vũ bão của khoa học, phần kiến thức mà một người có thể nắm được cũng không ngừng giảm đi, điều đó dẫn tới việc
chuyên môn hoá một cách chi tiết hơn và chính những hậu quả không hay cũng được sinh ra từ đó. Đồng thời, cũng chính điều này đã dẫn tới sự trùng lặp của các công
trình khoa học một cách ngẫu nhiên. Hiện nay, người ta đã tính được trên thế giới có rất nhiều công trình nghiên cứu khoa học lẽ ra không được phép tiến hành, nếu như
có sự thông tin về các công trình tương tự đã được hoàn thành. Những sự trùng lặp như vậy, theo ước tính, đã gây thiệt hại hàng tỷ đồng. Do tình trạng đó, nên ngày
nay, người ta đã thành lập những hệ thống tìm kiếm thông tin đặc biệt để giảm bớt những "cuộc hành trình trong cái biển thông tin rộng lớn. Khối lượng lớn kiến thức
được lưu trữ một cách thuận lợi không phải ở trên các giá sách của thư viện, mà là ở trong bộ nhớ của các máy tính điện tử. Những máy tính này có khả năng cung cấp
nhanh chóng cho người sử dụng bất cứ đòi hỏi nào về những nhu cầu giữ trong bộ nhớ. Những cái mà con người với tư cách một sinh vật sinh lý không làm được thì nó
có thể làm được và làm có kết quả như một sinh vật xã hội, trong đó các máy tính điện tử là sự giúp đỡ vô cùng quý giá.
Vấn đề là ở chỗ, tập hợp các kiến thức có thể biểu diễn dưới dạng một không gian n chiều, khi đó một thông tin bất kỳ được tìm ra nhờ sự dời chỗ trong không gian này
theo một phương đã cho nào đó. Những phương khác nhau được ký hiệu bằng những "số hiệu khái niệm" và tài liệu được biểu thị bởi một véctơ trong không gian các
khái niệm này. Mỗi khái niệm được gán cho một chỉ số về "trọng lượng", nó biểu diễn tần số sử đụng chúng trong một bài. Sau khi biểu thị tài liệu dưới dạng véctơ khái
niệm, người ta so sánh một véctơ biểu thị nhu cầu với các véctơ biểu thị tài liệu để tìm ra câu trả lời.
Máy tính không hề biết "ngoại ngữ" và cũng không biết một thứ ngôn ngữ tự nhiên nào, chính vì vậy mà chúng ta cần phải nói với máy thứ ngôn ngữ mà nó hiểu, những
nhu cầu thông tin và những điều đã được công bố được dịch ra thứ tiếng đó. Do vậy, chúng ta phải lập nên một ngôn ngữ hình thức hoá đặc biệt để sử dụng cho việc giải
quyết một lớp bài toán hoàn toàn xác định. Một ngôn ngữ hình thức hoá được phân biệt bởi các giá trị cố định trong các ký hiệu của nó và bởi một hệ thống quy tắc
được xác định chính xác và đơn trị, các quy tắc này xác định luật sử dụng các ký hiệu. Như vậy, chúng ta có một ngôn ngữ thông tin tìm kiếm dưới dạng trừu tượng,
gồm có bảng kê những ký hiệu cơ sở, các quy tắc cấu tạo (quy định kết hợp các ký hiệu như thế nào). Các quy tắc biến đổi (quy định các biểu thức như thế nào để được
một kết luận logic) và các quy tắc giải đoán (quy định gán những nghĩa nào cho các biểu thức hình thành theo quy tắc cấu tạo).
Ở đây, một vấn đề có ý nghĩa lớn là, những ký hiệu được đưa vào ngôn ngữ toán học nhân tạo thường có tính chất quốc tế và giúp cho việc khắc phục trở ngại về ngôn
ngữ, bởi những tài liệu được công bố bằng tiếng nước ngoài thường khó hiểu đó bất đồng ngôn ngữ. Song, như chúng ta đã biết, nhờ có ngôn ngữ của các ký hiệu mà từ
lâu, việc không phiên dịch các thông báo khoa học do các nhà khoa học của nhiều nước trình bày trong các cuộc hội thảo khoa học đã trở thành truyền thống của các hội
nghị toán học quốc tế. Như vậy, chính ngôn ngữ của các ký hiệu, công thức và phương trình đã liên kết các nhà khoa học toàn thế giới.
Nếu xét trên bình diện nghiên cứu khoa học, những đặc điểm của ngôn ngữ tự nhiên đôi khi đã tạo nên những yếu tố chủ quan trong quá trình nhận thức. Việc ứng dụng
toán họe vào các khoa học khác đã nâng cao giá trị khách quan của các nguyên lý khoa học, vì khi đó, người ta có thể loại trừ được những mối liên hệ đa dạng với chủ
thể, cái mà luôn tồn tại trong ngôn ngữ tự nhiên. Có thể nói rằng, ngôn ngữ toán học là sự cải tiến ngôn ngữ chung, là sự trang bị cho ngôn ngữ chung những công cụ
thuận tiện để phản ánh những mối liên hệ phụ thuộc mà nếu diễn đạt bằng ngôn ngữ thông thường, sẽ không chính xác hoặc phức tạp.
Ngôn ngữ tự nhiên nảy sinh trên cơ sở vận dụng những đối tượng mà chúng ta bắt gặp trong kinh nghiệm hàng ngày còn khoa học hiện đại lại sử dụng những khái niệm
liên quan một cách gián tiếp với những cái thấy được hàng ngày. Bức tranh vật lý của thế giới khác xa với kinh nghiệm thông thường. Đó chính là nguyên nhân chủ yếu
của việc cần đến ngôn ngữ toán học trừu tượng, thứ ngôn ngữ tỏ ra là một công cụ không thể thay thế được khi đi vào lĩnh vực các hiện tượng vật lý nằm rất xa ngoài
các giới hạn của kinh nghiệm hàng ngày.