Tải bản đầy đủ (.doc) (17 trang)

Một số chuyên đề bồi dưỡng HSG Toán 12

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (258.62 KB, 17 trang )

GV: Nguy ến Tất Thu- Biên Hòa Bài tập Đại số
I-Bất đẳng thức cô si
1.Chứng minh rằng
2 2 2
2
a b c a b c
b c c a a b
+ +
+ + ≥
+ + +
với a,b,c>0
2.Chứng minh rằng
( ) ( ) ( )
3 3 3
1 1 1 3
2
a b c b c a c a b
+ + ≥
+ + +
với a,b,c>0 và abc =1
3.Cho a,b,c>0 và abc=1.Cm:
( ) ( ) ( ) ( ) ( ) ( )
3 3 3
a 3
1 1 1 1 1 1 4
b c
b c c a a b
+ + ≥
+ + + + + +
4.Cho k số không âm
1 2


, ,...,
k
a a a
thoả
1 2
... 1
k
a a a =

Cm:
1 2 1 2
... ...
m m m n n n
k k
a a a a a a+ + + ≥ + + + với
; ,m n m n N≥ ∈
5.Cho 3 số thực x,y,z thoả mãn:
2004 2004 2004
3x y z+ + = .Tìm GTLN của biểu thức
3 3 3
A x y z= + +
6.Cho a+b+c =0 .Chứng minh rằng
8 8 8 2 2 2
a b c a b c
+ + ≥ + +
7.Cho số tự nhiên
2k ≥
.
1 2
, ,...,

k
a a a
là các số thực dương
Cmr:
1 2
1 2
2 3 1
... ...
m
m m
m n m n m n
k
n
n n n
aa a
a a a
a a a
− − −
+ + + ≥ + + +
8.Cho x,y,z là ba số thực thoả mãn
1 1 1
1
x y z
+ + =
.Tìm GTNN của biểu thức
2006 2006 2006
2007 2007 2007
x y z
A
y z x

= + +
9.Tìm GTNN của
20 20 20
11 11 11
x y z
A
y z x
= + +
với
1x y z+ + =
10.Cho n số thực
1 2
, ,...,
n
x x x
thuộc đoạn
[ ]
, , 0a b a >
Cmr:
( )
( )
( )
2
1 2
1 2
1 1 1
... ...
4
n
n

n a b
x x x
x x x ab
+
 
+ + + + + + ≤
 ÷
 
11.Cho n là số nguyên dương;lấy
[ ]
2000;2001
i
x ∈
với mọi i=1,2…,n
Tìm GTLN của
( ) ( )
1 2 1 2
2 2 ... 2 2 2 ... 2
n n
x x
x x x x
F

− −
= + + + + + +
12.Xét các số thực
1 2 2006
, ,...,x x x
thoả
1 2 2006

, ,...,
6 2
x x x
π π
≤ ≤
Tìm GTLN của biểu thức
( )
1 2 2006
1 2 2006
1 1 1
sin sin ... sin ...
sin sin sin
A x x x
x x x
 
= + + + + + +
 ÷
 
13.Cho n số dương
1 2
, ,...,
n
a a a
Đặt :
{ } { }
1 2 1 2
min , ,..., , ax , ,...,
n n
m a a a M M a a a= =
1 1

1
,
n n
i
i i
i
A a B
a
= =
= =
∑ ∑
.Cmr:
( )
1
B n m M A
mM
≤ + − 
 
Năm học 2006-2007
GV: Nguy ến Tất Thu- Biên Hòa Bài tập Đại số
14.Cho
0, 0, 1,
i i
a b i n≥ ≥ ∀ =
.Chứng minh rằng:
( ) ( ) ( )
1 1 2 2 1 2 1 2
... ... ...
n n
n

n n n n
a b a b a b a a a b b b+ + + ≥ +
15.Cho
0, 1,
i
a i n≥ ∀ =
.Chứng minh rằng:
( ) ( ) ( )
( )
1 2 1 2
1 1 ... 1 1 ...
n
n
n n
a a a a a a+ + + ≥ +
16.Chứng minh
( )
1.2... 1 1 1.2...
n
n
n n+ ≥ +
với
2,n n N≥ ∈
17.Chứng minh trong tam giác ABC ta có :
1/
3
1 1 1 2
1 1 1 1
sin sin sin
3

A B C
 
   
+ + + ≥ +
 ÷ ÷ ÷
 ÷
   
 
2/
3
1 1 1 2
1 1 1 1
B C
3
os os os
2 2 2
A
c c c
   
 ÷ ÷ ÷
 
+ + + ≥ +
 ÷ ÷ ÷
 ÷
 
 ÷ ÷ ÷
   
3/
3
1 1 1 2

1 1 1 1
3
a b c
m m m R
   
 
+ + + ≥ +
 ÷ ÷ ÷
 ÷
 
   
18.Cho a,b,x,y,z > 0 và x+y+z = 1.Chứng minh:
( )
4
4 4
4
3 3
b b c
a a a a b
x y z
 
   
+ + + + + ≥ +
 ÷
 ÷  ÷
   
 
19.Cho
1
, 0, 0 1,.. ; 1

n
i i
i
a b x i n x
=
> > ∀ = =

. Cmr:

( )
1 2
...
m
m m
m
n
b b b
a a a n a nb
x x x
 
   
+ + + + + + ≥ +
 ÷
 ÷  ÷
   
 
với m > 0
20.Cho
, , 0, 1a b c a b c> + + =
.Chứng minh rằng:

3
1 1 1
1 1 1 8
ab bc ca
   
− − − ≥
 ÷ ÷ ÷
   
21.Cho
[ ]
;∈x a b
.Tìm GTLN của biểu thức
( ) ( ) ( )
m n
F x x a b x= - -
với
*
,Νm n Î
22.Cho
0
2
;x
π
é ù
ê ú
Î
ê ú
ë û
.Tìm GTLN của biểu thức
( )

p
sin . os
q
F x x c x=
với
*
,Νp q Î
23.Cho a,b,c không âm và có a + b + c =1.Tìm GTLN của biểu thức
( )
30 4 2004
, ,F a b c a b c=
24.Cho
, 0, 6x y x y³ + £
.Tìm GTLN của các biểu thức sau :
1/
( ) ( )
2002
, . . 6F x y x y x y= - -
2/
( ) ( )
2002
, . . 4F x y x y x y= - -
25.Xét các số thực dương thỏa mãn a + b +c =1.Tìm GTNN của biểu thức
2 2 2
1 1 1 1
P
ab bc ca
a b c
= + + +
+ +

26.Xét các số thực dương thỏa mãn a +b +c + d =1.Tìm GTNN của biểu thức
2 2 2 2
1 1 1 1 1
P
acd abd abc bcd
a b c d
= + + + +
+ + +
27.Giả sử
1 2
, ,...,
n
x x x
>0 thỏa mãn điều kiện
1
1
1
n
i
i
i
x
x
=
=
å
+
. Cmr:
( )
1

1
1
n
i
n
i
x
n
=
£
Õ
-
28.Giả sử a,b,c >0 thỏa mãn
2 3
1
1 1 1
a b c
a b c
+ + =
+ + +
. Cmr:
2 3
6
1
5
ab c £
Năm học 2006-2007
GV: Nguy ến Tất Thu- Biên Hòa Bài tập Đại số
29. Giả sử
1 2

, ,...,
n
x x x
>0 thỏa mãn điều kiện
1
1
n
i
i
x
=
=
å
.Cmr:
( )
1
1
1
1
n
i
n
i
i
x
x
n
=
£
Õ

-
-
30. (QG-98) Giả sử
1 2
, ,...,
n
x x x
>0 thỏa mãn điều kiện
1
1 1
1998 1998
n
i
i
x
=
=
å
+
Cmr:
1 2
. ...
1998
1
n
n
x x x
n
³
-

31.Cho n số dương thỏa mãn điều kiện
1
1
n
i
i
a
=
<
å
Cmr:
( )
( )
( ) ( )
( )
1
1 2 1 2
1 2 1 2
... 1 ...
1
... 1 1 ... 1
n
n n
n n
a a a a a a
a a a a a a n
+
é ù
- + + +
æö

ë û
÷
ç
£
÷
ç
÷
ç
è ø
+ + + - - -
33.Cmr:
, 2n N n" Î ³
ta có
1 1 2
n n
n n
n n
n n
- + + <
34.Cho
[ ]
, , 0;1x y z Î
.Cmr:
( ) ( )
3 3 3 2 2 2
2 3x y z x y y z z x+ + - + + £
35. Cho
[ ]
, , 0;2x y z Î
.Cmr:

( ) ( )
6 6 6 4 2 4 2 4 2
2 192x y z x y y z z x+ + - + + £
36.Cho
[ ]
1;2
i
x Î
với i=1,…,2000.Thỏa mãn
2000
1
2005
i
i
x
=
=
å
Tìm GTLN của
2000
3
1
i
i
A x
=
=
å
37.Chứng minh :
2 2 2

1 1 1
3.2a b c
ab bc ca
α α α
α
     
+ + + + + ≥
 ÷  ÷  ÷
     
Trong đó
, , , 0a b c
α
>
38.Cho số dương a .Xét bộ số dương x,y,z thỏa mãn điều kiện:xy + yz + zx = 1
Tìm GTNN của biểu thức
( )
2 2 2
P a x y z= + +
39.Xét các số thực x,y,z thỏa mãn :
2 2 2 2
16
25
x y z xy a+ + + =
.Trong đó a là một số dương
cho trước .Tìm GTLN của biểu thức :P = xy + yz + zx
40.Xét các số thực a,b,c,d thỏa mãn :
2 2 2 2
1
1
2

a b c d≤ + + + ≤
Tìm GTLN và GTNN của :
( ) ( ) ( ) ( )
2 2 2 2
2 2 2 2P a b c b c d b a c d= − + + − + + − + −
41.Cho hàm số
( )
f x
thỏa mãn pt
( )
4 4
2 cotf tg x tg x g x= +
Cmr:
( ) ( )
sinx cosx 196f f+ ³
( OLP-30-4-99)
II. PHƯƠNG PHÁP HÌNH HỌC
1.Cho
a,b,c,d
là các số thực thoả mãn
2 2
4a b+ =

c+d=4
.
Tìm giá trị lớn nhất của biểu thức
P=ac+bd+cd
2.Cho
a,b,c,d
là các số thực thoả mãn

2 2
1a b+ =

c+d=3
Cmr:
9 6 2
ac+bd+cd
4
+

3(HSG-NA-2005)
a,b,c,d
là các số thực thoả mãn
2 2
1a b+ =

c-d=3
Cmr:
9 6 2
ac+bd-cd
4
+

4.Cho các số a,b,c,d,x,y thỏa mãn :
2 2 2 2
40 8 10 ; 12 4 6 ;3 2 13a b a b c d c d x y+ + = + + + = + = +
Tìm GTNN của
( ) ( ) ( ) ( )
2 2 2 2
P x a y b x c y d= − + − + − + −

Năm học 2006-2007
GV: Nguy ến Tất Thu- Biên Hòa Bài tập Đại số
5.Cho hai số a,b thỏa mãn điều kiện a - 2b + 2 = 0
Chứng minh rằng :
2 2 2 2
6 10 34 10 14 74 6a b a b a b a b+ − − + + + − − + ≥
6.Cho bốn số a,b,c,d thỏa mãn điều kiện:a + 2b = 9;c + 2d = 4
Cmr:
2 2 2 2 2 2 2 2
12 8 52 2 2 4 8 20 4 5a b a b a b c d ac bd c d c d+ − − + + + + + − − + + − + + ≥
7.Cho bốn số thực a,b,c,d thỏa mãn :
2 2
6; 1c d a b+ = + =
Cmr:
2 2
2 2 18 6 2c d ac bd+ − − ≥ −
8.Cho a,b,c,d là bốn số thỏa mãn điều kiện :
( ) ( )
2 2 2 2
2 ; 4 1a b a b c d c d+ = + + = + −
Cmr:
( )
4 2 2 2 4 2 2a b c d− ≤ + + + ≤ +
9. .Cho a,b,c,d là bốn số thỏa mãn điều kiện :
2 2 2 2
5a b c d+ = + =
Cmr:
3 30
5 2 5 2 5
2

a b c d ac bd− − + − − + − − ≤ .Xét dấu bằng xẩy ra khi nào?
10.Cmr với mọi x,y ta đều có:
2 2 2 2
4 6 9 4 2 12 10 5x y x x y x y+ + + + + − − + ≥
11.Cho a,b,c,d là bốn số thực thỏa mãn
( ) ( )
2 2 2 2
1 2 ; 36 12a b a b c d c d+ + = + + + = +
Cm:
( )
( ) ( )
( )
6 6
2 2
2 1 2 1a c b d− ≤ − + − ≤ +
12.Cho x,y là hai số thực thỏa mãn :
2 3 2
3 9
0, 0
x y
x y
x y
+ ≥


+ ≤


≥ ≥


Cmr:
2 2
35
4 8 45
2
x y x y− ≤ + − − ≤
13.Cho các số x,y thỏa mãn :
2 8 0
2 0
2 4 0
x y
x y
y x
− + − ≤


+ + ≥


− − ≥

Cm:
2 2
16
20
5
x y≤ + ≤
III. ỨNG DỤNG ĐẠO HÀM
1Chứng minh rằng với mọi
α

ta có
2 2
17 os 4 os +6 os 2 os +3 2 11c c c c
α α α α
≤ + + − ≤ +
2.Tìm GTNN của hàm số
2 2
4 12 2 3y x x x x= − + + − − + +
3.a)Chứng minh bất đẳng thức:
sin 2 ; 0;
2
tgt t t t
π
 
+ ≥ ∀ ∈
÷

 
b)Cho tam giác ABC có các góc là A,B,C .
Chứng minh :
A B C
1 os 1 os 1 os
2 2 2
3 3
A B C
c c c+ + +
+ + >
( A,B,C đo bằng rađian)
4.Cho
[ ]

, 0;1a b∈
Chứng minh rằng
( ) ( ) ( )
1 1 1 1
1 1 1
x b a
x a b
a b x a x b
+ + + − − − ≤
+ + + + + +
với
[ ]
0;1x∀ ∈
5.Cho hàm số
2
2
os -2x+cos
x 2 os +1
x c
y
xc
α α
α
=

với
( )
0;
α π


Chứng minh :
1 1;y x− ≤ ≤ ∀
Năm học 2006-2007
GV: Nguy ến Tất Thu- Biên Hòa Bài tập Đại số
6.Chứng minh
sin sin sin 2A B C tgA tgB tgC
π
+ + + + + >
.với A,B,C là ba góc
của một tam giác.
7.Chứng minh
sinx 1
2 2 2 ;0
2
tgx x
x
π
+
+ > < <
8.Giả sử f(x) là một đa thức bậc n thỏa mãn điều kiện
( )
0,f x x≥ ∀
Cmr:
( ) ( ) ( )
( )
( )
, ,,
... 0,
n
f x f x f x f x x+ + + + ≥ ∀

9.Chứng minh rằng trong tam giác ABC ta có
1 1 1
cot cot cot 3 3 2
sin sin sin
gA gB gC
A B C
 
+ + + ≤ + +
 ÷
 
10.Cho tam giác ABC không tù ,thỏa mãn hệ thức:
( ) ( )
1 1 5
os3A+cos3B os2A+cos2B osA+cosB=
3 2 6
c c c− +
.Chứng minh tam giác ABC đều
11.Cho
0
2
a b
π
< < <
.Chứng minh rằng :
( )
a.sina-bsinb>2 cosb-cosa
12.Cho
a 1
0 q p q+1




≤ ≤ ≤

.Chứng minh rằng
( )
( )
1
p q p q
a p q a a
+
− ≥ + −
13.Cho
π
< <0
2
x
.Chứng minh rằng :
3
sinx
osx
x
c
 
>
 ÷
 
14.Cho tam giác ABC nhọn .Cmr:
( )
6 sin sin sin 12 3tgA tgB tgC A B C+ + + + + ≥

15.Cho a,b,c là các số không âm thỏa
2 2 2
1a b c+ + =
.
Chứng minh rằng:
2 2 2 2 2 2
3 3
2
a b c
b c c a a b
+ + ≥
+ + +
16.Chứng minh trong tam giác nhọn ABC ta có
( ) ( )
2 1
sin sin sin
3 3
A B C tgA tgB tgC
π
+ + + + + >
17.Cho
π
< <0
2
x
.Cmr:
3
1
2s inx
2

2 2 2
x
tgx
+
+ >
18Cho số nguyên lẻ
3n ≥
.Cmr:
0x∀ ≠
ta luôn có :
2 3 2 3
1 ... 1 ... 1
2! 3! ! 2! 3! !
n n
x x x x x x
x x
n n
  
+ + + + + − + − + − <
 ÷ ÷
 ÷ ÷
  
19.với giá trị nào của m thì
3 3
sin os ,x c x m x+ ≥ ∀
20.Cho x,y >0 .Chứng minh rằng :
2
3
2 2
4 1

8
4
xy
x x y

 
+ +
 ÷
 
21.Cho
0, 0x y≠ ≠
là hai số thực thay đổi thỏa mãn
( )
2 2
x y xy x y xy+ = + −
Tìm GTLN của biểu thức
3 3
1 1
A
x y
= +
22.Cho a,b,c là các số thỏa mãn điều kiện
3
, ,
4
a b c ≥ −
Chứng minh ta có bất đẳng thức
2 2 2
9
10

1 1 1
a b c
a b c
+ + ≤
+ + +
23.(HSG Bà Rịa12-04-05)
Năm học 2006-2007
GV: Nguy ến Tất Thu- Biên Hòa Bài tập Đại số
1/Tìm cực trị của hàm số
2
1
1
x
y
x x
+
− +
2/ Cho các số x,y,z thỏa mãn x + y + z = 3
Tìm GTNN của
2 2 2
1 1 1P x x y y z z= − + + − + + − +
24.Tìm GTNN của
( )
2 2 2
3 1 1 1 2P x y z x y z
 
= + + + + + − + +
 ÷
 
25. Cho

, , 0a b c >

6a b c+ + =
. Cmr:
4 4 4 3 3 3
2( )a b c a b c+ + ≥ + +
26. Cho
, , 0a b c >

2 2 2
1a b c+ + =
. Cmr:
1 1 1
( ) ( ) 2 3a b c
a b c
+ + − + + ≥
27Cho a,b,c>0 .Cmr :
2 2 2
9
4( )
( ) ( ) ( )
a b c
a b c
b c c a a b
+ + ≥
+ +
+ + +
28. (Olp -2006)Cho
, , 0a b c >
.Cmr:

2 2 2 2 2 2
( ) ( ) ( ) 6
5
( ) ( ) ( )
a b c b c a c a b
a b c b c a c a b
+ + +
+ + ≤
+ + + + + +
39.(Olp nhật 1997)Cho
, , 0a b c >
.Cmr:
2 2 2
2 2 2 2 2 2
( ) ( ) ( ) 3
5
( ) ( ) ( )
b c a c a b a b c
b c a c a b a b c
+ − + − + −
+ + ≥
+ + + + + +
40.xét các số thực dương x,y,z thỏa mãn điều kiện :
4
2
x y z
xyz
+ + =



=

.
Tìm GTLN và NN của biểu thức
4 4 4
P x y z= + +
(QG -B-2004)
41. xét các số thực dương x,y,z thỏa mãn điều kiện
( )
3
32x y z xyz+ + =
Tìm GTLN và GTNN của
( )
4 4 4
4
x y z
P
x y z
+ +
=
+ +
(QG-A-2004)
42.Các số thực dương a,b,c,d thỏa mãn
a b c d≤ ≤ ≤

bc ad≤
.Chứng minh rằng
b c d a d a b c
a b c d a b c d≥
43.Xét các số thực x,y thỏa mãn điều kiện:

3 1 3 2x x y y− + = + −
Tìm GTLN và GTNN của P = x + y ( QG –B-2005)
44.Cho hàm số f xác định trên R lấy giá trị trên R và thỏa mãn
( )
cotgx sin 2 os2xf x c= +
,
( )
0;x πÎ
Tìm GTNN và GTLN của hàm số
( )
( ) ( )
2 2
sin osg x f x f c x=
QG –B-2003 )
45.Cho hàm số f xác định trên R lấy giá trị trên R và thỏa mãn
( )
cotgx sin 2 os2xf x c= +
,
( )
0;x πÎ
Tìm GTNN và GTLN của hàm số
( ) ( ) ( ) [ ]
1 , 1;1g x f x f x x= - Î -
( QG –A-2003)
46.Cho x>0 và
, 0; ;
2
π
a b a b
æ ö

÷
ç
Î ¹
÷
ç
÷
ç
è ø
Cmr:
sin sin
sina sin
sin sin
x b b
x a
x b b
+
æ ö æ ö
+
÷ ÷
ç ç
>
÷ ÷
ç ç
÷ ÷
ç ç
è ø è ø
+
IV-ỨNG DỤNG ĐỊNH LÝ LA GRĂNG
1.Chứng minh rằng nếu 0 < b < a thì
ln

a b a a b
a b b
− −
< <
2.Chứng minh rằng nếu
0
2
a b
π
< < <
thì
2 2
os os
b a b a
tgb tga
c a c b
− −
< − <
Năm học 2006-2007

×