Tải bản đầy đủ (.doc) (13 trang)

HƯỚNG DẪN HỌC SINH GIẢI LOẠI TOÁN:“ TÌM X TRONG ĐẲNG THỨC CHỨA DẤU GIÁ TRỊ

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (199.3 KB, 13 trang )

Phòng giáo dục đào tạo huyện đông triều
Phòng giáo dục đào tạo huyện đông triều
Tr
Tr
ờng THCS mạo Khê 2
ờng THCS mạo Khê 2
sáng kiến kinh nghiệm
hớng dẫn học sinh giảI loại toán:
Tìm x trong đẳng thức chứa dấu giá trị
tuyệt đối

Họ và tên: Đặng Minh Đức
Trờng trung học cơ sở mạo khê 2
Năm học 2008 -2009
i/ Phần Mở đầu
I.1- Lý do chọn đề tài:

Toán học là một ngành khoa học cơ bản, nó giữ vai trò quan trọng đối với
đời sống kinh tế xã hộiToán học là cơ sở, là phơng tiện để nghiên cứu các
ngành khoa học khác. Toán học có nhiều bộ môn song ở cấp phổ thông cơ sở
hiện nay các em thờng học và nghiên cứu một số bộ môn số học, đại số, hình
học, mỗi bộ môn trong từng khối học đều có đặc trng riêng.
Trong quá trình dạy học sinh môn toán lớp 7 có phần Tìm x trong đẳng
thức chứa dấu giá trị tuyệt đối tôi nhận thấy học sinh còn nhiều vớng mắc về
phơng pháp giải, quá trình giải thiếu logic và cha chặt chẽ, cha xét hết các trờng
hợp xảy ra. Lí do là học sinh cha nắm vững biểu thức về giá trị tuyệt đối của một
số, của một biểu thức, cha biết vận dụng biểu thức này vào giải bài tập, cha phân
biệt và cha nắm đợc các phơng pháp giải đối với từng dạng bài tập. Mặt khác
phạm vi kiến thức ở lớp 6,7 cha rộng, học sinh mới bắt đầu làm quen về vấn đề
này, nên cha thể đa ra đầy đủ các phơng pháp giải một cách có hệ thống và
phong phú đợc. Mặc dù chơng trình sách giáo khoa sắp xếp hệ thống và logic


hơn sách cũ rất nhiều, có lợi thế để dạy học sinh về vấn đề này ( chẳng hạn nh
học sinh đã đợc học về qui tắc chuyển vế, qui tắc bỏ dấu ngoặc), nhng tôi thấy
để giải bài tập về tìm x trong đẳng thức chứa dấu giá trị tuyệt đối thì học sinh
vẫn còn lúng túng trong việc tìm ra phơng pháp giải và việc kết hợp với điều kiện
của biến để xác định giá trị phải tìm là cha chặt chẽ. Chính vì vậy, trong khi
giảng dạy về vấn đề này tôi nghĩ cần phải làm thế nào để học sinh biết áp dụng
định nghĩa tính chất về giá trị tuyệt đối để phân chia đợc các dạng, tìm ra đợc
phơng pháp giải đối với từng dạng bài. Từ đó học sinh thấy tự tin hơn khi gặp
loại bài tập này và có kỹ năng giải chặt chẽ hơn, có ý thức tìm tòi, sử dụng phơng
pháp giải nhanh gọn, hợp lí.
Chính vì những lí do trên mà tôi chọn và trình bày kinh nghiệm Hớng
dẫn học sinh lớp 7 giải dạng toán Tìm x trong đẳng thức chứa dấu giá trị
tuyệt đối..
I.2 - Tính cần thiết của đề tài:
- Tóm tắt một số kiến thức liên quan đến việc tìm x trong đẳng thức có chứa dấu
giá trị tuyệt đối.
- Nắm chắc quy tắc bỏ dấu ngoặc, quy tắc chuyển vế, định lý và tính chất về giá
trị tuyệt đối.
- Từ đó tìm ra phơng pháp thích hợp để hớng dẫn học sinh giải một số dạng toán
cơ bản về tìm x trong đẳng thức có chứa dấu giá trị tuyệt đối. Qua đó học sinh
sẽ cảm thấy tự tin, tiếp thu kiến thức, không còn cảm thấy ngại ngùng, chán nản
khi gặp những dạng Toán khó nữa.
I.3 - Mục đích nghiên cứu
Củng cố cho học sinh, đặc biệt là học sinh khá, giỏi toán lớp 7 một số kiến
thức để giải một số dạng giải bài toán tìm x trong đẳng thức có chứa dấu giá trị
tuyệt đối. Cũng từ đó mà phát triển t duy lôgic cho học sinh, phát triển năng lực
giải toán cho các em, giúp cho bài giải của các em hoàn thiện hơn, chính xác
hơn và còn giúp các em tự tin hơn khi làm toán.
I.4 - Đối t ợng phạm vi, kế hoạch, thời gian nghiên cứu:
+ Đối t ợng nghiên cứu : Học sinh đặc biệt là học sinh khá, giỏi môn toán lớp 7B2

Trờng THCS Mạo Khê 2
+ Phạm vi nghiên cứu: Một số dạng bài toán Tìm x trong đẳng thức có chứa
dấu giá trị tuyệt đối.
Các bài toán không vợt quá chơng trình toán lớp 7.
+ Tôi nghiên cứu đề tài này vào khoảng gần cuối học kỳ I, khi đó học sinh đã bắt
đầu làm quen dần với những kỹ năng giải Toán cơ bản và từ đó tôi cũng phát
hiện ra những hạn chế của học sinh đối với dạng toán tìm x trong đẳng thức
chứa dấu giá trị tuyệt đối. Từ đó đến nay, kết thúc học kỳ II tôi cũng đã thấy đạt
đợc một số thành công nhất định.
I.5 - Đóng góp mới về mặt lý luận thực tiễn:
- Học sinh lớp 7 đang ở độ tuổi thiếu niên. Tâm sinh lý của các em có nhiều
phức tạp: Không còn bé nhng cũng cha lớn. Tại thời điểm này, nếu giáo viên
định hớng tốt, tổ chức tốt cho các em trong hoạt động học tập thì có thể khơi đợc
nhiều tiềm năng trong các em, giúp các em đạt kết quả tốt hơn trong các hoạt
động nói chung và hoạt động học tập nói riêng.
- Học sinh lớp 7 nói chung còn ham chơi, dới nhiều sức ép các em phải tập trung
vào học tập, nhiều khi tạo nên sự nặng nề gò bó. Do yêu cầu ngày càng cao, giáo
viên đều đòi hỏi học sinh phải nắm đợc kiến thức của môn mình giảng dạy. cho
nên nếu không có một phơng pháp giảng dạy hợp lý rất dễ tạo nên sự nặng nề
cho các em. Chính vì vậy mỗi giáo viên phải làm sao cho các em tiếp cận với
kiến thức một cách tự nhiên, vừa sức và hào hứng.
- Để có đợc cách giảng dạy hợp lý các giáo viên thử nghiên cứu một số phơng
pháp sau:
+ Phơng pháp nghiên cứu lí luận: Tìm hiểu, nghiên cứu tài liệu bồi dỡng,
sách giáo khoa, sách tham khảo.
+ Phơng pháp tổng kết kinh nghiệm ở những lớp học sinh trớc để rút kinh
nghiệm cho lớp học sinh sau.
II/ Nội dung
II.1 Thực trạng vấn đề:
II.1.1 Sơ l ợc về tr ờng THCS Mạo Khê 2:

Trờng THCS Mạo khê 2 thuộc thị trấn Mạo Khê, huyện Đông Triều Quảng
Ninh. Nguyên là Trờng cấp II Vĩnh Khê thành lập năm 1959. Vào đầu những năm 70
nhà Trờng sát nhập với Trờng Tiểu học Vĩnh Khê mang tên là PTCS Vĩnh Khê. Đến
năm 1995 trờng đợc tách riêng thành 2 Trờng: Trờng tiểu học Vĩnh Khê và Trờng
THCS Mạo Khê 2.
Nhà Trờng có nhiệm vụ đáp ứng nhu cầu giáo dục ở bậc trung học cơ sở cho con em
nhân dân ở 7 khu phố lớn phía Đông Nam của thị trấn; cùng với các Trờng bạn
trong địa bàn thực hiện nhiệm vụ phổ cập THCS và giáo dục toàn diện trong toàn thị
trấn.
Qua 50 năm xây dung và phát triển nhà Trờng đã đạt đợc những thành tích đáng kể,
góp phần phát triển giáo dục ở địa phơng. Đội ngũ giáo viên không ngừng phấn đấu
nâng cao trình độ đào tạo và tay nghề, số giáo viên giỏi, học sinh giỏi luôn đạt ở mức
cao. Cơ sở vật chất thiết bị ngày càng đợc cải thiện, từng bớc hoàn thiện theo quy mô
Trờng chuẩn quốc gia giai đoạn 2. Với những cố gắng đó nhiều năm liên tục nhà Tr-
ờng đạt đợc danh hiệu Trờng tiên tiến xuất sắc của tỉnh, của bộ. Trờng đợc tặng nhiều
bằng khen của tỉnh, của Bộ giáo dục & Đào tạo và của thủ tớng chính phủ.
II.1.2 - Một số kết quả đạt đ ợc:

Qua quá trình nghiên cứu và thực hiện đề tài, đợc sự giúp đỡ của tổ
chuyên môn cũng nh các bạn đồng nghiệp. Tôi đã thực hiện các biện pháp những
nghiên cứu của tôi trong các tiết dạy Toán, nhìn chung đã thu đợc các kết quả
khả quan. Học sinh hứng thú trong học tập, tạo đợc không khí thi đua trong lớp
học , hình thành đợc nhiều phẩm chất t duy tốt cho học sinh.
Và mặt khác học sinh từng bớc không còn cảm thấy lúng túng, không tự tin khi
gặp những dạng Toán Tìm x trong đẳng thức chứa dấu giá trị tuyệt đối nói
riêng và một số dạng Toán nâng cao khác nói chung.
II.1.3 - Một số tồn tại và nguyên nhân:
Lớp 7B2 Trờng THCS Mạo Khê 2 đa phần là con em những gia đình khá giả,
một số em đợc nuông chiều quá mức sinh ra ỷ lại, chây lời trong học tập, tuy đợc
khuyên bảo uốn nắn nhng chỉ tiến bộ hạn chế phần nào. Ngoài ra những bài tập dạng:

Tìm x trong đẳng thức chứa dấu giá trị tuyệt đối trong sách giáo khoa, sách bài tập
Toán 7 là những bài toán đòi hỏi t duy, sự tập trung nghiêm túc của học sinh khi làm
bài tập.
Do vậy đề tài này cha áp dụng đợc với toàn bộ học sinh của lớp 7B2, trong lớp
vẫn còn một số học sinh còn hạn chế về nhận thức nên khi thực hiện sáng kiến
kinh nghiệm này chỉ đạt đợc thành công ở những học sinh khá - giỏi và một phần
nào đó ở những học sinh học lực trung bình.

II.1.4 - Một số vấn đề đặt ra:
Với học sinh lớp 7 thì việc giải dạng toán Tìm x trong đẳng thức chứa
dấu giá trị tuyệt đối gặp rất nhiều khó khăn do học sinh cha học qui tắc giải về
phơng trình, các phép biến đổi tơng đơng. Chính vì vậy mà khi gặp dạng toán
này học sinh thờng ngại, lúng túng không tìm đợc hớng giải và khi giải hay mắc
sai lầm. Khi cha hớng dẫn học sinh giải bằng cách áp dụng đề tài, học sinh giải
thờng vớng mắc nh sau:
Ví dụ 1: Tìm x biết |x-7| -x = 4
+ Học sinh không biết xét tới điều kiện của x, vẫn xét 2 trờng hợp xảy ra:
x 7 x = 4 hoặc 7 x 4 = 4
+Đa về dạng | x 7| = 4 +x
=> x-7 = x+4 hoặc x- 7 = -(4+x)
và học sinh cha hiểu đợc ở đây 4 +x có chứa biến x.
+ Có xét tới điều kiện của x để x 7 0; x-7<0 nhng đối với mỗi trờng hợp
học sinh cha kết hợp với điều kiện của x, hoặc kết hợp cha chặt chẽ.
Ví dụ 2: Tìm x biết | 2x 3| = 5
Học sinh cha nắm đợc rằng ở đây đẳng thức luôn xảy ra (vì 5>0) và có thể
các em đi xét giá trị của biến để 2x - 30 hoặc 2x 3<0 và giải 2 trờng hợp tơng
ứng, cách làm này của học sinh cha nhanh gọn.
Khi tôi áp dụng đề tài này vào quá trình hớng dẫn học sinh giải đợc bài,
hiểu rất rõ cơ sở của việc giải bài toán đó. Còn ở ví dụ 2 các em đã biết lựa chọn
ngay cách giải nhanh (và hiểu đợc cơ sở của phơng pháp giải đó là áp dụng tính

chất; hai số đối nhau có giá trị tuyệt đối bằng nhau).
Cụ thể :
|2x-3|= 5( vì 5>0)
=>2x 3 = 5 hoặc 2x 3 = -5
Vấn đề đặt ra là làm sao tìm ra đợc một phơng pháp, một cách dạy và học hợp lý
để dần dần khắc phục những yếu điểm đó cho học sinh.
II.2 - á p dụng trong giảng dạy:
II.2.1 - Các b ớc tiến hành:
* Khảo sát khi cha áp dụng đề tài tôi khảo sát lớp 7B2 trờng THCS Mạo Khê 2 với đề
bài:
Tìm x biết:
a) |2x 5| = 7 ( 2,5điểm)
b) 3|5x + 3| - 14 =7 ( 3,5 điểm)
c) |x 4|+|x 9| = 0 ( 4 điểm)
Tôi thấy học sinh còn rất lúng túng về phơng pháp giải, cha nắm vững ph-
ơng pháp giải đối với từng dạng bài, quá trình giải cha chặt chẽ, cha kết hợp đợc
kết quả tìm ra với điều kiện xảy ra, cha lựa chọn đợc phơng pháp giải nhanh, hợp
lí.

×