Tải bản đầy đủ (.pdf) (18 trang)

Bài giảng Xử lý tín hiệu số: Chapter 0 - Hà Hoàng Kha

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (738.54 KB, 18 trang )

Chapter
p 0
Introduction
Ha Hoang Kha, Ph.D.Click to edit Master subtitle style
Ho Chi Minh City University of Technology
@
Email:

CuuDuongThanCong.com

/>

1. Signal and Systems
™ A signal is defined as any physical quantity that varies with time,
space or an
space,
any other independent variables.
ariables
‰ Speech, image, video and electrocardiogram signals are information-bearing
signals.
g

™ Mathematically, we describe a signal as a function of one or more
independent
p
variables.
‰ Examples:

x(t ) = 110sin(2π ⋅ 50t )
I ( x, y ) = 3 x + 2 xy + 10 y 2


™ A system is defined as a physical device that performs any operation
g
on a signal.
‰ A filter is used to reduce noise and interference corrupting a desired
information-bearing signal.
Ha H. Kha

2
CuuDuongThanCong.com

Introduction
/>

1. Signal and Systems
™ Signal processing is to pass a signal
through
h
h a system.
™ A digital system can be
implemented as a digital computer
or digital hardware (logic circuits).

Ha H. Kha

3
CuuDuongThanCong.com

Introduction
/>


2. Classification of Signal
Multichannels and Multidimensional signals
™ Signals which are generated by multiple sources or multiple sensors
can be represented in a vector form. Such a vector of signals is
referred to as a multichannel
m ltichannel signals
‰ Ex: 3-lead and 12-lead electrocardiograms (ECG) are often used in practice,
which results in 33-channel
channel and 12-channel
12 channel signals
signals.

™ A signal is called M-dimensional if its value is a function of M
independent
d
d variable
b
‰ Picture: the intensity or brightness I(x,y) at each point is a function of 2
independent variables
‰ Color TV picture is 3-dimensional signals I(x,y,t)

Ha H. Kha

4
CuuDuongThanCong.com

Introduction
/>

2. Classification of Signal

Continous-time versus discrete-time signal
™ Signals can be classified into four different categories depending on
the characteristics of the time variable and the values they take.
Time 

Continuous

Discrete

Amplitue
x(n)
( )

(t)
x(t)
Continuous

t

n

Analog signal
xQ(t)
Discrete
t
Quantized signal
Ha H. Kha

Discrete time signal
111 xQ(n)

110
101
100
011
n
010
001
000
Digital signal
Digital signal 

5
CuuDuongThanCong.com

Introduction
/>

3. Basic elements of a DSP system
™ Most of the signals encountered in science and engineering are
analog in nat
nature.
re To perform the processing digitall
digitally, there is a need
for an interface between the analog signal and the digital processor

Fig: Analog signal processing

Fi Digital
Fig:
Di i l signal

i l processing
i
Ha H. Kha

6
CuuDuongThanCong.com

Introduction
/>

4. DSP applications-Communications
™ Telephony: transmission of information in
digital form via telephone lines, modem
technology, mobile phone.

™ Encoding and decoding of the
information sent over physical
channels
h nn l (t
(to optimize
ptimiz
transmission, to detect or
correct
co
ect errors
e o s in transmission)
t a s ss o )

Ha H. Kha


7
CuuDuongThanCong.com

Introduction
/>

4. DSP applications-Radar
Radar and sonar:
™ Target detection:
position and
velocity estimation

™ Tracking

Ha H. Kha

8
CuuDuongThanCong.com

Introduction
/>

4. DSP applications-Biomedical
™ Analysis of biomedical signals, diagnosis, patient monotoring,
pre enti e health care,
preventive
care artificial organs
organs.
™ Examples:
™ Electrocardiogram

l
di
(ECG)
( CG) signal
i l provides
id
information about the condition of the
patient’ss heart.
patient
heart

™ Electroencephhalogram (EEG) signal
pro ides information abo
provides
aboutt the
activity of the brain.
Ha H. Kha

9
CuuDuongThanCong.com

Introduction
/>

4. DSP applications-Speech
™ Noise reduction: reducing
backgro nd noise in the sequence
background
seq ence
produced by a sensing device (a

microphone).
p
)

™ Speech recognition: differentiating
between various speech sounds
™ Synthesis of artificial speech :
text to speech systems

Ha H. Kha

10
CuuDuongThanCong.com

Introduction
/>

4. DSP applications-Image Processing
™ Content based image retrievalbro sing searching and retrie
browsing,
retrieving
ing
images from database.
™ Image enhancement

™ Compression: reducing the
g data to
redundancyy in the image
optimize transmission/storage


Ha H. Kha

11
CuuDuongThanCong.com

Introduction
/>

4. DSP applications-Multimedia
™ Generation storage and transmission
of sound,
so nd still images
images, motion
pictures.
™ Digital TV

™ Video conference

Ha H. Kha

12
CuuDuongThanCong.com

Introduction
/>

The Journey

“ Learning
L

i digital
di i l signal
i l processing
i is
i not something
hi
you accomplish; it’s a journey you take”.
R.G. Lyons, Understanding Digital Signal Processing

Ha H. Kha

13
CuuDuongThanCong.com

Introduction
/>

5. Advantages of digital
over analog signal processing
™ A digital programmable system allows flexibility in reconfiguring the
DSP operations simply by changing the program.
™ A digital system provides much better control of accuracy
requirements.
™ Digital
g signals
g
are easilyy stored.
™ DSP methods allow for implementation of more sophisticated signal
processingg algorithms.
p

g
™ Limitation:
Li it ti Practical
P ti l limitations
li it ti
off DSP are the
th quantization
ti ti errors
and the speed of A/D converters and digital signal processors -> not
suitable for analog signals with large bandwidths.
Ha H. Kha

14
CuuDuongThanCong.com

Introduction
/>

Course overview
™ Introduction to Digital Signal Processing (3 periods)
™ Sampling and reconstruction, quantization (6 periods)
™ Analysis of linear time invariant systems (LTI)(3 periods)
™ Finite Impulse Response (FIR) of LTI systems (3 periods)
™ Z-transform and its applications to the analysis of linear systems (6
periods)
Mid-term Exam
™ Fourier transform & FFT Algorithm (9 periods)
™ Digital filter realization(3 periods)
™ FIR and IIR filter designs (9 periods)
Final Exam

Ha H. Kha

15
CuuDuongThanCong.com

Introduction
/>

References

™ Text
T t books:
b k
[1]  S. J. Orfanidis, Introduction to Signal Processing, Prentice –Hall 
Publisher 2010.
Publisher 2010.
[2]  J. Proakis, D. Manolakis, Introduction to Digital Signal 
Processing, Macmillan Publishing Company, 1989.
™ Reference books:
[3] V K Ingle J Proakis Digital Signal Processing Using Matlab
[3] V. K. Ingle, J. Proakis, Digital Signal Processing Using Matlab, 
Cengage Learning, 3 Edt, 2011. 

Ha H. Kha

16
CuuDuongThanCong.com

Introduction
/>


Learning outcomes

™ Understand how to convert the analog to digital signal 
™ Have
Have a thorough grasp of signal processing in linear time‐invariant 
a thorough grasp of signal processing in linear time invariant
systems.
™ Understand the z‐transform and Fourier transforms in analyzing 
the signal and systems
the signal and systems.
™ Be able to design and implement FIR and IIR filters.

Ha H. Kha

17
CuuDuongThanCong.com

Introduction
/>

Assessment

™ Mid‐term exam:  30%
™ Final exam:  70%
™ Bonus:  0.5 mark/solving a problem in the class.

Ha H. Kha

18

CuuDuongThanCong.com

Introduction
/>


×