Tải bản đầy đủ (.doc) (32 trang)

Ôn tập toán 9 cực hay

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (254.8 KB, 32 trang )

Đề cơng ôn tập thi vào 10 GV: Phạm Văn Mùi
Phần I: đại số
Chủ đề 1: Căn thức Biến đổi căn thức.
Dạng 1: Tìm điều kiện để biểu thức có chứa căn thức có nghĩa.
Ph ơng pháp giải:
A
có nghĩa <=> A

0
Bài 1: Tìm x để các biểu thức sau có nghĩa.( Tìm ĐKXĐ của các biểu thức sau).
Dạng 2: Biến đổi đơn giản căn thức.
Phơng pháp giải: áp dụng các công thức biến
đổi căn thức
1.



<

=
0A Nếu
A nếu
A
A
A
2
2.
BAAB .
=
Với A


0 và B

0
3.
B
A
B
A
=
Với A

0 và B > 0
4.
BABA
=
2
Với B

0
5.







=
0 B và 0 A Với
0 B và 0 A Với

BA
BA
BA
2
2

6.
AB
BB
A 1
=
Với AB

0 và B

0
7.
B
BA
B
A
=
Với B > 0
8.
2
)(
BA
BAC
BA
C


=


Với A

0 và A

B
2
9.
BA
BAC
BA
C

=

)(
Với A

0 và B

0, A

B
Ngoài ra:
BADC
+=+
2

trong đó



=
=+
DBA
CBA
.

Bài 1: Đa một thừa số vào trong dấu căn.
22
x
7
x e) ;
x25
x
5)(x d) ;
5
2
x c) 0);x (với
x
2
x b) ;
3
5
5
3
a)


>
Bài 2: Thực hiện phép tính.
33
3;
3
33
3152631526 h) ;2142021420 g)
725725 f) ;10:)4503200550(15 c)
26112611 e) ;0,4)32)(10238( b)
;526526 d) ;877)714228( a)
+++
++
++
++++
Bài 3: Thực hiện phép tính.
1027
1528625
c)
57
1
:)
31
515
21
714
b)
6
1
)
3

216
28
632
( a)
+
+


+





Bài 4: Thực hiện phép tính.
1
3x16x 14)
x2x
1
)
x5
3x
3x
1
13)
x7
3x
6)
65xx
1

12)
27x
x3
5)
35x2x 11) 12x 4)
73xx 10)
147x
1
3)
2x 9) 2x5 2)
3x 8) 13x 1)
2
2
2
2
2
2
++


+


+
+
+

+
+



+
7

62126,5126,5 e)
77474 d) 25353 c)
535)(3535)(3 b) 1546)10)(15(4 )
+++
+++
++++
a
Bài 5: Rút gọn các biểu thức sau:
53
53
53
53
d)
65
625
65
625
c)
113
3
113
3
b)
1247
1
1247

1
a)
+

+

+
+

+

+
+

+++

+
Bài 6: Rút gọn biểu thức:
10099
1
...
43
1
32
1
21
1
c)
34710485354b) 4813526a)
+

++
+
+
+
+
+
+++++
Bài 7: Rút gọn biểu thức sau:
4
3y6xy3x
yx
2
e)
)4a4a(15a
12a
1
d)
;
4a
a42a8aa
c)
1.a và 0a với,
1a
aa
1
1a
aa
1 b)
b.a và 0b 0,a với,
ba

1
:
ab
abba
a)
22
22
24
++


+


+
>




















+
+
+
>>

+
Bài 8: Tính giá trị của biểu thức
( )( )
a.)y)(1x(1xybiết , x1yy1xE e)
1.x2x9x2x16biết , x2x9x2x16D d)
3;3yy3xxbiết , yxC c)
;1)54(1)54(x với812xxB b)
549
1
y;
25
1
x khi2y,y3xxA a)
2222
2222
22
33
3
2
=++++++=

=+++++=
=+++++=
+=+=
+
=

=+=
Dạng 3: Bài toán tổng hợp kiến thức và kỹ năng tính toán.
Phơng pháp:
+ Tìm đk để biểu thức có nghĩa
+ Quy đồng, trục căn thức ở mẫu
Bài 1: Cho biểu thức
21x
3x
P


=
a) Rút gọn P.
b) Tính giá trị của P nếu x = 4(2 -
3
).
c) Tính giá trị nhỏ nhất của P.
Bài 2: Xét biểu thức
1.
a
a2a
1aa
aa
A

2
+
+

+
+
=
a) Rút gọn A.
b) Biết a > 1, hãy so sánh A với
A
.
c) Tìm a để A = 2.
d) Tìm giá trị nhỏ nhất của A.
Bài 3: Cho biểu thức
x1
x
2x2
1
2x2
1
C

+
+


=
2

a) Rút gọn biểu thức C.

b) Tính giá trị của C với
9
4
x
=
.
c) Tính giá trị của x để
.
3
1
C
=
Bài 4: Cho biểu thức
222222
baa
b
:
ba
a
1
ba
a
M











+

=
a) Rút gọn M.
b) Tính giá trị M nếu
.
2
3
b
a
=
c) Tìm điều kiện của a, b để M < 1.
Bài 5: Xét biểu thức
.
2
x)(1
1x2x
2x
1x
2x
P
2











++
+



=
a) Rút gọn P.
b) Chứng minh rằng nếu 0 < x < 1 thì P > 0.
c) Tìm giá trị lơn nhất của P.
Bài 6: Xét biểu thức
.
x3
1x2
2x
3x
6x5x
9x2
Q

+


+

+


=
a) Rút gọn Q.
b) Tìm các giá trị của x để Q < 1.
c) Tìm các giá trị nguyên của x để giá trị tơng ứng của Q cũng là số nguyên.
Bài 7: Xét biểu thức
( )
yx
xyyx
:
yx
yx
yx
yx
H
2
33
+
+














=
a) Rút gọn H.
b) Chứng minh H 0.
c) So sánh H với
H
.
Bài 8: Xét biểu thức
.
1aaaa
a2
1a
1
:
1a
a
1A








+











+
+=
a) Rút gọn A.
b) Tìm các giá trị của a sao cho A > 1.
c) Tính các giá trị của A nếu
200622007a
=
.
Bài 9: Xét biểu thức
.
x1
2x
2x
1x
2xx
39x3x
M


+
+
+


+
+
=
a) Rút gọn M.
b) Tìm các giá trị nguyên của x để giá trị tơng ứng của M cũng là số nguyên.
Bài 10: Xét biểu thức
.
3x
3x2
x1
2x3
3x2x
11x15
P
+
+



+
+

=
a) Rút gọn P.
b) Tìm các giá trị của x sao cho
.
2
1
P
=

c) So sánh P với
3
2
.
Chủ đề 2: Phơng trình bậc hai và định lí Viét.
Dạng 1: Giải phơng trình bậc hai.
Phơng pháp:
1. Xét xem hệ số a+b+c=0 hoặc a b + c = 0
2. Trong phơng trình có khuyết những hệ số nào?
3. Kiểm tra hệ số b
Nếu b

2 thì dùng
'

ngợc lại dùng CTNTQ
Bài 1: Giải các phơng trình
3

1) x
2
6x + 14 = 0 ; 2) 4x
2
8x + 3 = 0 ;
3) 3x
2
+ 5x + 2 = 0 ; 4) -30x
2
+ 30x 7,5 = 0 ;
5) x

2
4x + 2 = 0 ; 6) x
2
2x 2 = 0 ;
7) x
2
+ 2
2
x + 4 = 3(x +
2
) ; 8) 2
3
x
2
+ x + 1 =
3
(x + 1) ;
9) x
2
2(
3
- 1)x - 2
3
= 0. 10) x
2
25 = 0
Bài 2: Giải các phơng trình sau bằng cách nhẩm nghiệm:
1) 3x
2
11x + 8 = 0 ; 2) 5x

2
17x + 12 = 0 ;
3) x
2
(1 +
3
)x +
3
= 0 ; 4) (1 -
2
)x
2
2(1 +
2
)x + 1 + 3
2
= 0 ;
5) 3x
2
19x 22 = 0 ; 6) 5x
2
+ 24x + 19 = 0 ;
7) (
3
+ 1)x
2
+ 2
3
x +
3

- 1 = 0 ; 8) x
2
11x + 30 = 0 ;
9) x
2
12x + 27 = 0 ; 10) x
2
10x + 21 = 0.
Dạng 2: Chứng minh phơng trình có nghiệm, vô nghiệm.
Phơng pháp: Cho phơng trình: ax
2
+bx+c = 0
+ C \ m a.c < 0 thì kết luận phơng trình có hai nghiệm trái dấu
+ C \ m





0
0a
thì pt có nghiệm
+ C \ m



>

0
0a

thì pt có hai nghiệm
+ C \ m



<

0
0a
thì ptvn
Bài 1: Chứng minh rằng các phơng trình sau luôn có nghiệm.
1) x
2
2(m - 1)x 3 m = 0 ; 2) x
2
+ (m + 1)x + m = 0 ;
3) x
2
(2m 3)x + m
2
3m = 0 ; 4) x
2
+ 2(m + 2)x 4m 12 =
0 ;
5) x
2
(2m + 3)x + m
2
+ 3m + 2 = 0 ; 6) x
2

2x (m 1)(m 3) = 0 ;
7) x
2
2mx m
2
1 = 0 ; 8) (m + 1)x
2
2(2m 1)x
3 + m = 0
9) ax
2
+ (ab + 1)x + b = 0.
Bài 2:
a) Chứng minh rằng với a, b , c là các số thực thì phơng trình sau luôn có nghiệm:
(x a)(x b) + (x b)(x c) + (x c)(x a) = 0
b) Chứng minh rằng với ba số thức a, b , c phân biệt thì phơng trình sau có hai nghiệm
phân biết:
x) (ẩn 0
cx
1
bx
1
ax
1
=

+

+


c) Chứng minh rằng phơng trình: c
2
x
2
+ (a
2
b
2
c
2
)x + b
2
= 0 vô nghiệm với a, b, c là
độ dài ba cạnh của một tam giác.
d) Chứng minh rằng phơng trình bậc hai:
(a + b)
2
x
2
(a b)(a
2
b
2
)x 2ab(a
2
+ b
2
) = 0 luôn có hai nghiệm phân biệt.
Bài 3:
a) Chứng minh rằng ít nhất một trong các phơng trình bậc hai sau đây có nghiệm:

ax
2
+ 2bx + c = 0 (1)
bx
2
+ 2cx + a = 0 (2)
4

cx
2
+ 2ax + b = 0 (3)
b) Cho bốn phơng trình (ẩn x) sau:
x
2
+ 2ax + 4b
2
= 0 (1)
x
2
- 2bx + 4a
2
= 0 (2)
x
2
- 4ax + b
2
= 0 (3)
x
2
+ 4bx + a

2
= 0 (4)
Chứng minh rằng trong các phơng trình trên có ít nhất 2 phơng trình có nghiệm.
c) Cho 3 phơng trình (ẩn x sau):
(3) 0
cb
1
x
ba
ba2a
cx
(2) 0
ba
1
x
ac
ac2c
bx
(1) 0
ac
1
x
cb
cb2b
ax
2
2
2
=
+

+
+
+

=
+
+
+
+

=
+
+
+
+

với a, b, c là các số dơng cho trớc.
Chứng minh rằng trong các phơng trình trên có ít nhất một phơng trình có nghiệm.
Bài 4:
a) Cho phơng trình ax
2
+ bx + c = 0.
Biết a 0 và 5a + 4b + 6c = 0, chứng minh rằng phơng trình đã cho có hai nghiệm.
b) Chứng minh rằng phơng trình ax
2
+ bx + c = 0 ( a 0) có hai nghiệm nếu một trong
hai điều kiện sau đợc thoả mãn:
a(a + 2b + 4c) < 0 ;
5a + 3b + 2c = 0.
Dạng 3: Tính giá trị của biểu thức đối xứng, lập phơng trình bậc hai nhờ nghiệm của ph-

ơng trình bậc hai cho trớc. ax
2
+ bx + c = 0
Phơng pháp:
nắm vững hệ thức viet
1 2
1 2
.
c
x x
a
b
x x
a

+ =




=


Chú ý: x
1
2
+ x
2
2
= (x

1
+ x
2
)
2
2x
1
x
2
x
1
3
+ x
2
3
= (x
1
+ x
2
)
3
3x
1
x
2
(x
1
+x
2
)

Bài 1: Gọi x
1
; x
2
là các nghiệm của phơng trình: x
2
3x 7 = 0.
Tính:
( )( )
4
2
4
1
3
2
3
1
1221
21
21
2
2
2
1
xxF ;xxE
;x3xx3xD ;
1x
1
1x
1

C
;xxB ;xxA
+=+=
++=

+

=
=+=
Lập phơng trình bậc hai có các nghiệm là
1x
1

1x
1
21

.
Bài 2: Gọi x
1
; x
2
là hai nghiệm của phơng trình: 5x
2
3x 1 = 0. Không giải phơng
trình, tính giá trị của các biểu thức sau:
.
x4xx4x
3xx5x3x
C

;
x
1
x
1
1x
x
x
x
1x
x
x
x
B
;x3x2xx3x2xA
2
2
1
2
21
2
221
2
1
2
211
2
1
2
2

1
2
1
2
21
3
22
2
1
3
1
+
++
=









+
++
+
+=
+=
Bài 3:
5


a) Gọi p và q là nghiệm của phơng trình bậc hai: 3x
2
+ 7x + 4 = 0. Không giải phơng
trình hãy thành lập phơng trình bậc hai với hệ số bằng số mà các nghiệm của nó là
1p
q

1q
p

.
b) Lập phơng trình bậc hai có 2 nghiệm là
2610
1

7210
1
+
.
Bài 4: Cho phơng trình x
2
2(m -1)x m = 0.
a) Chứng minh rằng phơng trình luôn luôn có hai nghiệm x
1
; x
2
với mọi m.
b) Với m 0, lập phơng trình ẩn y thoả mãn
1

22
2
11
x
1
xy và
x
1
xy
+=+=
.
Bài 5: Không giải phơng trình 3x
2
+ 5x 6 = 0. Hãy tính giá trị các biểu thức sau:
( )( )
2
2
1
1
21
1
2
2
1
1221
x
2x
x
2x
D ;xxC

;
1x
x
1x
x
B ;2x3x2x3xA
+
+
+
==

+

==
Bài 6: Cho phơng trình 2x
2
4x 10 = 0 có hai nghiệm x
1
; x
2
. Không giải phơng trình
hãy thiết lập phơng trình ẩn y có hai nghiệm y
1
; y
2
thoả mãn: y
1
= 2x
1
x

2
; y
2
= 2x
2
x
1
Bài 7: Cho phơng trình 2x
2
3x 1 = 0 có hai nghiệm x
1
; x
2
. Hãy thiết lập phơng trình
ẩn y có hai nghiệm y
1
; y
2
thoả mãn:







=
=




+=
+=
1
2
2
2
2
2
1
1
22
11
x
x
y
x
x
y
b)
2xy
2xy
a)
Bài 8: Cho phơng trình x
2
+ x 1 = 0 có hai nghiệm x
1
; x
2
. Hãy thiết lập phơng trình ẩn y

có hai nghiệm y
1
; y
2
thoả mãn:





=+++
+=+







+=+
+=+
0.5x5xyy
xxyy
b) ;
3x3x
y
y
y
y
x

x
x
x
yy
a)
21
2
2
2
1
2
2
2
121
21
1
2
2
1
1
2
2
1
21
Bài 9: Cho phơng trình 2x
2
+ 4ax a = 0 (a tham số, a 0) có hai nghiệm x
1
; x
2

. Hãy lập
phơng trình ẩn y có hai nghiệm y
1
; y
2
thoả mãn:
21
2121
21
xx
y
1
y
1

x
1
x
1
yy
+=++=+
6

Dạng 4: Tìm điều kiện của tham số để phơng trình có nghiệm, có nghiệm kép, vô
nghiệm.
Phơng pháp: Cho phơng trình: ax
2
+bx+c = 0
+ Nếu a = 0 thì giải cụ thể
+ Nếu a.c < 0 thì kết luận phơng trình có hai nghiệm trái dấu

+ Để pt có nghiệm





0
0a

+ Để pt có hai nghiệm



>

0
0a

+ Để ptvn



<

0
0a

Bài 1:
a) Cho phơng trình (m 1)x
2

+ 2(m 1)x m = 0 (ẩn x).
Xác định m để phơng trình có nghiệm kép. Tính nghiệm kép này.
b) Cho phơng trình (2m 1)x
2
2(m + 4)x + 5m + 2 = 0.
Tìm m để phơng trình có nghiệm.
a) Cho phơng trình: (m 1)x
2
2mx + m 4 = 0.
- Tìm điều kiện của m để phơng trình có nghiệm.
- Tìm điều kiện của m để phơng trình có nghiệm kép. Tính nghiệm kép đó.
b) Cho phơng trình: (a 3)x
2
2(a 1)x + a 5 = 0.
Tìm a để phơng trình có hai nghiệm phân biệt.
Bài 2:
a) Cho phơng trình:
( )
06mm
1x
x12m2
12xx
4x
2
224
2
=+
+



++
.
Xác định m để phơng trình có ít nhất một nghiệm.
b) Cho phơng trình: (m
2
+ m 2)(x
2
+ 4)
2
4(2m + 1)x(x
2
+ 4) + 16x
2
= 0. Xác định
m để phơng trình có ít nhất một nghiệm.
Dạng 5: Xác định tham số để các nghiệm của phơng trình ax
2
+ bx + c = 0 thoả mãn điều
kiện cho trớc.
Phơng pháp:
+ Tìm ĐK để pt có nghiệm
+ áp dụng hệ thức vi et
{
a
c
xx
a
b
xx
=


=+
21
21
.
Bài 1: Cho phơng trình: x
2
2(m + 1)x + 4m = 0
1) Xác định m để phơng trình có nghiệm kép. Tìm nghiệm kép đó.
2) Xác định m để phơng trình có một nghiệm bằng 4. Tính nghiệm còn lại.
3) Với điều kiện nào của m thì phơng trình có hai nghiệm cùng dấu (trái dấu)
4) Với điều kiện nào của m thì phơng trình có hai nghiệm cùng dơng (cùng âm).
5) Định m để phơng trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia.
6) Định m để phơng trình có hai nghiệm x
1
; x
2
thoả mãn 2x
1
x
2
= - 2.
7

7) Định m để phơng trình có hai nghiệm x
1
; x
2
sao cho A = 2x
1

2
+ 2x
2
2
x
1
x
2
nhận giá
trị nhỏ nhất.
Bài 2: Định m để phơng trình có nghiệm thoả mãn hệ thức đã chỉ ra:
a) (m + 1)x
2
2(m + 1)x + m 3 = 0 ; (4x
1
+ 1)(4x
2
+ 1) = 18
b) mx
2
(m 4)x + 2m = 0 ; 2(x
1
2
+ x
2
2
) = 5x
1
x
2

c) (m 1)x
2
2mx + m + 1 = 0 ; 4(x
1
2
+ x
2
2
) = 5x
1
2
x
2
2
d) x
2
(2m + 1)x + m
2
+ 2 = 0 ; 3x
1
x
2
5(x
1
+ x
2
) + 7 = 0.
Bài 3: Định m để phơng trình có nghiệm thoả mãn hệ thức đã chỉ ra:
a) x
2

+ 2mx 3m 2 = 0 ; 2x
1
3x
2
= 1
b) x
2
4mx + 4m
2
m = 0 ; x
1
= 3x
2
c) mx
2
+ 2mx + m 4 = 0 ; 2x
1
+ x
2
+ 1 = 0
d) x
2
(3m 1)x + 2m
2
m = 0 ; x
1
= x
2
2
e) x

2
+ (2m 8)x + 8m
3
= 0 ; x
1
= x
2
2
f) x
2
4x + m
2
+ 3m = 0 ; x
1
2
+ x
2
= 6.
Bài 4:
a) Cho phơnmg trình: (m + 2)x
2
(2m 1)x 3 + m = 0. Tìm điều kiện của m để
phơng trình có hai nghiệm phân biệt x
1
; x
2
sao cho nghiệm này gấp đôi nghiệm kia.
b) Ch phơng trình bậc hai: x
2
mx + m 1 = 0. Tìm m để phơng trình có hai nghiệm

x
1
; x
2
sao cho biểu thức
)xx2(1xx
3x2x
R
21
2
2
2
1
21
+++
+
=
đạt giá trị lớn nhất. Tìm giá trị lớn
nhất đó.
c) Định m để hiệu hai nghiệm của phơng trình sau đây bằng 2.
mx
2
(m + 3)x + 2m + 1 = 0.
Bài 5: Cho phơng trình: ax
2
+ bx + c = 0 (a 0).
Chứng minh rằng điều kiện cần và đủ để phơng trình có hai nghiệm mà nghiệm này gấp
đôi nghiệm kia là 9ac = 2b
2
.

Bài 6: Cho phơng trình bậc hai: ax
2
+ bx + c = 0 (a 0). Chứng minh rằng điều kiện cần và
đủ để phơng trình có hai nghiệm mà nghiệm này gấp k lần nghiệm kia (k > 0) là :
kb
2
= (k + 1)
2
.ac
Dạng 6: So sánh nghiệm của phơng trình bậc hai với một số (dạng toán khó dung
BDHSG)
Bài 1:Cho phơng trình x
2
(2m 3)x + m
2
3m = 0. Xác định m để phơng trình có hai
nghiệm x
1
; x
2
thoả mãn 1 < x
1
< x
2
< 6.
a) Cho phơng trình 2x
2
+ (2m 1)x + m 1 = 0. Xác định m để phơng trình có hai
nghiệm phân biệt x
1

; x
2
thoả mãn: - 1 < x
1
< x
2
< 1.
Bài 2: Cho f(x) = x
2
2(m + 2)x + 6m + 1.
a) Chứng minh rằng phơng trình f(x) = 0 có nghiệm với mọi m.
b) Đặt x = t + 2. Tính f(x) theo t, từ đó tìm điều kiện đối với m để phơng trình f(x) = 0
có hai nghiệm lớn hơn 2.
Bài 3: Cho phơng trình bậc hai: x
2
+ 2(a + 3)x + 4(a + 3) = 0.
a) Với giá trị nào của tham số a, phơng trình có nghiệm kép. Tính các nghiệm kép.
b) Xác định a để phơng trình có hai nghiệm phân biệt lớn hơn 1.
Bài 4: Cho phơng trình: x
2
+ 2(m 1)x (m + 1) = 0.
a) Tìm giá trị của m để phơng trình có một nghiệm nhỏ hơn 1 và một nghiệm lớn hơn 1.
b) Tìm giá trị của m để phơng trình có hai nghiệm nhỏ hơn 2.
Bài 5: Tìm m để phơng trình: x
2
mx + m = 0 có nghiệm thoả mãn x
1
- 2 x
2
.

Dạng 7: Tìm hệ thức liên hệ giữa hai nghiệm của phơng trình bậc hai không phụ thuộc
tham số.
Phơng pháp:
8

+ Chỉ ra phơng trình có nghiệm
+ áp dụng hệ thức viet
+ giải hệ phơng trình sau đó làm mất tham số đa ra 1 pt mới không chứa tham số
Bài 1:
a) Cho phơng trình: x
2
mx + 2m 3 = 0. Tìm hệ thức liên hệ giữa hai nghiệm của
phơng trình không phụ thuộc vào tham số m.
b) Cho phơng trình bậc hai: (m 2)x
2
2(m + 2)x + 2(m 1) = 0. Khi phơng trình
có nghiệm, hãy tìm một hệ thức giữa các nghiệm không phụ thuộc vào tham số m.
c) Cho phơng trình: 8x
2
4(m 2)x + m(m 4) = 0. Định m để phơng trình có hai
nghiệm x
1
; x
2
. Tìm hệ thức giữa hai nghiệm độc lập với m, suy ra vị trí của các
nghiệm đối với hai số 1 và 1.
Bài 2: Cho phơng trình bậc hai: (m 1)
2
x
2

(m 1)(m + 2)x + m = 0. Khi phơng trình
có nghiệm, hãy tìm một hệ thức giữa các nghiệm không phụ thuộc vào tham số m.
Bài 3: Cho phơng trình: x
2
2mx m
2
1 = 0.
a) Chứng minh rằng phơng trình luôn có hai nghiệm x
1
, x
2
với mọi m.
b) Tìm biểu thức liên hệ giữa x
1
; x
2
không phụ thuộc vào m.
c) Tìm m để phơng trình có hai nghiệm x
1
; x
2
thoả mãn:
2
5
x
x
x
x
1
2

2
1
=+
.
Bài 4: Cho phơng trình: (m 1)x
2
2(m + 1)x + m = 0.
a) Giải và biện luận phơng trình theo m.
b) Khi phơng trình có hai nghiệm phân biệt x
1
; x
2
:
- Tìm một hệ thức giữa x
1
; x
2
độc lập với m.
- Tìm m sao cho |x
1
x
2
| 2.
Bài 5: Cho phơng trình (m 4)x
2
2(m 2)x + m 1 = 0. Chứng minh rằng nếu ph-
ơng trình có hai nghiệm x
1
; x
2

thì: 4x
1
x
2
3(x
1
+ x
2
) + 2 = 0.
Dạng 8: Mối quan hệ giữa các nghiệm của hai phơng trình bậc hai.
Kiến thức cần nhớ:
1/ Định giá trị của tham số để phơng trình này có một nghiệm bằng k (k 0) lần một
nghiệm của phơng trình kia:
Xét hai phơng trình:
ax
2
+ bx + c = 0 (1)
ax
2
+ bx + c = 0 (2)
trong đó các hệ số a, b, c, a, b, c phụ thuộc vào tham số m.
Định m để sao cho phơng trình (2) có một nghiệm bằng k (k 0) lần một nghiệm của phơng
trình (1), ta có thể làm nh sau:
i) Giả sử x
0
là nghiệm của phơng trình (1) thì kx
0
là một nghiệm của phơng trình (2),
suy ra hệ phơng trình:
(*)

0c'kxb'xka'
0cbxax
0
2
0
2
0
2
0





=++
=++
Giải hệ phơng trình trên bằng phơng pháp thế hoặc cộng đại số để tìm m.
ii) Thay các giá trị m vừa tìm đợc vào hai phơng trình (1) và (2) để kiểm tra lại.
2/ Định giá trị của tham số m để hai phơng trình bậc hai tơng đơng với nhau.
Xét hai phơng trình:
ax
2
+ bx + c = 0 (a 0) (3)
ax
2
+ bx + c = 0 (a 0) (4)
9

Hai phơng trình (3) và (4) tơng đơng với nhau khi và chỉ khi hai phơng trình có cùng 1 tập
nghiệm (kể cả tập nghiệm là rỗng).

Do đó, muỗn xác định giá trị của tham số để hai phơng trình bậc hai tơng đơng với nhau ta
xét hai trờng hợp sau:
i) Trờng hợp cả hai phơng trinhg cuùng vô nghiệm, tức là:





<
<
0
0
)4(
)3(
Giải hệ trên ta tịm đợc giá trị của tham số.
ii) Trờng hợp cả hai phơng trình đều có nghiệm, ta giải hệ sau:







=
=


(4)(3)
(4)(3)
(4)

(3)
PP
SS
0
0
Chú ý: Bằng cách đặt y = x
2
hệ phơng trình (*) có thể đa về hệ phơng trình bậc nhất 2 ẩn nh
sau:



=+
=+
c'ya'xb'
caybx
Để giải quyết tiếp bài toán, ta làm nh sau:
- Tìm điều kiện để hệ có nghiệm rồi tính nghiệm (x ; y) theo m.
- Tìm m thoả mãn y = x
2
.
- Kiểm tra lại kết quả.
-
Bài 1: Tìm m để hai phơng trình sau có nghiệm chung:
2x
2
(3m + 2)x + 12 = 0
4x
2
(9m 2)x + 36 = 0

Bài 2: Với giá trị nào của m thì hai phơng trình sau có nghiệm chung. Tìm nghiệm chung đó:
a) 2x
2
+ (3m + 1)x 9 = 0; 6x
2
+ (7m 1)x 19 = 0.
b) 2x
2
+ mx 1 = 0; mx
2
x + 2 = 0.
c) x
2
mx + 2m + 1 = 0; mx
2
(2m + 1)x 1 = 0.
Bài 3: Xét các phơng trình sau:
ax
2
+ bx + c = 0 (1)
cx
2
+ bx + a = 0 (2)
Tìm hệ thức giữa a, b, c là điều kiện cần và đủ để hai phơng trình trên có một nghiệm
chung duy nhất.
Bài 4: Cho hai phơng trình:
x
2
2mx + 4m = 0 (1)
x

2
mx + 10m = 0 (2)
Tìm các giá trị của tham số m để phơng trình (2) có một nghiệm bằng hai lần một
nghiệm của phơng trình (1).
Bài 5: Cho hai phơng trình:
x
2
+ x + a = 0
x
2
+ ax + 1 = 0
a) Tìm các giá trị của a để cho hai phơng trình trên có ít nhất một nghiệm chung.
10

b) Với những giá trị nào của a thì hai phơng trình trên tơng đơng.
Bài 6: Cho hai phơng trình:
x
2
+ mx + 2 = 0 (1)
x
2
+ 2x + m = 0 (2)
a) Định m để hai phơng trình có ít nhất một nghiệm chung.
b) Định m để hai phơng trình tơng đơng.
c) Xác định m để phơng trình (x
2
+ mx + 2)(x
2
+ 2x + m) = 0 có 4 nghiệm phân biệt
Bài 7: Cho các phơng trình:

x
2
5x + k = 0 (1)
x
2
7x + 2k = 0 (2)
Xác định k để một trong các nghiệm của phơng trình (2) lớn gấp 2 lần một trong các
nghiệm của phơng trình (1).
Chủ đề 3: Hệ phơng trình.
A - Hệ hai phơng trình bậc nhất hai ẩn:
Dạng 1: Giải hệ phơng trình cơ bản và đa đợc về dạng cơ bản
' ' '
ax by c
a x b y c
+ =


+ =

Phơng pháp:
+ Thế
+ Cộng đại số
Bài 1: Giải các hệ phơng trình



=
=




=
=+



=+
=+



=+
=+



=
=



=+
=
1815y10x
96y4x
6) ;
142y3x
35y2x
5) ;
142y5x

024y3x
4)
106y4x
53y2x
3) ;
53y6x
32y4x
2) ;
5y2x
42y3x
1)
Bài 2: Giải các hệ phơng trình sau:
11

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )







=
+
+
=
+

+








=+
+

+
=+



+=+
+=+



=+
=+
5
6y5x
103y-6x
8
3yx
2-5y7x

4) ;
7
5x6y
y
3
1x
2x
4
27y
5
3
5x-2y
3)
;
121x3y33y1x
543y4x42y3-2x
2) ;
4xy5y54x
6xy32y23x
1)
Dạng 2: Giải hệ bằng phơng pháp đặt ẩn phụ
Phơng pháp: Đa về dạng hpt mới (bằng cách đặt ản phụ)
Giải hpt mới sau đó thế vào phơng trình đặt để tìm x,y
Giải các hệ phơng trình sau
12

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×