Tải bản đầy đủ (.pdf) (58 trang)

kiến trúc máy tính dạng thanh tin figs 3 the digital logic level sinhvienzone com

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (242.25 KB, 58 trang )

3
THE DIGITAL LOGIC LEVEL

1

CuuDuongThanCong.com

/>

+VCC
+VCC
+VCC
Vout
V1

Collector

Vout

Vout
Vin

V2

V1

V2

Emitter

Base


(a)

(b)

(c)

Figure 3-1. (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate.

CuuDuongThanCong.com

/>

NOT
A

X

A

NAND
X

B
A
0
1

X
1
0


(a)

NOR

A

X

B
A
0
0
1
1

B
0
1
0
1
(b)

X
1
1
1
0

AND


A

X

B
A
0
0
1
1

B
0
1
0
1
(c)

X
1
0
0
0

OR

A

X


B
A
0
0
1
1

B
0
1
0
1

X
0
0
0
1

(d)

A
0
0
1
1

B
0

1
0
1

X
0
1
1
1

(e)

Figure 3-2. The symbols and functional behavior for the five basic gates.

CuuDuongThanCong.com

/>

A B C

A B C

A
1
A
4

5

B


ABC

ABC

2
A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0

1
0
1
0
1

(a)

M
0
0
0
1
0
1
1
1

8

B
6
ABC
C
3
C
7

ABC


(b)

Figure 3-3. (a) The truth table for the majority function of
three variables. (b) A circuit for (a).

CuuDuongThanCong.com

/>
M


A

A

A

A
(a)

A
A

AB

A+B

B
B


A
AB

A

A+B

B
B
(b)

(c)

Figure 3-4. Construction of (a) NOT, (b) AND, and (c) OR
gates using only NAND gates or only NOR gates.

CuuDuongThanCong.com

/>

AB

A
B

AB + AC

A

A(B + C)


B
AC

C

B+C

C

A

B

C

AB

AC

AB + AC

A

B

C

A


B+C

A(B + C)

0

0

0

0

0

0

0

0

0

0

0

0

0


0

1

0

0

0

0

0

1

0

1

0

0

1

0

0


0

0

0

1

0

0

1

0

0

1

1

0

0

0

0


1

1

0

1

0

1

0

0

0

0

0

1

0

0

1


0

0

1

0

1

0

1

1

1

0

1

1

1

1

1


1

0

1

0

1

1

1

0

1

1

1

1

1

1

1


1

1

1

1

1

1

1

1

(a)

(b)

Figure 3-5. Two equivalent functions. (a) AB + AC. (b) A(B + C).

CuuDuongThanCong.com

/>

Name

AND form


OR form

Identity law

1A = A

0+A=A

Null law

0A = 0

1+A=1

Idempotent law

AA = A

A+A=A

Inverse law

AA = 0

A+A=1

Commutative law

AB = BA


A+B=B+A

Associative law

(AB)C = A(BC)

(A + B) + C = A + (B + C)

Distributive law

A + BC = (A + B)(A + C)

A(B + C) = AB + AC

Absorption law

A(A + B) = A

A + AB = A

De Morgan's law

AB = A + B

A + B = AB

Figure 3-6. Some identities of Boolean algebra.

CuuDuongThanCong.com


/>

AB

=

A+B

A+B

(a)

AB

=

(c)

=

AB

(b)

A+B

A+B

=


AB

(d)

Figure 3-7. Alternative symbols for some gates: (a) NAND. (b) NOR.
(c) AND. (d) OR.

CuuDuongThanCong.com

/>

A

A

B

XOR

0

0

0

0

1

1


1

0

1

A

1

1

0

B

B

(a)

(b)

A

A

B

B


A

A

B

B
(c)

(d)

Figure 3-8. (a) The truth table for the XOR function. (b)-(d)
Three circuits for computing it.

CuuDuongThanCong.com

/>

A

B

F

A

B

F


A

B

F

0V

0V

0V

0

0

0

1

1

1

0V

5V

0V


0

1

0

1

0

1

5V

0V

0V

1

0

0

0

1

1


5V

5V

5V

1

1

1

0

0

0

(a)

(b)

(c)

Figure 3-9. (a) Electrical characteristics of a device.
(b) Positive logic. (c) Negative logic.

CuuDuongThanCong.com


/>

VCC
14

13

12

11

10

9

8

1

2

3

4

5

6

7


Notch

GND

Figure 3-10. An SSI chip containing four gates.

CuuDuongThanCong.com

/>
Pin 8


D0
D1
D2
D3
F

D4
D5
D6
D7
A A B B C C

A

B

C


Figure 3-11. An eight-input multiplexer circuit.

CuuDuongThanCong.com

/>

VCC

D0

D0

D1

D1

D2

D2

D3

F

D4

D3

D5


D5

D6

D6

D7

D7

A B C
(a)

F

D4

A B C
(b)

Figure 3-12. (a) An MSI multiplexer.. (b) The same multiplexer wired to compute the majority function.

CuuDuongThanCong.com

/>

D0

D1


A

B

A

D2

A

D3

B

D4

B
C

D5

C
C

D6

D7

Figure 3-13. A 3-to-8 decoder circuit.


CuuDuongThanCong.com

/>

EXCLUSIVE OR gate
A0
B0

A1
B1
A=B
A2
B2

A3
B3
Figure 3-14. A simple 4-bit comparator.

CuuDuongThanCong.com

/>

A

If this fuse is
blown, B is not
an input to AND
gate 1.


B
12 ϫ 2 = 24
input signals

L

24 input lines

0

1

49

0

1
6 outputs
If this fuse is
blown, AND gate
1 is not an input
to OR gate 5.

50 input
lines

5

Figure 3-15. A 12-input, 6-output programmable logic array.
The little squares represent fuses that can be burned out to

determine the function to be computed. The fuses are arranged
in two matrices: the upper one for the AND gates and the lower
one for the OR gates.

CuuDuongThanCong.com

/>

D0

D1

D2

D3

D4

D5

D6

D7

S0

S1

S2


S3

S4

S5

S6

S7

C

Figure 3-16. A 1-bit left/right shifter.

CuuDuongThanCong.com

/>

Exclusive OR gate
A

B

0

0

0

0


0

1

1

0

1

0

1

0

1

1

0

1

Sum Carry
A

Sum


B

Carry

Figure 3-17. (a) Truth table for 1-bit addition. (b) A circuit for a half adder.

CuuDuongThanCong.com

/>

Carry in
Carry
Carry
Sum
in
out

A

B

0

0

0

0

0


0

0

1

1

0

0

1

0

1

0

0

1

1

0

1


1

0

0

1

0

1

0

1

0

1

1

1

0

0

1


1

1

1

1

1

A

Sum

B

Carry out
(a)

(b)

Figure 3-18. (a) Truth table for full adder. (b) Circuit for a full adder.

CuuDuongThanCong.com

/>

Logical unit


Carry in

AB
INVA
A
ENA
B
ENB

A+B

Output

B
Sum

Enable
lines

F0

Full
adder

F1

Decoder

Carry out


Figure 3-19. A 1-bit ALU.

CuuDuongThanCong.com

/>

F1 F0

A7 B7

A6 B6

A5 B5

A4 B4

A3 B3

A2 B2

A1 B1

A0 B0

1-bit
ALU

1-bit
ALU


1-bit
ALU

1-bit
ALU

1-bit
ALU

1-bit
ALU

1-bit
ALU

1-bit
ALU

O7

O6

O5

O4

O3

O2


O1

O0

Carry
in

Carry
out

Figure 3-20. Eight 1-bit ALU slices connected to make an 8bit ALU. The enables and invert signals are not shown for simplicity.

CuuDuongThanCong.com

/>
INC


C1

Delay

C2

(a)

(b)

A
B

C
(c)
Figure 3-21. (a) A clock. (b) The timing diagram for the
clock. (c) Generation of an asymmetric clock.

CuuDuongThanCong.com

/>

S

0

1

Q

S

0

0

Q

1

1
R


0

0
0

0
(a)

Q

R

1

0

Q

A

B

NOR

0

0

1


0

1

0

1

0

0

1

1

0

(b)

(c)

Figure 3-22. (a) NOR latch in state 0. (b) NOR latch in state 1.
(c) Truth table for NOR.

CuuDuongThanCong.com

/>

S

Q
Clock
Q
R
Figure 3-23. A clocked SR latch.

CuuDuongThanCong.com

/>

D
Q

Q

Figure 3-24. A clocked D latch.

CuuDuongThanCong.com

/>

×