Tải bản đầy đủ (.doc) (25 trang)

các bai hinh hoc giai tich thi dai hoc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (443.21 KB, 25 trang )

Hhgtp
GIẢI

( )
   C CD x y C t t∈ + − = ⇒ −


 

 
t t
M
+ −
 
 ÷
 

( )
 
        
 
t t
M BM x y t C
+ −
 
∈ + + = ⇒ + + = ⇔ = − ⇒ −
 ÷
 
 !"#$%
  AK CD x y⊥ + − =
&'!


K BC

"

( ) ( )
     AK x y x y− − − = ⇔ − + =

()'*+*,
( )
 

 
x y
I
x y
+ − =



− + =


-./&0'.

()
( )
K −

12*345#.067*189*


:  : 
  
x y
x y
+
= ⇔ + + =
− +

 !"#$%  
!&'(#)*!&'+,-./#0 !1!2
3$4$
6
( )
 ;AB AB= − ⇒ =
uuur
<*18
9*4
  x y+ − =

( ) ( )
 I d y x I t t∈ = ⇒
'=
4> 06
( ) ( )
  #   C t t D t t− −

?$*-
>
 :
ABC

S AB CH= =
!@*AB"
:
;
CH⇒ =

CB
( )
( ) ( )
: ;   
 # 
D E : D :
    

; ;
  #  
t C D
t
d C AB CH
t C D

   
= ⇒

 ÷  ÷

= ⇔ = ⇔
   



= ⇒ − −

FG()=>
;   
 # 
   
C D
   
 ÷  ÷
   
*B?
( ) ( )
 #  C D− −
/)#56+7!18.,

!2!&')99,:;
  x y+ + =
6<=);
 x y+ − =
>6&?)!&'+

/)#56+7!18xy!"#@AB66&?)!&'+
C9 DE9&?
F
)G
H
!I
H
8x8y&
F

&
H
7JKL 
 #=8JKMN
3$4$
H1
I
B
J

! " ! "# # P a Q b a b> >
HKB
J
7

x y
a b
+ =

K5!"0
  
    ab
a b ab
+ = ⇒ ≥ ⇒ ≥
>/
J
LM
I
N
O

$*=
I
*P
O
$*
E
 

a
b
a b
=

= ⇒

=

HB
J


  

OPQ
S a b

= ≥
C0
OPQ
S


*B
O
*/
J
!
=
"$*=
I
*P
O
$*
E

a
b
=


=

HF/
Q
KB
J
7

E 
x y
+ =

Câu VIa. (2.0 điểm)
/)#56+7!18., !&'+

;.O@,O-

;.P@,O-

/#7!1<#=Q!&')R16 #=@7#)*



)G
8,
3$4$
R(BK

=K

6!"
R(4BK

=STU64!V:"
R(BK

=SU6!:"
R(4'127*/-B64=S'*)U$*66
'!:W"#XY:W
Câu VIb. (2.0 điểm)
ST6U;.


PV,

-V30W

W

T *9!"#:T!"#NQ)*
UXM)
2LYQZ=[:\*9!"#W

\!&'+.-


=)]QI!^
3$4$
6
 
! "# ! "F F−
RZ[\!N



"*)!]"@*9**^012*3


x =
6_

YVN


WY

 

x−
@Y

 

x−
FG

MF
MH
$*`a
<9>;1,0 điểm /)#56+0 !1Oxy !&')R
( )
 
  C x y x+ + =
>
6&?)69,% 
( )
C
_ 69,,)G9

o

G
6@,[b6^7^
( )


c9
±


( ) ( ) ( )


     C x y I R+ + = ⇒ − =

>B6
( )

  x y b∆ − + =
^7Nd!"
( )

#d I R⇔ ∆ =


  

b
b

⇔ = ⇔ = ± +
.e
( )

    x y∆ − ± + =


F
( )

  x y b∆ + + =
^7Nd!"
( )

#d I R⇔ ∆ =


  

b
b

⇔ = ⇔ = ± +
.e
( )

    x y∆ + ± + =

<9> ;1,0 điểm /)#56+0 !1Oxy !&'+
( )
  : d x y− − =
AB6
6&?)!&')R6.`\=)G0 !1<#a)*!&'+d
3
R(
( ) ( )

 :I m m d− ∈
/12fc9
6
:
 : :#

m m m m= − ⇔ = =

.*
:

m =
*9<
 
: : E
  g
x y
   
− + + =
 ÷  ÷
   

.*
:m
=
*9<
( ) ( )
 
: : Ex y− + − =


<9> ;1,0 điểm/)#56+0 !1OxyAB66&?)!&'+C9
( )
M
7\=)G0 !1#1 #=
:

3
R(Kc9=
( ) ( )
 # A a B b
BK=SUN#
U#[
 
x y
d
a b
+ =
*hBZ*^#6
 
# ab
a b
+ = =

.*
ab
=
*9
 b a
+ =
C0


 :   : b a d x y= = ⇒ + − =

.*
ab = −
*9
 b a+ = −
6


: :    b b b+ − = ⇔ = − ±

FS
( ) ( )

         : b d x y= − + ⇒ − + + − =

FS
( ) ( )

         : b d x y= − − ⇒ + + − + =
.e
<9>;1,0 điểm /)#56+0 !1(Oxy) !"#



M
 
 ÷
 

>6&?)

D% ST6!C9 !"#MB
( )

F −
T#*9!"# 
G
<h76K&
 
 
! "
x y
a b
a b
+ = > >
6
 
 


:
 
a b
a b
− =
+ =






6
:   

:   ! "# ! "
:
b b b th b kth− − = ⇔ = = −

>B6

:a =
.e
 

: 
x y
+ =
UT66&?)D
 

; g
x y
+ =
U6&?)!&'+
LL8,DU7 !"#L -
3$4$
"R(7WWUNY!K")B!K"=]7
;
;

;

g

g;


aay
ya

=−=⇔
=+



;
;

;
;
g ay
a
y
−±=⇒

=⇒
FG







−−








;
;

#;
;

 aaBaaA






−=

;
;
E

 aAB

  
   ;
; ; ;
 g g g
a a a⇔ − = ⇔ − = ⇔ = − =

;;
±=⇒
a
FG7*189*12*3

;;
#

;;
=

=
xx
/)#56+\0 !18.,!&')R6&?).O

P,P

-b
!&'+;.P,P#-/##!")*!&'+9,N#1!"##[!Qc
!&d 69,\!&')RT 6!"#L  #=9I
3$4$
 7*189**i*j12f6/'!V"#XY# $%1k^7^4#

S12f=
ACAB

Ylm-4'*9*=`&*Ln

=⇒
IA




=
−=
⇔=−⇔=



;
E


m
m
m
m
<9>  :/)#56+8., #=O@@O



)0<#91!&'+


;@.e,ef-/#0 !1!2
3$4$
64Y

#!
; ;

 

"#
7!4"Noo;Y

ABC

Y


K!#4"4Y



K!#4"Y


R(R!V"(/-4*9K!R#4"Y



K!R#4"Y

! " ;

t t
− − −
Y



Y*B?Y

R!V;"*B?R!V"

CM GM
=
uuuur uuuur

Y!VV"*B?Y!V"
<9> :/)#68.,!&')R;.

P,

eV.Pg-/#:91)G9
L C9 :Qc!&d 69,% #_  69,!V


3$4$
!"6/'!"=L-$i*XY∈U⇒!"
p$%*^7^=4!=4*^7"
FG
·

·


E !"
 !"
AMB
AMB

=


=

F9'7*/-
·
AMB
!"⇔
·
AMI
Y



[ 
IA
MI
⇔ =
⇔'YX⇔

g : m m+ = ⇔ = m

!"⇔
·
AMI
YE



[ E
IA
MI⇔ =
⇔'Y
 

X⇔

: 
g

m
+ =
F`*,
FG6*

!

"=

!V

"



!N " ! "  N   
:
, hay : − + − = + − =
/)#56+8.,!&')R;
 
N  N  + − − =
 !"#
O@>6&?)=69,% 7= !"#% 
\!&'+
3$4$
q12f !"

    
  E;
N  N   N  N   N 
 : E
 
+ − − = ⇔ + − − = ⇔ − + =
 ÷
 


!"6/

' 
:
 
 ÷

 
=L-$i*
E;
X
:
=
q12*34=S!V"=4!:"67*189*
N   N 

E  
, hay :
+ +
= =
qRB!"=S12*346()*,*,<

 

N 
;N!N " 
N  N  
N  N  
N   

N 
N 
N   
N 




y =
y =
y =

+
 
− =

+ − − =
+ − − =

 ÷
= =

  
 
⇔ ⇔ ⇔
   +
+

= =
+ 
  




FG6*B!"=C!"
q-^7^!"&=Cc1k*G-=h8


' 
:
 
= −
 ÷
 
uuur
=

'C 
:
 
=
 ÷
 
uur
-
=h87*-7^#KB6-667*189*c1k


!N " ! "  N : : 
:
, hay : − − + − = − + =


!2!&')99,:;
  x y+ + =
6<=
);
 x y+ − =

 >6&?)!&'+
3$4$

( )
   C CD x y C t t∈ + − = ⇒ −


 

 
t t
M
+ −
 
 ÷
 


( )
 
        
 
t t
M BM x y t C
+ −
 
∈ + + = ⇒ + + = ⇔ = − ⇒ −
 ÷
 
 !"#$%

  AK CD x y⊥ + − =
&'!
K BC

"

( ) ( )
     AK x y x y− − − = ⇔ − + =

()'*+*,
( )
 

 
x y
I
x y
+ − =



− + =


-./&0'.

()
( )
K −


12*345#.067*189*

:  : 
  
x y
x y
+
= ⇔ + + =
− +
 !"#$%  !&'(#
)*!&'+,-./#0 !1!2
3$4$
6
( )
 ;AB AB= − ⇒ =
uuur
<*189*
4
  x y+ − =

( ) ( )
 I d y x I t t∈ = ⇒
'=
4>06
( ) ( )
  #   C t t D t t− −

?$*-
>
 :

ABC
S AB CH= =
!@*AB"
:
;
CH⇒ =

CB
( )
( ) ( )
: ;   
 # 
D E : D :
    

; ;
  #  
t C D
t
d C AB CH
t C D

   
= ⇒

 ÷  ÷

= ⇔ = ⇔
   



= ⇒ − −

FG()=>
;   
 # 
   
C D
   
 ÷  ÷
   
*B?
( ) ( )
 #  C D− −
" /)#56+0 !1
Oxy
!&'+
! "d
6&?);
x y− =

!"#
!"M
/#6&?)!&'+

D)G7
A
D!&'
+
! "d

7
B
L  #=
AMB
9I<7
M
3$4$
A
n0
Ox
0
( )
A a
#
B
n012*3
x y− =
0
!  "B b b
#
!"M
!  "# !  "MA a MB b b⇒ = − − = − −
uuur uuur
-4=`/&0
  
! "! " ! " 
 
! "  ! " ! "
a b b
MA MB

MA MB
a b b
− − − − =


=
 

 
=
− + = − + −




uuur uuur
#
KB
b =
$*`*+r=G

  
 

 # 

 # 




! "  ! " ! "
 ! " ! "

b
a b
b
a b
b
b
b
a b b
b b
b


− = ≠



− = ≠

 


 

 
 
− + = − + −
+ = − + −


 ÷


 

 



 # 



:
! " ! "   
! "

a
b
a b
b
b
a
b b
b
b

=




− = ≠



=

 

⇔ ⇔


 
=


 
− + − − =

 
 



  =





FS


a
b
=


=

12*3

5467*189*
 x y+ − =
FS
:

a
b
=


=

12*3

5467*189*
  x y+ − =
<9>$ (2,0 điểm)
/)#56+7!18.,_B6&?)!&'+

;.e,P-6&?)!&'+;.eh,P-!&'+!C9
:/#7!1=!2% _B
3$4$
>B4B4=4>0B&)4*,*,

  
 
;

 :  
; ;
;
x
x y
B
x y
y

=

− + =


 
⇔ ⇒
 
 ÷
− + =
 



=


e&6m-4>*9**s*G06s=4Ln6s4=4>#$i*,
! " ! " !  "
AB BD AC
n n n a b− −
uuur uuur uuur
!với a
2
+ b
2
> 0"c1kF<-12*34#4>#
.*66
( ) ( )
B[ # B[ #
AB BD AC AB
c n n c n n=
uuur uuur uuur uuur
   

   


a b
a b a b a ab b
b
a
= −



⇔ − = + ⇔ + + = ⇔

= −

VFSYVL*(Y

LYV.*6<*189*NooY#
Y4∩0B&)*,*,
  
!"
   
x y x
A
x y y
− − = =
 
⇒ ⇒
 
− + = =
 
R('/*9**s*G*9'Y∩4>0B&)'*,*,

 
 ;


 :  ;
 


x
x y
I
x y
y

=

− − =


 
⇔ ⇒
 
 ÷
− + =
 


=


>B'=4>0B&)
( )
: 
:  
; ;
C D
 

 ÷
 
VFSLYV!B&=9$*`j4>"
 /)#56+7!18., #=!"#@)0<#3
i !2TjT&d#)* !&'+

;.P,Pg-

;.P,eh
->6&?)!&')R<#6.`\!&'+3
3$4$
RZ[\
 
!  " ; !  "  
B B B B C C C C
B x y d x y C x y d x y∈ ⇒ = − − ∈ ⇒ = − +
F9R(/06*,
 E
 
B C
B C
x x
y y
+ + =


+ + =


 -7*189*064!VV:"!;"

6
!:" !: "
BG
BG VTPT n⇒ −
uuur uuur
07*189*4R:NooY
4-$i*XYK!4R"Y
g
;


7*189*12f!No;"

q!o"

Y

;
<9> ;(1,0 điểm) /)#56+0 !1(Oxy)   #=ABC 9I<7A\
( )
A

( )
 G ;
T)0<#/=Q!&')R16 #=ABC.
GIẢI
?4Y
( )

 

 
 
ABC
a
a
BC a S p
+
→ = → = =

( )
     AG AG AM a= − → = → = → =
uuur
( )
  r→ = −


 
ABC
S
a
r
p
→ = =
+

<9>;(1,0 điểm) /)#56+0 !1(Oxy)  #=ABC\
( )
 A ;

6&?) !&')99,%  #=ABCC9  !2B  CTjT&dT

  x y
− + + =

  x y
+ − =
./#0 !1 !"#B  C
3$4$
()(/-4
 
: 

 
 
x y
G
x y
− =

 


 ÷
+ =
 


.e
   
  
   

B C
   
− −
 ÷  ÷
   

R(
( )

  ! "B b b d
− ∈

( )

   ! "C c c d
− ∈

6
; 

 
 

 
b c b
b c c
 
− = =
 
 


 
 
+ = = −
 
 

<9>$!"# /)#56+\0 !1 Oxy !&')R !&')R
 
! "   o   o    #C x y x y+ + =
 
! t"   : o ; C x y x+ + =
 k!C9 M>6&?
)!&'+C9 MD !&')R
! "# ! t"C C
TjT&d7A, B L MA= 2MB.
GIẢI
qR(/=L-$i*!C"#!C"c1kI!"#I!V"=
# t R R= =
#12*3!d"
5M 67*189*

! " ! " # ! "!H"a x b y ax by a a b + = + = +

qR(H, Hc1kAM, BM.
.*66

t t tMA MB IA IH I A I H= =
( ) ( )


! " :ug ! t " vd I d d I d =
#
IA IH
>
( ) ( )



g
: ! t " ! " ; : ;
a b
d I d d I d
a b a b
= =
+ +



E
; E
a b
a b
a b

= =
+
>w*x
b
0*(
E


E
=

=

=

a
b
a

.A$,
IA IH>
y*=B!H"6*12*3*BZr
2)Trong không gian với hệ tọa độ Oxyz cho hai đờng thẳng d và d lần lợt có phơng trình :
d :
z
y
x
=


=


và d :

;





+
==

z
y
x
.
Viết phơng trình mặt phẳng
"!

đi qua d và tạo với d một góc


GII
.Đờng thẳng d đi qua điểm
"!M
và có vectơ chỉ phơng
"!

u
Đờng thẳng d đi qua điểm
";!t

M
và có vectơ chỉ phơng
"!t


u
.
Mp
"!

phải đi qua điểm M và có vectơ pháp tuyến
n
vuông góc với
u



EB["tB[!

==
un
. Bởi
vậy nếu đặt
"! CBAn
=
thì ta phải có :





=
++
+
=+



E



CBA
CBA
CBA






=
+=






+++=
+=

"!E


CACA

CAB
CCAAA
CAB
Ta có
""!!

=+=
CACACACA
. Vậy
CA
=
hoặc
CA
=

.
Nếu
CA
=
,ta có thể chọn A=C=1, khi đó

=
B
, tức là
"!
=
n

"!


mp
có phơng trình
"!
=++
zyx
hay
:
=++
zyx
Nếu
CA
=

ta có thể chọn
#
==
CA
, khi đó

=
B
, tức là
"!
=
n

"!

mp
có phơng

trình
"!
=
zyx
hay

=+
zyx
/)#56+\0 !1Oxyl,TB66&?)69,9% ST6
E;


E
x y
+ =
6 ) TP;y

-x
3$4$
WRZ[\12*3!"6K&AxqByqCY!A

qB

l"
!"^7^!E"A

qEB

YC


!"
!"^7^!P"B

Y:ACB

YAC!"
*^!"=B!"6CY:A*B?CYA
FSCYAAYBY!B&"
FSCY:A⇒


A
B = ±

⇒12*3r*B67*189*
  
:  : 


A
Ax y A x y± + = ⇔ ± + =
FG6*^7^c9
 
: 

x y± + =
 /)0 !1Oxy,  !&')R6&?)
( )
 


 : ; C x y y+ − − =

( )
 

 E  E C x y x y+ − + + =
AB66&?)69,9% 
( )

C

( )

C
3$4$
( ) ( ) ( ) ( )
     
  #    : # C I R C I R= − =
R(^7^*
( ) ( )
 
#C C

( )
 
  Ax By C A B∆ + + = + ≠

^7^*
( ) ( )
 

#C C

( )
( )
( )
( )
 
 
 
 
  


 :  
B C A B
d I R
d I R
A B C A B


+ = +
∆ =
 
⇔ ⇔
 
∆ =
 
− + = +



 !"=!"[
A B=
*B?
 

A B
C
− +
=
Trường hợp 1:
A B=

*(
    ;     ; B A C x y= ⇒ = ⇒ = − ± ⇒ ∆ + − ± =
Trường hợp 2:
 

A B
C
− +
=
*=B!"1k
 
:
       :  g 

A B A B A A B y x y− = + ⇔ = = − ⇒ ∆ + = ∆ − − =
 /)#56+\0 !18.,!&')R6&?);.

P,


eV.Pg-
/#!"#:91)G9L C9 :Qc!&d 69,\#_  6
9,!V


3$4$
F^&7*189*!"K1SK&!No"

q

Y:
 6#!"6/'!"=L-$i*XY
T$*`6*=S12f!"F9=G#5)Lx$90T`$%1k
*^7^!"
Đáp án
z{!"|}*)T
p#$%-^7^=4!"!#4-^7"6
R6s12*3=4LnE


·
·


4 E !"
4  !"

=




=


F9'7*/-
·
4
0

×