Tải bản đầy đủ (.docx) (32 trang)

Bài tập xác xuất thống kê phần 1

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (415.2 KB, 32 trang )

Bài 1.

 !!"#$
% !%!%"&
!%'!
Bài 2.
()*+**, %-.-/%0%12*3%45678*9:-9;%0%
%<%0*%0%4;=>?,-6


%
4
5
@ABCDE)44;=>?FG/%H8*9,I=*%1

B
"&#
%0*/>%H%0%0%-J**K%0%L
MNBOPQR
MNB"OPQS
MNB&OP%QTU
MNB#OMNBOP4QVP5QT$VT$TU
Bài 3
6

=
&W66IAX

=
"#W66IA%Y
6Z[\C%9*,,IAB


\
]


]


^
P]Q

\C%9-9GJ*8_*-J`E
%6a
^


^

^a
P^Q
b1 P1=D4,Q
aC%9)-10%<-9GJ*8_*-JI-9GJ*8_*`b1
1=D4,6
Bài 5
a.
\
%H\

\
"&W6"PQPQ666PQPQP"QWPQWPQPQP"QW6
PQ

b.
c. MN\

]O'MN\c]O
Bài 07.
M0%[?9%HCD=*/d*"
%

e+*>f
y
P=Q%4K
Bài 8
Phác họa hàm phân phối của biến ngẫu nhiên trong bài 3
+ trường hợp 1 với n = 4
%d%0%+, %5d%?9DCDBJ=%0%0*/>"&#IA%0%
0%-J**,g
$


$
"

$
&

$
#

$
&


$
"

$

FI=
QPx
F
y
)*%0%.*h
0%-J*%H*h%0%1C*%i%*j"&#IkI=?9, %0dK*K%0%
L"&#
l:*?9*K?%%HL%d
δ
)*-94,m*%
PYP
F
y
=−≤=− ONQP
δδ
N?J*8_*-JO
$

FI=AK%H?
91*C*A*jD.
$

I
PYPx

F
y
=≤=
ONQP
Nd_%GJ*8_*-JO
$

V
$
"

$
&
@
ONQP
δδ
+≤=+ YP
F
y
MNd_%G-JO
$
&
n,I=?9D*i%D.IE
$
&
*KL6e).=*KL
EMNBO
$
&
'

$


U

7?9%*L, %L4o*5d%*I>




<
=


QP
khix
khix
xu



QPx
F
y

QPx
F
y

$


QPxu
V
$
"
QPxu
V
$
&
QPxu
V
$
#
QPxu
V
$
&
QPxu
V
$
"
QPxu
V
$

QPxu
+ trường hợp với n = 5
,*3,*/,p #
QPx
F

y

&"

QPxu
V
QP
&"
&
QP
&"
"
xuxu +
VWWW6V
&"
$
QPxu
VWW66V
&"

QPxu
V
QP
&"
&
QP
&"
"
xuxu +
Bài 9.

q*g%?9
F
Y
(
y
)
=
{
0n ế u y<0
y
2
nế u 0≤ y ≤1
1n ế u y>1
Bài 10.
Phác hoạ hàm phân phối của biến ngẫu nhiên Z trong ví dụ 5. Chỉ ra dạng của Z
p*/=r\%H)**s*/d)*8*/=r**?*5dt=*?9
uIA*-9
λ
v
F
X
(x)=
{
0,∧x<0
1−e
−λx
,∧x ≥0
M0%dK4K+*>
Bài 11
MP1Q

knkk
n
qpC

1W
t'
@AU
l:*TUctwTU
U
U
U
U
6x$
U
w
6
U

6
yUy6
yU
QUP

=













=== qpCxP
$
w
w
U
6&#&
U
w
6
U

6
yy6w
yU
QwP

=













=== qpCxP

"$
"$"
U
6UU
U
w
6
U

6
y"y6$
yU
Q$P

=













=== qpCxP
&
&
&&
U
6#
U
w
6
U

6
y&y6
yU
QP

=













=== qpCxP

U
w
6
U

6
y#y6#
yU
Q#P
##
###
U
=













=== qpCxP
$
U
w
6
U

6
yy6&
yU
Q&P
&
&
U
=












=== qpCxP
1−e
−λx

x$
U
w
6
U

6
y$y6"
yU
Q"P
$"
$"$
U
=












=== qpCxP
&x
U
w

6
U

6
ywy6
yU
QP
w
ww
U
=












=== qpCxP
&#
U
w
6
U


6
yy6U
yU
QP
U
UU
U
=












=== qpCxP
@AT"ctT"
&
U
UU
U
6x&
"

6

"

6
yy6U
yU
QUPQP

=












===== qpCxPxP
&
w
w
U
6"&
"

6
"


6
ywy6
yU
QwPQP

=












===== qpCxPxP
&
"$
"$"
U
6&wx
"

6
"


6
y$y6"
yU
Q$PQ"P

=












===== qpCxPxP
&
&
&&
U
6w"U
"

6
"

6

yy6&
yU
QPQ&P

=












===== qpCxPxP
&
##
###
U
6#&w"w&
"

6
"

6
y#y6#

yU
Q#P

=












=== qpCxP
e+*>
@AxTctT
#&


6

x
6
yUy6
yU
QUP
U

U
U
=












=== qpCxP
&U&


6

x
6
yy6w
yU
QwP
w
w
U
=













=== qpCxP
#x


6

x
6
y"y6$
yU
Q$P
"$
"$"
U
=













=== qpCxP
&&


6

x
6
y&y6
yU
QP
&
&&
U
=













=== qpCxP
&
##
###
U
6x#


6

x
6
y#y6#
yU
Q#P

=













=== qpCxP
#
&
&
U
6#


6

x
6
yy6&
yU
Q&P

=













=== qpCxP

$"
$"$
U
6"$U"


6

x
6
y$y6"
yU
Q"P

=













=== qpCxP
$
w
ww
U
6w"


6

x
6
ywy6
yU
QP

=













=== qpCxP
U
U
UU
U



6

x
6
yy6U
yU
QP

=













=== qpCxP
e+*>
Bài 12:
@kzCD?9r*/D1d.N'{OD
MNzOMNz'OMNzVO
MNzcOMNbzbOfNO'fNO
'

"


"

MN|z|b

&
OMN

&

bzb

&
OfN

&
O}fN

&


O

#
$
'
"
$
 

&
MN|z|
&
#

OMN'bzb
&
#

OVMN
&
#
bzbO
fN
&
#

O'fN'OVfNO'fN
&
#

O


U
'V'
w
U
 

#
MNzbO
MN

&
bzb

"
OfN

"
O'fN

&
O

&
#
'
#
$



"
Bài 13:
F
X
(
x
)
=
{
1
3
+
2
3
(
x+1
)
2
n ế u−1 ≤ x ≤ 0
0 n ế u x <−1

A=
{
X >
1
3
}
~MN!O


B=
{

X

≥ 1
}
=
{
(
X ≤ 1
)

(
X ≥−1
)
}

~MN•O
X ≤−1 }
¿
{X ≥1
¿
P ¿

F
X
(−1)


1
3

C=
{

X−
1
3

<1
}
=
{
−2
3
< X <
4
3
}
~MNqO
P
[
(
−2
3
;
4
3
)

]

¿ P
[
(
−2
3
; 0
]
]

¿ F
X
(0)−F
X
(
−2
3
)=
16
27

D=
{
X <0
}
~MN€O
−¿
−¿
−1

¿
=
2
3
0
¿
−F
X
¿
P
[
[
−1; 0
)
]
=F
X
¿
Bµi 14:
a. BiÕn ngÉu nhiªn x lµ BNN liªn tôc
( )





>
≤≤−
=



#

#

nn
nF
x
b.
[ ]

"

==






−<
φρρ
X
$

#

"

&


{N
&
 −
=−=






=






<
ρρ
X
[ ]
{ }
[ ]
#

 ==≤
ρρ
X
$

&
{
#


#

=












=






<≤
ρρ
X

{ }
[ ]
$
&

$
&

#


#

=+=+






<≤=






≤≤
ρρρ
XX

[ ]
( )
U
w

"

QP{
"

"

=+






−=+∞+













=






>
XX
FFX
ρρρ
[ ]
 =≥X
ρ
[ ]
( )
[ ] [ ][ ]
( )
( )
#
&
{{ =−+=+=<

Xx
FFX
ρρρ
Bài 15:
P Q

P Q
 P Q
Y
n
y
F y
y y

<

=

− ≥


{ } { }
[ ]
{ }
   " PQ "
Y Y
k P Y P P≤ ≤ ⇔ < ≤ = +

 P"Q P Q  "
k
Y Y
F F

= + − − = −

{ } { }

  P  O
Y
k P k Y k P k k> ⇔ < ≤ + = +

P Q P Q
Y Y
F k F k= + −

 P Q P Q P Q
k k k k
k k k k
− − − −
= − + − − = − +
Bài 17:
•C%9D•=5%?9
QPrF
R





≥−
<



"
"
"

khir
r
e
r
σ

k
MN
σσ
"
≤≤
R
O
N
σσ
"≤≤ R
ON•
σ
O

N
σσ
"≤≤ R
O
MN
σσ
"≤≤ R
O
QP
σ

R
F
'
QP

σ
R
F
V
Q"P
σ
R
F
'
QP
σ
R
F

Q"P
σ
R
F
'
QP

σ
R
F
P'

e
r
""
"T#
σ

Q}P'
e
r
""
"T
σ

Q
ee
""T −−

MN•c
σ
&
O'MN•
σ
&≤
O'
Q&P
σ
F
R
'
e

"Tx−
Bài 18.
lCDuIA*-9
λ
*%*)0%-J*%HC
u



=


QP
x
X
e
xf
λ
λ
C


Cb
@=*%?9u
( ) ( ) ( )
( )
xxt
x
t
x

X
x
XX
x
XX
ee
x
edtedxxfdxxfdxxfdxxfxF
λλλλ
λ
−−−−
∞−∞−
−=−−=−===+==
∫∫∫ ∫∫


QPQP



@=0*/>%H?9, %IC*
( )




=




x
X
e
xF
λ
nC
≥
nCb
@A0*/>4c1=D4,
‚MN
dX ≤
O
d
X
edF
λ

−=QP
MN
( )
dkXkd +≤≤
O
dkkdkddk
XX
eeeekdFdkF
QPQP
QPQPQQPP
+−−−+−
−=−−−=−+
λλλλ

7=MN
( )
dkXkd +≤≤
O
( )
∫∫
+
+−−−−
+
−=
+
−==
dk
kd
dkkdxx
dk
kd
X
ee
kd
dk
edxedxxf
QP
QP
QP
QP
QP
λλλλ
λ
MNlc14O'MNl


14O'f
X
P14Q}P'5
kd
λ

Q5
kd
λ

67;=%G4,%H,p*ƒ*3%*„1d.1%L
%+0%-J*6
MN
( )
dkXkd +≤≤
O
 4 14 P1VQ4
q0%0*/>0%-J**K%0%L1%L%+0%-J*
MNblb4Of
l
P4Q}f
l
PQ
MN4blb14Of
l
P14Q}f
l
P4Q
MN14blbP1VQ4Of

l
P14Q}f
l
PP1VQ4Q
MNlcP1VQ4O}f
l
PP1VQ4Q
Bài 19:
6…4i*‚%J*
P Q fx x dx

−∞
=

(_*10%
P Qfx x dx

−∞



P Qfx x dx
−∞

V


P Qfx x dx

V


P Q fx x dx
+∞
=




−∞

V


P QCx x dx−

V








P QCx x dx− ≤



qP
"

"
x
'
&

&
Q|




qP

"
'
&
#
Q

q$
@=†
x
PQ$P'Q C




 C10%

%67?90%-J*

 Cb
f
x
PQ&
"
}"
&
C




  Cc
6MN

"
b

&
#
Of
x
P
&
#
Q}f
x
P

"

Q
P&P
&
#
Q
"

'"P
&
#
Q
&

Q}N&P

"
Q
"
}"P

"
Q
&
O&#&w
Bài 21.
a.k†

PQ6



PQ
5  
 PV%Q5 }   
P Q5
 
c
a
c
x c x a
a
neu x a
< −



≤ <




− ≤ <




b.kf

PQ
f


PQ
P Q
x
Fx t dt
−∞

 f

PQ
P Q
x
a
c
t c dt
a

+


c
a
P*'%Q
"
x
a−

c
a
NPV%Q
"

}P%'Q
"
O
c
a
PV%Q
"
'
c
a
P%'Q
"
f

PQ
P Q
a
x
a
t c dt
c




a
c

P*'%Q
"


a
x

a
c

NP'%Q
"
'P'%Q
"
O


a
c

P'%Q
"
V
a
c
P'%Q
"

a
c
P'%Q
"
'

a
c
P'%Q
"
@=?9
f

PQ
( ) ( )
( ) ( )
" "
" "
 %  %  5 
'%  5 
c c
a a
a a
a c
c c

+ − − <




− − ≥


c6MN||bO


"
Bài 23
Bài 256
q*g%*)0%-J*
f
Y
(
y
)
=
dF
Y
dy
=2y
→ f
Y
=
{
2yn ế u0 ≤ y ≤1
0 n ế u khác
Bài 26.
qg/E
F
X
(
x

A
)
*d.;*0*‚%J*%H)*?9

i)
0 ≤ F
X
(
x

A
)
≤ 1
j*Dr
A
{ X ≤ x }¿
¿
P¿
F
X
(
x

A
)
=¿
6qG%g
F
X
(
x

A
)

≤1
%
A A=S
!I
A
1s%IAD
A
{X ≤ x}¿
¿
P ¿
¿
A
{X ≤ x}¿
¿
P ¿
¿>¿
j*Drc
P[
{
X ≤x
}
A]
P[ A]
≥ 0
 c
A
{X ≤ x}¿
¿
P ¿
¿

P%Q
ii)
A
{X ≤ x }¿
¿
¿
P[ A]
P ¿
¿
lim
n→ ∞
¿
€d
X ≤ x
D1
x→ ∞
*k
X ≤ ∞
6er=*,,dIAl*d)1
l
A
{X ≤ x}¿
¿
¿
P[ A]
¿
A
S¿
¿
¿

P[ A]
P ¿
P ¿
¿
lim
n→ ∞
¿
iii)
A
{X ≤ x }¿
¿
¿
P[ A]
P ¿
¿
lim
n→−∞
¿
!)*C%9d%DtClI%0*/>A'‡
A
{X ≤ x }¿
¿
¿
P[ A]
P ¿
¿
lim
n→−∞
¿
iv)

A
{X ≤ a }¿
¿
A
{X ≤ b }¿
¿
P ¿
P ¿
¿
@kbD
{X ≤ a}
*%d%H
{X ≤ b}
A
{ X≤a}¿
¿
A
{ X ≤ b }¿
¿
A
{a< X <b }¿
¿
P ¿
P ¿
P ¿
¿
A
{X ≤ a} ¿
¿
A

{a< X <b }¿
¿
A
{X ≤ b} ¿
¿
P ¿
P ¿
P ¿
↔¿
j*Dr
A
{a< X <b }¿
¿
A
{X ≤ a} ¿
¿
A
{X ≤ b} ¿
¿
P ¿
P ¿
P ¿
→¿
v)
+¿
F
X
(
b


A
)
=lim
h → 0
F
X
(
b+h

A
)
=F
X
(
b
¿
A
)
€d
+¿
h →0=¿ b+h → b
¿
vi)
P
[
a< X ≤ b
]
=F
X
(

b

A
)
−F
X
(
a

A
)
{
X ≤ a
}

{
a<X ≤b
}
={X ≤ b}
7C%9FIC*/01s%D*j*Dr&I>v?9P
F
X
(
x
)
=P[ X ≤ x]¿
*%
F
X
(

a

A
)
+P
[
a< X ≤ b
]
=F
X
(
b

A
)

×