Bµi tËp
B¶ng c«ng thøc
( )
0)(x
2
1
'
>=
x
x
( )
'''
'
wvuwvu
−+=−+
( )
) sè lµ h»ng k ( '.
'
ukku
=
( )
uvvuvu '.'..
'
+=
2
'
'.'.
v
uvvu
v
u
−
=
2
'
'1
v
v
v
−
=
⇒
( )
( )
'.
1
'
unuu
n
n
−
=
( )
u
u
u
2
'
'
=
( )
) sè lµ h»ng c ( 0
'
=
c
( )
ccx
=
'
( )
1)n N,n (
1
'
>∈=
−nn
nxx
KiÓm tra bµi cò
C©u hái : Lêi gi¶i sau sai ë ®©u ?
( )
x
xxxx
2
32523
'
2
−−=−+−
( )
x
xxxx
1
32523
'
2
+−=−+−
Bµi 1 : TÝnh ®¹o hµm cña c¸c
hµm sè sau :
( )( )
32
254y ) xxc −−=
4
3
5,0
32
) x
xx
ya
−+=
( )
20
2
3x2x-1y )
+=
b
Gi¶i :
( )
3232
'
4
'
3
'
'
4
3
2
2
1
4.5,0
3
3
2
1
5,0
32
5,0
32
y' )
xxxx
x
xx
x
xx
a
−+=−+=
−
+
=
−+=
Bµi 1 : TÝnh ®¹o hµm cña c¸c
hµm sè sau :
( )( )
32
254y ) xxc −−=
4
3
5,0
32
) x
xx
ya
−+=
( )
20
2
3x2x-1y )
+=
b