Tải bản đầy đủ (.pdf) (6 trang)

A two-dimensional market model

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (126.07 KB, 6 trang )

Chapter 19
A two-dimensional market model
Let
B t=B
1
t;B
2
t; 0  t  T;
be a two-dimensional Brownian motion on
; F ; P
.Let
F t; 0  t  T;
be the filtration generated by
B
.
In what follows, all processes can depend on
t
and
!
, but are adapted to
F t; 0  t  T
.To
simplify notation, we omit the arguments whenever there is no ambiguity.
Stocks:
dS
1
= S
1

1
dt + 


1
dB
1
 ;
dS
2
= S
2


2
dt + 
2
dB
1
+
q
1 , 
2

2
dB
2

:
We assume

1
 0;
2

0;,11:
Note that
dS
1
dS
2
= S
2
1

2
1
dB
1
dB
1
= 
2
1
S
2
1
dt;
dS
2
dS
2
= S
2
2


2

2
2
dB
1
dB
1
+ S
2
2
1 , 
2

2
2
dB
2
dB
2
= 
2
2
S
2
2
dt;
dS
1

dS
2
= S
1

1
S
2

2
dB
1
dB
1
= 
1

2
S
1
S
2
dt:
In other words,

dS
1
S
1
has instantaneous variance


2
1
,

dS
2
S
2
has instantaneous variance

2
2
,

dS
1
S
1
and
dS
2
S
2
have instantaneous covariance

1

2
.

Accumulation factor:
 t = exp

Z
t
0
rdu

:
The market price of risk equations are

1

1
= 
1
, r

2

1
+
q
1 , 
2

2

2
= 

2
, r
(MPR)
203
204
The solution to these equations is

1
=

1
, r

1
;

2
=

1

2
, r , 
2

1
, r

1


2
p
1 , 
2
;
provided
,1 1
.
Suppose
,1 1
. Then (MPR) has a unique solution

1
;
2

;wedefine
Z t = exp

,
Z
t
0

1
dB
1
,
Z
t

0

2
dB
2
,
1
2
Z
t
0

2
1
+ 
2
2
 du

;
f
IP A=
Z
A
ZTdIP; 8A 2F:
f
IP
is the unique risk-neutral measure. Define
e
B

1
t=
Z
t
0

1
du + B
1
t;
e
B
2
t=
Z
t
0

2
du + B
2
t:
Then
dS
1
= S
1
h
rdt+
1

d
e
B
1
i
;
dS
2
= S
2

rdt+
2
d
e
B
1
+
q
1 , 
2

2
d
e
B
2

:
We have changed the mean rates of return of the stock prices, but not the variances and covariances.

19.1 Hedging when
,1 1
dX =
1
dS
1
+
2
dS
2
+ rX , 
1
S
1
, 
2
S
2
 dt
d

X


=
1

dX , rX dt
=
1



1
dS
1
, rS
1
dt+
1


2
dS
2
, rS
2
dt
=
1


1
S
1

1
d
e
B
1

+
1


2
S
2


2
d
e
B
1
+
q
1 , 
2

2
d
e
B
2

:
Let
V
be
F T 

-measurable. Define the
f
IP
-martingale
Y t=
f
IE

V
T




Ft

; 0tT:
CHAPTER 19. A two-dimensional market model
205
The Martingale Representation Corollary implies
Y t=Y0 +
Z
t
0

1
d
e
B
1

+
Z
t
0

2
d
e
B
2
:
We have
d

X


=

1


1
S
1

1
+
1



2
S
2

2

d
e
B
1
+
1


2
S
2
q
1 , 
2

2
d
e
B
2
;
dY = 
1

d
e
B
1
+ 
2
d
e
B
2
:
We solve the equations
1


1
S
1

1
+
1


2
S
2

2
= 

1
1


2
S
2
q
1 , 
2

2
= 
2
for the hedging portfolio

1
; 
2

. With this choice of

1
; 
2

and setting
X 0 = Y 0 =
f
IE

V
 T 
;
we have
X t=Yt; 0t T;
and in particular,
X T = V:
Every
F T 
-measurable random variable can be hedged; the market is complete.
19.2 Hedging when
 =1
The case
 = ,1
is analogous. Assume that
 =1
.Then
dS
1
= S
1

1
dt + 
1
dB
1

dS
2

= S
2

2
dt + 
2
dB
1

The stocks are perfectly correlated.
The market price of risk equations are

1

1
= 
1
, r

2

1
= 
2
, r
(MPR)
The process

2
is free. There are two cases:

206
Case I:

1
,r

1
6=

2
,r

2
:
There is no solution to (MPR), and consequently, there is no risk-neutral
measure. This market admits arbitrage. Indeed
d

X


=
1


1
dS
1
, rS
1

dt+
1


2
dS
2
, rS
2
dt
=
1


1
S
1

1
, r dt + 
1
dB
1
+
1


2
S
2


2
, r dt + 
2
dB
1

Suppose

1
,r

1


2
,r

2
:
Set

1
=
1

1
S
1
; 

2
= ,
1

2
S
2
:
Then
d

X


=
1



1
, r

1
dt + dB
1

,
1




2
, r

2
dt + dB
1

=
1



1
, r

1
,

2
, r

2

| z 
Positive
dt
Case II:

1

,r

1
=

2
,r

2
:
The market price of risk equations

1

1
= 
1
, r

2

1
= 
2
, r
have the solution

1
=


1
, r

1
=

2
, r

2
;

2
is free; there are infinitely many risk-neutral measures. Let
f
IP
be one of them.
Hedging:
d

X


=
1


1
S
1


1
, r dt + 
1
dB
1
+
1


2
S
2

2
, r dt + 
2
dB
1

=
1


1
S
1

1


1
dt + dB
1
+
1


2
S
2

2

1
dt + dB
1

=

1


1
S
1

1
+
1



2
S
2

2

d
e
B
1
:
Notice that
e
B
2
does not appear.
Let
V
be an
F T 
-measurable random variable. If
V
depends on
B
2
, then it can probably not
be hedged. For example, if
V = hS
1

T ;S
2
T;
and

1
or

2
depend on
B
2
, then there is trouble.
CHAPTER 19. A two-dimensional market model
207
More precisely, we define the
f
IP
-martingale
Y t=
f
IE

V
T




Ft


; 0tT:
We can write
Y t=Y0 +
Z
t
0

1
d
e
B
1
+
Z
t
0

2
d
e
B
2
;
so
dY = 
1
d
e
B

1
+ 
2
d
e
B
2
:
To get
d

X


to match
dY
,wemusthave

2
=0:

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×