§Ò Thi thö tèt nghiÖp n¨m 2009
(Thêi gian lµm bµi 150 phót )
I/_ Phần dành cho tất cả thí sinh
Câu I ( 3 điểm) Cho hàm số
( )
1
1
1
x
y
x
+
=
−
có đồ thị là (C)
1) Khảo sát hàm số (1)
2) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua điểm P(3;1).
Câu II ( 3 điểm)
1) Giải bất phương trình:
0139.2
1
≤+−
+
xx
2) Tính tích phân:
1
5 3
0
1I x x dx= −
∫
3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
2
1x x
y
x
+ +
=
với
0x
>
Câu III (1 điểm). Xác định tâm và bán kính mặt cầu ngoại tiếp một hình lăng trụ tam
giác đều có 9 cạnh đều bằng a.
II/_Phần riêng (3 điểm)
Thí sinh chỉ được làm một trong hai phần ( phần 1 hoặc phần 2)
1) Theo chương trình chuẩn
Câu IV. a (2 điểm) Trong không gian cho hệ tọa độ Oxyz, điểm A (1; 1; 1) và hai
đường thẳng (d
1
) và (d
2
) theo thứ tự có phương trình:
−=
−−=
=
tz
ty
tx
d
3...
21
.........
:
1
+=
+=
=
/
/
/
2
2
21:
tz
ty
tx
d
Chứng minh rằng (d
1
), (d
2
) và A cùng thuộc một mặt phẳng.
Câu V. a (1 điểm) Tìm môđun của số phức
( )
2
2 2z i i
= + − −
2) Theo chương nâng cao.
Câu IV. b (2 điểm) Trong không gian cho hệ tọa độ Oxyz, cho mặt phẳng
( ) ( )
µ v
α β
lần lượt có phương trình là:
( ) ( )
: 2 3 1 0; : 5 0x y z x y z
α β
− + + = + − + =
và điểm M (1; 0; 5).
1. Tính khoảng cách từ M đến
( )
α
2. Viết phương trình mặt phẳng đi qua giao tuyến (d) của
( ) ( )
µ v
α β
đồng thời
vuông góc với mặt phẳng (P):
3 1 0x y
− + =
Câu V. b (1 điểm) Viết dạng lượng giác của số phức
1 3z i
= +
ĐỀ 1
ĐỀ 2 §Ò Thi thö tèt nghiÖp n¨m 2009
(Thêi gian lµm bµi 150 phót )
Câu 1 (3 điểm):
1. Khảo sát và vẽ đồ thị (C) của hàm số
3 2
3= − +y x x
(C)
2. Dựa vào đồ thị (C) tìm k để phương trình :
3 2 3 2
3 3 0
− + + − =
x x k k
(1)
có 3 nghiệm phân biệt.
Câu 2 ( 3 điểm)
1. Giải phương trình
2 2
3 3
log log 1 5 0
+ + − =
x x
2. Tính tích phân
2
0
x
1 sin os
2 2
x
c dx
π
+
÷
∫
3. Tìm môđun của số phức
( )
3
1 4 1z i i= + + −
Câu 4 (2,0 điểm)
Một hình trụ có bán kính đáy R = 2 , chiều cao h =
2
. Một hình vuông có các
đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và
không vuông góc với trục của hình trụ . Tính cạnh của hình vuông đó .
Câu 5 (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) :
x 3 y 1 z 3
2 1 1
+ + −
= =
và mặt
phẳng (P) :
x 2y z 5 0+ − + =
.
a. Tìm tọa độ giao điểm của đường thẳng (d) và mặt phẳng (P) .
b. Tính góc giữa đường thẳng (d) và mặt phẳng (P) .
c. Viết phương trình đường thẳng (
∆
) là hình chiếu của đường thẳng (d) lên mặt
phẳng
ĐỀ 3 §Ò Thi thö tèt nghiÖp n¨m 2009
(Thêi gian lµm bµi 150 phót )
Câu 1 (3 điểm):
Câu I ( 3,0 điểm )
Cho hàm số
2x 1
y
x 1
+
=
−
có đồ thị (C)
a. Khảo sát sự biến thiên và vẽ đồ thị (C).
b. Viết phương trình tiếp tuyến với đồ thị (C) đi qua điểm M(1;8) .
Câu 2 ( 3 điểm)
a. Giải bất phương trình
x 1
x 1
x 1
( 2 1) ( 2 1)
−
−
+
+ ≥ −
b. Tính tìch phân : I =
0
sin2x
dx
2
(2 sin x)
/2
+
−π
∫
c. Cho số phức:
( ) ( )
2
1 2 2
= − +
z i i
. Tính giá trị biểu thức
.
=
A z z
.
Câu 3 (2,0 điểm)
Cho hình chóp S,ABC . Gọi M là một điểm thuộc cạnh SA sao cho MS = 2 MA .
Tính tỉ số thể tích của hai khối chóp M.SBC và M.ABC
Câu 4 (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) :
x 1 2t
y 2t
z 1
= +
=
= −
và mặt
phẳng
(P) :
2x y 2z 1 0+ − − =
.
a. Viết phương trình mặt cầu có tâm nằm trên (d) , bán kính bằng 3 và tiếp xúc
với (P) .
b. Viết phương trình đường thẳng (
∆
) qua M(0;1;0) , nằm trong (P) và vuông góc
với
đường thẳng (d) .
Đề thi tốt nghiệp thpt
I. Phần chung cho tất cả thí sinh (7,0 điểm)
Câu I.( 3,0 điểm)
Cho hàm số
3 2
1 2
3 3
y x mx x m= + +
( )
m
C
1. Khảo sát sự biến thiên và vẽ đồ thị ( C) của hàm số khi m =0.
2.Tìm điểm cố định của đồ thị hàm số
( )
m
C
.
Câu II.(3,0 điểm)
1.Tìm giá trị lớn nhất và nhỏ nhất của hàm số
4 2
8 16y x x= +
trên đoạn [ -1;3].
2.Tính tích phân
7
3
3 2
0
1
x
I dx
x
=
+
3. Giải bất phơng trình
0,5
2 1
2
5
log
x
x
+
+
Câu III.(1,0 điểm)
Cho tứ diện S.ABC có SA vuông góc với mặt phẳng (ABC), SA = a; AB = AC= b,
ã
60BAC
=
. Xác định tâm và bán hình cầu ngoại tiếp tứ diện S.ABC.
II.Phần riêng(3,0 điểm)
Thí sinh học chơng trình nào thì chỉ đợc làm phần dành riêng cho chơng trình đó.
1. Theo chơng trình Chuẩn:
Câu IV.a(2,0 điểm) Trong không gian với hệ toạ độ Oxyz:
a)Lập phơng trình mặt cầu có tâm I(-2;1;1) và tiếp xúc với mặt phẳng
2 2 5 0x y z+ + =
b) Tính khoảng cách giữa hai mặt phẳng:
( ) : 4 2 12 0
( ) :8 4 2 1 0
x y z
x y z
+ =
=
Câu V.a(1,0 điểm)
Giải phơng trình :
4 2
3 4 7 0z z+ =
trên tập số phức.
2.Theo chơng trình nâng cao.
Câu IV.b(2,0 điểm)
Trong không gian với hệ toạ độ Oxyz,
cho đờng thẳng d có phơngtrình:
1 1
2 1 2
x y z +
= =
và hai mặt phẳng
( ) : 2 5 0
( ) : 2 2 0
x y z
x y z
+ + =
+ + =
Lập phơng trình mặt cầu tâm I thuộc đờng thẳng d và tiếp xúc với cả hai mặt
phẳng
( ) ( )
,
.
Câu V.b(1 điểm)Tính diện tích hình phẳng giới hạn bởi đồ hị các hàm số
, 2 , 0y x y x y= = =
..........Hết............
4
Đề thi tốt nghiệp thpt
I. Phần chung cho tất cả thí sinh (7,0 điểm)
Câu I.( 3,0 điểm)
Cho hàm số
3
2y x mx m= +
, với m là tham số
1. Khảo sát sự biến thiên và vẽ đồ thị ( C) của hàm số khi m =3.
2.Dựa vào đồ thị (C) biện luạn theo k số nghiệm cảu phơng trình
3
3 1 0x x k + =
Câu II.(3,0 điểm)
1.Tính tích phân
1
2
0
3 2
dx
I
x x
=
+ +
2. Giải phơng trình
25 26.5 25 0
x x
+ =
3.Tìm giá trị lớn nhất và nhỏ nhất của hàm số
3
3 3y x x= +
trên đoạn [ 0;2].
Câu III.(1,0 điểm)
Cho khối chóp tam giác đều S.ABC có đáy là tam giác đều cạnh bằng a, các cạnh
bên tạo với đáy một góc
60
. Hãy tính thể tích khối chóp đó.
II.Phần riêng(3,0 điểm)
Thí sinh học chơng trình nào thì chỉ đợc làm phần dành riêng cho chơng trình đó.
1. Theo chơng trình Chuẩn:
Câu IV.a(2,0 điểm)
Trong không gian với hệ toạ độ Oxyz, cho các điểm:
A(3;-2;-2) ; B(3;2;0) ; C(0;2;1); D(-1;1;2)
1. Viết phơng trình mặt phẳng (BCD).
2.Viết phơng trình mặt cầu tâm A, tiếp xúc với mặt phẳng (BCD)
Câu V.a(1,0 điểm)
Tìm số phức z biết
2 5z =
và phần ảo của z bằng 2 lần phần thực của
nó.
2.Theo chơng trình nâng cao.
Câu IV.b(2,0 điểm)
Trong không gian Oxyz, cho A(1;0;0), B(0;1;0), C(0;0;1), D(-2;1;-1)
1. Viết phơng trình mặt phẳng (BCD). Chứng minh rằng ABCD là hình
tứ diện
2. Viết phơng trình mặt cầu (S) tâm A và tiếp xúc với mặt phẳng (BCD)
Câu V.b(1 điểm)
Viết dạng lợng giác của số phức
1 3z i= +
5
Đề thi tốt nghiệp thpt
I. Phần chung cho tất cả thí sinh (7,0 điểm)
Câu I.( 3,0 điểm)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
2
3
x
y
x
+
=
2.Tìm trên đồ thị điểm M sao cho khoảng cách từ M đến đờng tiệm cận đứng bằng
khoảng cách từ M đến tiệm cận ngang.
Câu II.(3,0 điểm)
1. Giải phơng trình
2 1
3 .5 7 245
x x x
=
.
2.Tính tích phân a)
1
1 ln
e
x
I dx
x
+
=
b)
2
0
1 2J cos xdx
=
Câu III.(1,0 điểm)
Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh là
4
.
1.Tính diện tích toàn phần của hình trụ.
2. Tính thể tích của khối trụ.
II.Phần riêng(3,0 điểm)
Thí sinh học chơng trình nào thì chỉ đợc làm phần dành riêng cho chơng trình đó.
1. Theo chơng trình Chuẩn:
Câu IV.a(2,0 điểm) Trong không gian với hệ toạ độ Oxyz:
cho A(1;0;0), B(1;1;1),
1 1 1
; ;
3 3 3
C
ữ
a)Viết phơng trình tổng quát của mặt phẳng
( )
đi qua O và vuông góc với OC.
b) Viết phơng trình mặt phẳng
( )
chứa AB và vuông góc với
( )
Câu V.a(1,0 điểm)
Tìm nghiệm phức của phơng trình
2 2 4z z i+ =
2.Theo chơng trình nâng cao.
Câu IV.b(2,0 điểm)
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng
( )
: y+2z= 0 và 2 đ-
ờng
1.Tìm toạ độ giao điểm A của đờng thẳng d với mp
( )
và giao điểm B
của đờng thẳng d' với
( )
.
2. Viết phơng trình tham số của đờng thẳng
nằm trong mp
( )
và cắt cả 2
đờng thẳng d và d'.
Câu V.b(1 điểm) Tìm căn bậc hai của số phức
1 4 3i+
6
7 Đề thi tốt nghiệp thpt
Môn Toán
Thời gian: 150 phút
I. Phần chung cho tất cả thí sinh (7,0 điểm)
Câu I.( 3,0 điểm)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
2
3
x
y
x
+
=
2.Tìm trên đồ thị điểm M sao cho khoảng cách từ M đến đờng tiệm cận đứng bằng
khoảng cách từ M đến tiệm cận ngang.
Câu II.(3,0 điểm)
1. Giải phơng trình
2 1
3 .5 7 245
x x x
=
.
2.Tính tích phân a)
1
1 ln
e
x
I dx
x
+
=
b)
2
0
1 2J cos xdx
=
Câu III.(1,0 điểm)
Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh là
4
.
1.Tính diện tích toàn phần của hình trụ.
2. Tính thể tích của khối trụ.
II.Phần riêng(3,0 điểm)
Thí sinh học chơng trình nào thì chỉ đợc làm phần dành riêng cho chơng trình đó.
1. Theo chơng trình Chuẩn:
Câu IV.a(2,0 điểm) Trong không gian với hệ toạ độ Oxyz:
cho A(1;0;0), B(1;1;1),
1 1 1
; ;
3 3 3
C
ữ
a)Viết phơng trình tổng quát của mặt phẳng
( )
đi qua O và vuông góc với OC.
b) Viết phơng trình mặt phẳng
( )
chứa AB và vuông góc với
( )
Câu V.a(1,0 điểm)
Tìm nghiệm phức của phơng trình
2 2 4z z i+ =
2.Theo chơng trình nâng cao.
Câu IV.b(2,0 điểm)
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng
( )
: y+2z= 0 và 2 đ-
ờng
1.Tìm toạ độ giao điểm A của đờng thẳng d với mp
( )
và giao điểm B
của đờng thẳng d' với
( )
.
2. Viết phơng trình tham số của đờng thẳng
nằm trong mp
( )
và cắt cả 2
đờng thẳng d và d'.
Câu V.b(1 điểm) Tìm căn bậc hai của số phức
1 4 3i+
8 Đề thi tốt nghiệp thpt
Môn Toán
Thời gian: 150 phút
I. Phần chung cho tất cả thí sinh (7,0 điểm)
Câu I.( 3,0 điểm)
Cho hàm số
3
2y x mx m= +
, với m là tham số
1. Khảo sát sự biến thiên và vẽ đồ thị ( C) của hàm số khi m =3.
2.Dựa vào đồ thị (C) biện luạn theo k số nghiệm cảu phơng trình
3
3 1 0x x k + =
Câu II.(3,0 điểm)
1.Tính tích phân
1
2
0
3 2
dx
I
x x
=
+ +
2. Giải phơng trình
25 26.5 25 0
x x
+ =
3.Tìm giá trị lớn nhất và nhỏ nhất của hàm số
3
3 3y x x= +
trên đoạn [ 0;2].
Câu III.(1,0 điểm)
Cho khối chóp tam giác đều S.ABC có đáy là tam giác đều cạnh bằng a, các cạnh
bên tạo với đáy một góc
60
. Hãy tính thể tích khối chóp đó.
II.Phần riêng(3,0 điểm)
Thí sinh học chơng trình nào thì chỉ đợc làm phần dành riêng cho chơng trình đó.
1. Theo chơng trình Chuẩn:
Câu IV.a(2,0 điểm)
Trong không gian với hệ toạ độ Oxyz, cho các điểm:
A(3;-2;-2) ; B(3;2;0) ; C(0;2;1); D(-1;1;2)
1. Viết phơng trình mặt phẳng (BCD).
2.Viết phơng trình mặt cầu tâm A, tiếp xúc với mặt phẳng (BCD)
Câu V.a(1,0 điểm)
Tìm số phức z biết
2 5z =
và phần ảo của z bằng 2 lần phần thực của
nó.
2.Theo chơng trình nâng cao.
Câu IV.b(2,0 điểm)
Trong không gian Oxyz, cho A(1;0;0), B(0;1;0), C(0;0;1), D(-2;1;-1)
1. Viết phơng trình mặt phẳng (BCD). Chứng minh rằng ABCD là hình
tứ diện
2. Viết phơng trình mặt cầu (S) tâm A và tiếp xúc với mặt phẳng (BCD)
Câu V.b(1 điểm)
Viết dạng lợng giác của số phức
1 3z i= +
9 Đề thi tốt nghiệp thpt
M«n To¸n
Thêi gian: 150 phót
I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu 1 (4,0 điểm):
4. Khảo sát và vẽ đồ thị (C) của hàm số
3 2
3y x x= −
5. Dựa vào đồ thị (C) biện luận theo m số nghiệm của phương trình
3 2
3 0x x m
− + =
6. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) và trục hoành.
Câu 2 ( 2,0 điểm)
1. Giải phương trình:
2
3 5.3 6 0
x x
− + =
2. Giải phương trình:
2
4 7 0x x
− + =
Câu 3 (2,0 điểm)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SB vuông góc
với đáy, cạnh bên SC bằng
3a
.
1. Tính thể tích của khối chóp S.ABCD.
2. Chứng minh trung điểm của cạnh SD là tâm mặt cầu ngoại tiếp hình chóp
S.ABCD.
II. PHẦN DÀNH CHO TỪNG THÍ SINH
A. Dành cho thí sinh Ban cơ bản:
Câu 4 (2,0 điểm)
1.Tính tích phân:
1
0
( 1).
x
I x e dx
= +
∫
2. Trong không gian với hệ tọa độ Oxyz cho ba điểm A(5;0;4), B(5;1;3), C(1;6;2),
D(4;0;6)
a. Viết phương trình tham số của đường thẳng AB
b. Viết phương trình mặt phẳng
( )
α
đi qua điểm D và song song với mặt
phẳng (ABC).
B. Dành cho thí sinh Ban nâng cao
Câu 5 (2,0 điểm)
1. Tính tích phân:
2
32 3
1
1I x x dx
= +
∫
2. Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;3) và mặt phẳng (P)
có phương trình: x - 2y + z + 3 = 0
a. Viết phương trình mặt phẳng (Q) đi qua điểm M và song song với mặt phẳng
(P).
b. Viết phương trình tham số của đường thẳng (d) đi qua điểm M và vuông góc với
mặt phẳng (P). Tìm tọa độ giao điểm H của đường thẳng (d) với mặt phẳng (P)
………Hết………
ĐỀ 10 ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM 2009
I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu 1 (3,5 điểm):
7. Khảo sát và vẽ đồ thị (C) của hàm số
4 2
2 3y x x= − +
8. Viết phương trình tiếp tuyến với đồ thị (C) tại điểm cực đại của (C).
Câu 2 ( 2,0 điểm)
3. Giải phương trình:
4 2
log log (4 ) 5x x
+ =
4. Giải phương trình:
2
4 5 0x x
− + =
Câu 3 (2,0 điểm)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại đỉnh B, cạnh bên SA vuông
góc với đáy, biết SA = AB = BC = a. Tính thể tích của khối chóp S.ABC.
II. PHẦN DÀNH CHO TỪNG THÍ SINH
A. Dành cho thí sinh Ban cơ bản:
Câu 4A (2,5 điểm)
1.Tính tích phân:
2
1
.lnI x xdx
=
∫
2. Trong không gian với hệ tọa độ Oxyz cho điểm A(1;2;-3) và mặt phẳng (P) có
phương trình: 3 x + y + 2z - 1 = 0
a. Viết phương trình mặt phẳng
( )
α
đi qua điểm A và song song với mặt phẳng
(P).
b. Viết phương trình mặt cầu (S) có tâm là A và tiếp xúc với mặt phẳng (P).
B. Dành cho thí sinh Ban nâng cao
Câu 4B (2,5 điểm)
3. Tính tích phân:
2
2
0
1
(sinx+cosx)
I dx
π
=
∫
4. Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng
∆
và
'
∆
có
phương trình lần lượt là:
1
: 2
2 2
x t
y t
z t
= +
∆ = +
= − −
'
' '
2
: 1
1
x t
y t
z
= +
∆ = −
=
a. Chứng tỏ hai đường thẳng
∆
và
'
∆
chéo nhau.
b. Viết phương trình đường vuông góc chung của
∆
và
'
∆
.
ĐỀ THI TỐT NGHIỆP TRUNG HOC PHỔ THÔNG
năm : 2008-2009
Môn thi :TOÁN
Thời gian làm bài :150 phút,
(không kể thời gian giao đề)
Câu 1: (3,5 điểm)
1. Khảo sát và vẽ đồ thị (C) của hàm số :
x
x
y
+
−
=
1
1
2. Viết pương trình tiếp tuyến của đồ thị (C).Biết tiếp tuyến đó qua điểm M(1;2)
3. Tính diện tích hình phẳng giới hạn bởi trục tung,truc hoành và đồ thị (C)
Câu 2: (1,5 điểm)
1. Tính tích phân :
( )
xdxxxI sincos
4
0
3
∫
+=
π
2 .Tìm giái trị lớn nhất giá trị nhỏ nhất của hàm số sau trên đoạn
[ ]
π
;0
:
xxy
2
sin
2
1
sin
−=
Câu 3: (3 điểm) : Trong không gian (oxyz) cho mặt cầu (s) có phương trình:
03422
222
=−++−++
zyxzyx
Và 2 đường thẳng:
1
d
:
tz
ty
tx
−=
=
−=
1
và
2
d
:
tz
ty
tx
′
=
′
+−=
′
=
1
2
a.) Chứng minh rằng :
1
d
và
2
d
chéo nhau
b.) Viết phương trình mặt phẳng (β) chứa
1
d
và song song với
2
d
c.) Viết phương trình tiếp diện của mặt cầu (S) biết tiếp diện đó song song với 2
đường thẳng
1
d
và
2
d
Câu 4: (1 điểm)
Giải phương trình:
032)32(
2
=+−−
ixix
Câu 5: (1 điểm)
Chứng minh rằng:
1321
2....
−
=++++
nn
nnnn
nCCCC
ĐỀ THI TỐT NGHIỆP TRUNG HOC PHỔ THÔNG
năm : 2008-2009
Môn thi :TOÁN
ĐỀ 11
ĐỀ 12
Thời gian làm bài :150 phút,
(không kể thời gian giao đề)
Câu 1: (3,5 điểm)
1. Khảo sát và vẽ đồ thị (C) của hàm số :
xxxy 159
23
+−=
2. Viết pương trình tiếp tuyến tại điểm A(1;7) của đồ thị (C)
3. Với giá trị nào của tham số m đường thẳng
mmxy 13
2
−+=
đi qua trung
điểm của đoạn thẳng nối 2 điểm cực đại và cực tiểu của đồ thị (C)
Câu 2: (1,5 điểm)
1. Tính diện tích và thể tích hình phẳng giới hạn bởi đồ thị hàm số:
x
ey
=
,
1
=
y
và đường thẳng :
1
=
x
2. Tính tích phân :
∫
+
=
1
0
2
1
dx
x
x
I
Câu 3: (3 điểm) : Trong không gian (oxyz) cho ba điểm
( )
1;0;1
−
A
,
( )
1;2;1B
( )
1;1;0C
. Gọi G là trọng tâm của tam giác ABC
a.) Viết phương trình đường thẳng OG
b.) Viết phương trình mặt cầu (S) đi qua 4 điểm O,A,B,C
c.) Viết phương trình mặt phẳng vuông góc với đường thẳng OG và tiếp xúc với
mặt cầu (S)
Câu 4: (1 điểm)
Giải phương trình:
054
2
=++
xx
Câu 5: Xác định hằng số trong khai triển niutơn sau:
20
3
2
1
3
−
x
x
..……..Hết………..
ĐỀ LUYỆN THI TỐT NGHIỆP THPT
Môn : Toán THPT – Năm học: 2008 – 2009
Thời gian : 150 phút ( không kể thời gian giao đề)
----------------------------------
I. PHẦN CHUNG DÀNH CHO CẢ HAI BAN (8 điểm)
Câu 1 (3,5 điểm) Cho hàm số
3 2
3 1y x x= − + +
có đồ thị (C)
c. Khảo sát và vẽ đồ thị (C).
d. Viết phương trình tiếp tuyến của đồ thị (C) tại A(3;1).
e. Dùng đồ thị (C) định k để phương trình sau có đúng 3 nghiệm phân biệt
3 2
3 0x x k− + =
.
Câu 2 (1,5 điểm)
ĐỀ 13
Giải phương trình sau :
2 2
2 2 2
log ( 1) 3log ( 1) log 32 0x x
+ − + + =
.
Câu 3 (1 điểm)
Giải phương trình sau trên tập hợp số phức:
2
2 17 0z z
+ + =
Câu 4 (2 điểm )
Cho hình chóp tứ giác đều S.ABCD và O là tâm của đáy ABCD. Gọi I là trung điểm
cạnh đáy CD.
a. Chứng minh rằng CD vuông góc với mặt phẳng (SIO).
b. Giả sử SO = h và mặt bên tạo với đáy của hình chóp một góc
α
. Tính theo h
và
α
thể tích của hình chóp S.ABCD.
II. PHẦN DÀNH CHO HỌC SINH TỪNG BAN (2 điểm)
A. Thí sinh ban KHTN chọn câu 5a hoặc 5b
Câu 5a (2 điểm)
1/Tính tích phân sau :
2
3
0
(1 2sin ) cosx xdx
I
π
+
=
∫
.
2/Giải phương trình sau :
1
4 2.2 3 0
x x
+
− + =
Câu 5b (2 điểm)
Trong không gian với hệ trục Oxyz, cho A(1;0;0), B(0;2;0), C(0;0;4)
1) Viết phương trình mặt phẳng
α
qua ba điểm A, B, C. Chứng tỏ OABC là tứ
diện.
2) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện OABC.
B. Thí sinh ban KHXH-NV và ban CB chọn câu 6a hoặc 6b
Câu 6a (2 điểm)
1/Tính tích phân sau :
2
0
(1 sin )cosx xdx
I
π
+
=
∫
2/
Giải phương trình sau :
4 5.2 4 0
x x
+ =
−
Câu 6b (2 điểm)
Trong không gian với hệ trục Oxyz, cho A(1;2;3) và đường thẳng d có phương
trình
1 1 1
2 1 2
x y z− + −
= =
.
1) Viết phương trình mặt phẳng
α
qua A và vuông góc d.
2) Tìm tọa độ giao điểm của d và mặt phẳng
α
.
Đề số 14 ĐỀ LUYỆN THI TỐT NGHIỆP THPT
Môn : Toán THPT – Năm học: 2008 – 2009
Thời gian : 150 phút ( không kể thời gian giao đề)
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(4 điểm).
Cho hàm số : y = – x
3
+ 3mx – m có đồ thị là ( C
m
) .
1.Tìm m để hàm số đạt cực tiểu tại x = – 1.
2.Khảo sát hàm số ( C
1
) ứng với m = – 1 .
Câu 2(2 điểm).
1.Tính tích phân
4
0
t anx
cos
π
=
∫
I dx
x
.
2. Giải phương trình
2
4 7 0
− + =
x x
trên tập số phức .
Câu 3 ( 1 điểm ) Một hình nón có đỉnh S , khoảng cách từ tâm O của đáy đến dây
cung AB của đáy bằng a ,
·
30SAO =
o
,
·
60SAB =
o
. Tính độ dài đường sinh theo a .
II . PHẦN RIÊNG ( 3 điểm ).
1.Theo chương trình chuẩn :
Câu 4.a ( 2 điểm ).
Cho D(-3;1;2) và mặt phẳng (
α
) qua ba điểm A(1;0;11), B(0;1;10), C(1;1;8).
1.Viết phương trình tổng quát của mặt phẳng (
α
)
2.Viết phương trình mặt cầu tâm D bán kính R= 5.Chứng minh mặt cầu này cắt (
α
)
Câu 4.b ( 1 điểm )
Xác định tập hợp các điểm biểu diển số phức Z trên mặt phẳng tọa độ thỏa mãn điều
kiện :
3 4+ + =Z Z
2.Theo chương trình nâng cao :
Câu 4.a ( 2 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng
(d ) :
2 4 .
3 2 .
4 .
x t
y t
z t
= +
= +
= − +
và mặt phẳng (P) :
2 7 0x y z
− + + + =
a. Chứng minh rằng (d) nằm trên mặt phẳng (P) .
b. Viết phương trình đường thẳng (
∆
) nằm trong (P), song song với (d) và cách (d)
một khoảng là
14
.
Câu 4.b ( 1 điểm ) :
Tìm căn bậc hai của số phức
4
= −
z i
Đề số 15 ĐỀ LUYỆN THI TỐT NGHIỆP THPT
Môn : Toán THPT – Năm học: 2008 – 2009
Thời gian : 150 phút ( không kể thời gian giao đề
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(4 điểm).
Cho hàm số y = x
3
+ 3x
2
+ mx + m – 2 . m là tham số
1.Tìm m để hàm số có cực đại và cực tiểu.
2.Khảo sát và vẽ đồ thị hàm số khi m = 3.
Câu 2(2 điểm).
1.Tính tích phân : I =
1
0
(3 cos2 )+
∫
x
x dx
.
2. Giải bất phương trình :
log ( 3) log ( 2) 1
2 2
− + − ≤x x
.
Câu 3(1 điểm). Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a, góc
giữa mặt bên và mặt đáy bằng 60
0
. Tính thể tích của khối chóp SABCD theo
a.
II . PHẦN RIÊNG ( 3 điểm ).
1.Theo chương trình chuẩn :
Câu 4.a ( 2 điểm ).
Trong khơng gian với hệ tọa độ Oxyz , cho hai đường thẳng
1
1 2
( ) :
2 2 1
− −
∆ = =
− −
x y z
,
( )
2 .
2 5 3 .
4.
x t
y t
z
= −
∆ = − +
=
a. Chứng minh rằng đường thẳng
1
( )∆
và đường thẳng
2
( )∆
chéo nhau .
b. Viết phương trình mặt phẳng ( P ) chứa đường thẳng
1
( )∆
và song song với
đường thẳng
2
( )∆
.
Câu 4.b ( 1 điểm ):
Giải phương trình
3
8 0
+ =
x
trên tập số phức .
2.Theo chương trình nâng cao :
Câu 4.a ( 2 điểm ) :
Trong khơng gian với hệ tọa độ Oxyz cho điểm M(2;3;0) , mặt phẳng (P ) :
2 1 0+ + + =x y z
và mặt cầu (S) :
2 2 2
2 4 6 8 0+ + − + − + =x y z x y z
.
a. Tìm điểm N là hình chiếu của điểm M lên mặt phẳng (P) .
b. Viết phương trình mặt phẳng (Q) song song với (P) và tiếp xúc với mặt cầu (S)
Câu 4.b ( 1 điểm ) :
Biểu diễn số phức z =
1
−
+ i dưới dạng lượng giác .
Đề số 16
ĐỀ LUYỆN THI TỐT NGHIỆP THPT
Mơn : Tốn THPT – Năm học: 2008 – 2009
Thời gian : 150 phút ( khơng kể thời gian giao đề
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(4 điểm).
Cho hàn số y = x
3
+ 3x
2
+ 1.
1).Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số .
2).Dựa vào đồ thị (C), biện luận số nghiệm của phương trình sau theo m :
x
3
+ 3x
2
+ 1 =
2
m
.
Câu 2(2 điểm).
1. Tính tích phân :
1
2
3
0
2
=
+
∫
x
I dx
x
.
2. Giải phương trình :
2 2
log ( 3) log ( 1) 3− + − =x x
.
Câu 3(1 điểm). Cho hình nón có bán kính đáy là R,đỉnh S .Góc tạo bởi đường cao
và đường sinh là 60
0
.
Tính diện tích xung quanh của mặt nón và thể tích của khối nón.
II . PHẦN RIÊNG ( 3 điểm ).
1.Theo chương trình chuẩn :
Câu 4.a ( 2 điểm ).
Trong khơng gian Oxyz cho 2 điểm A(5;-6;1) và B(1;0;-5)
1. Viết phương trình chính tắc của đường thẳng (
∆
) qua B có véctơ chỉ phương
r
u
(3;1;2). Tính cosin góc giữa hai đường thẳng AB và (
∆
)
2. Viết phương trình mặt phẳng (P) qua A và chứa (
∆
)
Câu 4.b(1điểm) .Tính thể tìch các hình tròn xoay do các hình phẳng giới hạn bởi
các đường sau đây quay quanh trục Ox : y = - x
2
+ 2x và y = 0.
2.Theo chương trình nâng cao :
Câu 4.a ( 2 điểm ) :
Trong khơng gian với hệ tọa độ Oxyz cho điểm M(1;
−
1;1) , hai đường thẳng
1
1
( ) :
1 1 4
−
∆ = =
−
x y z
,
( )
2 .
2 4 .
1.
x t
y t
z
= −
∆ = +
=
và mặt phẳng (P) :
2 0
+ =
y z
a. Tìm điểm N là hình chiếu vng góc của điểm M lên đường thẳng (
2
∆
) .
b. Viết phương trình đường thẳng cắt cả hai đường thẳng
1 2
( ) ,( )∆ ∆
và nằm trong
mặt phẳng (P) .
Câu 4.b ( 1 điểm ) :
Tìm m để đồ thị của hàm số
2
( ) :
1
− +
=
−
m
x x m
C y
x
với
0≠m
cắt trục hồnh tại hai điểm
phân biệt A,B sao cho tiếp tuyến với đồ thị tại hai điểm A,B vng góc nhau .
Đề số 17 :
ĐỀ LUYỆN THI TỐT NGHIỆP THPT
Mơn : Tốn THPT – Năm học: 2008 – 2009
Thời gian : 150 phút ( khơng kể thời gian giao đề
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ).
Câu 1(4 điểm).
Cho hàm số
3
3= − +y x x
có đồ thị (C)
1. Khảo sát và vẽ đồ thị (C)
2. Viết phương trình tiếp tuyến của (C) vng góc với đường thẳng (d) x-9y+3=0
Câu 2(2 điểm).
1. Tính tích phân : I =
2
0
(2 1).cos
π
−
∫
x xdx
.
2.Giải phương trình :
2 2
2 9.2 2 0
+
− + =
x x
.
Caâu 3(1 điểm). Cho hình vuông ABCD cạnh a.SA vuông góc với mặt phẳng
ABCD,SA= 2a.
Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABCD.
II . PHẦN RIÊNG ( 3 điểm ).
1.Theo chương trình chuẩn :
Câu 4.a ( 2 điểm ).
Trong không gian Oxyz cho đường thẳng
1 3 2
:
1 2 2
+ + +
= =
x y z
d
và
điểm A(3;2;0)
1.Tìm tọa độ hình chiếu vuông góc H của A lên d
2.Tìm tọa độ điểm B đối xứng với A qua đường thẳng d.
Câu 4.b(1điểm). Cho số phức:
( ) ( )
2
1 2 2= − +z i i
. Tính giá trị biểu thức
.=A z z
.
2.Theo chương trình nâng cao :
Câu 4.a ( 2 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (
α
) :
2 2 3 0− + − =x y z
và
hai đường thẳng (
1
d
) :
4 1
2 2 1
− −
= =
−
x y z
, (
2
d
) :
3 5 7
2 3 2
+ + −
= =
−
x y z
.
a. Chứng tỏ đường thẳng (
1
d
) song song mặt phẳng (
α
) và (
2
d
) cắt mặt phẳng (
α
) .
b. Tính khoảng cách giữa đường thẳng (
1
d
) và (
2
d
).
c. Viết phương trình đường thẳng (
∆
) song song với mặt phẳng (
α
) , cắt đường
thẳng (
1
d
) và (
2
d
) lần lượt tại M và N sao cho MN = 3 .
Câu 4.b ( 1 điểm ) :
Tìm nghiệm của phương trình
2
=z z
, trong đó
z
là số phức liên hợp của số phức z .
§Ò sè 18
ĐỀ LUYỆN THI TỐT NGHIỆP THPT
Môn : Toán THPT – Năm học: 2008 – 2009
Thời gian : 150 phút ( không kể thời gian giao đề
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
C©u 1 ( 3 đ i ể m )
Cho h m sà ố y =
4 2
-x + 2x + 3 (C)
1. Khảo s¸t v và ẽ đồ thị h m sà ố (C)
2. T×m m để Ph¬ng tr×nh
4 2
- 2 0 x x m+ =
cã 4 nghiÖm ph©n biÖt.
C©u 2 ( 3 đ i ể m )
1. TÝnh tÝch ph©n I =
xdxx .2
2
0
2
∫
+
2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
y =
3 2
2x 3x 12x 2
+ +
trờn
[ 1; 2]
.
3. Giải phơng trình:
122
22
1
=
+
xxxx
Câu 3 ( 1 i m )
Cho khối chóp đều S.ABCD có AB = a, (a > 0 ). Góc giữa mặt bên và mặt đáy bằng
60
0
. Tính thể tích của của khối chóp S.ABCD theo a.
II. Phần riêng (3 điểm)
1. Theo chơng trình Chuẩn:
Câu 4. a ( 2 điểm)
Trong không gian với hệ toạ độ Oxyz cho A(3 ; -2; -2) , B( 3; 2; 0 ), C(0 ; 2 ;1) và
D( -1; 1; 2).
1. Viết phơng trình mặt phẳng qua B, C, D. Suy ra ABCD là tứ diện
2. Viết phơng trình mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD).
Câu 4. b (1 điểm )
Tìm môđun của số phức z = 3 + 4i + (1 +i)
3
2. Theo chơng trình nâng cao:
Câu 4. a ( 2 điểm)
Trong không gian với hệ toạ độ Oxyz cho A(3 ; 5; -5) , B( -5; -3; 7 ) và đờng thẳng
d:
1 3
1 2 4
x y z+ -
= =
-
.
1. Viết phơng trình mặt phẳng qua đờng thẳng d và song song với đờng thẳng
AB.
2. Viết phơng trình mặt cầu tâm A và tiếp xúc với đờng thẳng d.
Câu 4. b (1,0 điểm )
Giải phơng trình trên tập số phức z
2
4z +7 = 0
Đề số 19
LUYN THI TT NGHIP THPT
Mụn : Toỏn THPT Nm hc: 2008 2009
Thi gian : 150 phỳt ( khụng k thi gian giao
I . PHN CHUNG CHO TT C TH SINH ( 7 im )
Câu 1 ( 3 i m )
Cho h m s y =
4
2
x 5
- 3x +
2 2
(1)
1. Kho sỏt v v th hm s (1).
2. Viết phơng trình tip tuyn ti điểm có hoành độ x = 1
Câu 2 ( 3 i m )
1. Tính tích phân
( )
xdxxI
3
1
0
2
12
+=
2/Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm s
y =
3 2
2x 4x 2x 2 + +
trờn
[ 1; 3]
.
3. Giải phơng trình:
0164.1716
=+
xx
Câu 3 ( 1 i m )
Cho khối chóp S.ABC có đờng cao SA= a, (a > 0 ) và đáy là tam giác đều. Góc
giữa mặt bên (SBC) và mặt dáy bằng 60
0
. Tính thể tích của của khối chóp S.ABC
theo a.
II. Phần riêng (3 điểm)
3/Theo chơng trình Chuẩn:
Câu 4. a ( 2 điểm)
Trong không gian với hệ toạ độ Oxyz cho A(2 ; 0; 0) , B( 0; 4; 0 ) và C(0; 0; 4).
1.Viết phơng trình mặt cầu qua 4 điẻm O, A, B, C. Xác định toạ độ tâm I và tính
bán kính R của mặt cầu.
2.Viết phơng trình mặt phẳng ( ABC) và đờng thẳng d qua I vuông góc với (ABC).
Câu 4. b (1 điểm )
Tìm số phức z thoả mãn
5z =
và phần thực bằng 2 lần phần ảo của nó.
Theo chơng trình nâng cao:
Câu 4. a ( 2 điểm)
Trong không gian với hệ toạ độ Oxyz, cho 2 đờng thẳng có phơng trình
1
1
: 1
2
x t
y t
z
ỡ
= +
ù
ù
ù
ù
D =- -
ớ
ù
ù
=
ù
ù
ợ
2
3 1
:
1 2 1
x y z- -
D = =
-
1.Viết phơng trình mặt phẳng qua đờng thẳng
1
và song song với đờng thẳng
2
.
2.Xác định điểm A trên
1
và điểm B trên
2
sao cho AB ngắn nhất .
Câu 4. b (1 điểm )
Giải phơng trình trên tập số phức:
2z
2
+ z +3 = 0
Đề số 20
LUYN THI TT NGHIP THPT
Mụn : Toỏn THPT Nm hc: 2008 2009
Thi gian : 150 phỳt ( khụng k thi gian giao
I . PHN CHUNG CHO TT C TH SINH ( 7 im )
Câu 1 ( 3 i m )
Cho h m s y =
4 2
x + 2(m+1)x + 1
(1)
1. Kho sỏt v v th h m s (1) khi m = 1.
2. Tìm m để hàm số có 3 cực trị.
Câu 2 ( 3 i m )
1. Tính tích phân
( )
1+
ũ
1
3
2
0
I = 4x .xdx
3. Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm s
y =
3 2
2x 4x 2x 1 + +
trờn
[ 2;3]
.
3. Giải phơng trình:
2 3
3.2 2 2 60
x x x+ +
+ + =
Câu 3 ( 1 i m )
Cho khối chóp S.ABC có đáy là tam giác đều cạnh a, (a >0). Tam giác SAC cân tại
S góc SAC bằng 60
0
,(SAC) (ABC) . Tính thể tích của của khối chóp S.ABC theo
a.
II. Phần riêng (3 điểm)
3. Theo chơng trình Chuẩn:
Câu 4. a ( 2 điểm)
Trong không gian với hệ toạ độ Oxyz cho A(2 ; 4; -1) , B( 1; 4; -1 ) , C(2; 4; 3) và
D(2; 2; -1).
1.CMR AB AC, AC AD, AD AB . Tính thể tích của tứ diện ABCD.
2.Viết phơng trình mặt cầu qua 4 điẻm A, B, C, D. Xác định toạ độ tâm I và tính
bán kính R của mặt cầu.
Câu 4. b (1 điểm )
Tính T =
5 6
3 4
i
i
-
+
trên tập số phức.
Theo chơng trình nâng cao:
Câu 4. a ( 2 điểm)
Trong không gian với hệ toạ độ Oxyz cho A(4 ; 3; 2) , B( 3; 0; 0 ) , C(0; 3; 0) và
D(0; 0; 3).
1. Viết phơng trình đờng thẳng đi qua A và G là trọng tâm của tam giác BCD.
2.Viết phơng trình mặt cầu tâm Avà tiếp xúc (BCD).
Câu 4. b (1 điểm )
Cho số phức
1 3
2 2
z i=- +
, tính z
2
+ z +3
đề số 21
LUYN THI TT NGHIP THPT
Mụn : Toỏn THPT Nm hc: 2008 2009
Thi gian : 150 phỳt ( khụng k thi gian giao
I - Phần chung: ( 7 điểm)
Câu 1: ( 3 điểm) Cho hàm số
3 2
1
x
y
x
=
a, Khảo sát sự biến thiên và vẽ đồ thị (c) của hàm số.
b, Viết phơng trình tiếp tuyến với đồ thị (c) tạ điểm có tung độ bằng 1.
Câu 2: (2,5 điểm)
a, Tính tích phân: I =
( )
1
5
0
1x x dx
b, Giải bất phơng trình:
( ) ( )
2 2
log 3 log 2 1x x
+
Câu 3: (1,5 điểm)
Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng a, góc giữa mặt bên và mặt
đáy bằng 60
0
. Tính thể tích của khối chóp.
II Phần riêng : (3 điểm). Thí sinh học chơng trình nào chỉ đợc làm phần
dành riêng cho chơng trình đó. (phần 1 hoặc phần 2).
1. Ch ơng trình chuẩn :
Câu 4a: ( 2 điểm)
Trong không gian Oxyz, cho điểm A(2 ; 0 ; 1) và (p): 2x y + z + 1 = 0.
Và đờng thẳng d:
1
2
2
x t
y t
z t
= +
=
= +
a, Lập phơng trình mặt cầu tâm A và tiếp xúc với (p).
b, Viết phơng trình đờng thẳng d qua A, vuông góc và cắt d.
Câu 5a: ( 1 điểm)
Giải phơng trình trên tập số phức C: 5x
4
- 4x
2
1 = 0.
2. Ch ơng trình nâng cao:
Câu 4b: ( 2 điểm)
Trong không gian Oxyz, cho điểm A( 3 ; 4 ; 2), đờng thẳng d:
1
1 2 3
x y z
= =
Và mặt phẳng (P): 4x + 2y +z 1 = 0.
a, Lập phơng trình mặt cầu tâm A và tiếp xúc với đờng thẳng d.
b, Xác định đờng thẳng d qua A vuông góc với d và song song với (P).
Câu 5b: ( 1 điểm)
Lập phơng trình đờng thẳng vuông góc với đờng thẳng d
1
:
4 1
3 3
y x
= +
Và tiếp xúc với đồ thị hàm số
2
1
1
x x
y
x
+ +
=
+
.
ề số 22
LUYN THI TT NGHIP THPT
Mụn : Toỏn THPT Nm hc: 2008 2009
Thi gian : 150 phỳt ( khụng k thi gian giao
I - Phần chung: ( 7 điểm)
Câu 1: ( 3 điểm) Cho hàm số
2 1
1
x
y
x
+
=
a, Khảo sát sự biến thiên và vẽ đồ thị (c) của hàm số.
b, Tìm m để đờng thẳng d: y = - x + m cắt (c) tại 2 điểm phân biệt .
Câu 2: (2,5 điểm)
a, tính tích phân:
6
0
sin 2I xcos xdx
=
.
b, Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 2x
3
3x
2
12x +1
trên đoạn [-2/5; 2].
Câu 3: (1,5 điểm)
Cho hình chóp S.ABCD, đáy là hình vuông cạnh a, SA vuông góc với mặt đáy,
SB =
3a
.
a, Tính thể tích khối chóp S.ABCD.
b, CMR Trung điểm của SC là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.
II Phần riêng : (3 điểm). Thí sinh học chơng trình nào chỉ đợc làm phần
dành riêng cho chơng trình đó. (phần 1 hoặc phần 2).
1. Ch ơng trình chuẩn :
Câu 4a: ( 2 điểm)
Trong không gian Oxyz, cho điểm A ( -1 ; 1 ; 2) B(0 ;1 ;1) C( 1 ; 0; 4).
a, CMR tam giác ABC là tam giác vuông. Viết phơng trình tham số AB.
b, Gọi M là điểm sao cho:
2MB MC=
uuur uuuur
. Viết phơng trình (P) qua M và vuông
góc với BC.
Câu 5a: ( 1 điểm)
Viết phơng trình tiếp tuyến với đồ thị hàm số
2 3
1
x
y
x
+
=
+
tại điểm có hoành độ
bằng -3.
2. Ch ơng trình nâng cao :
Câu 4b: ( 2 điểm): Trong không gian Oxyz, cho điểm M ( 1;-1;1), đờng thẳng
d:
1
1 1 4
x y z
= =
; đờng thẳng d:
2
4 2
1
x t
y t
z
=
= +
=
và mặt phẳng (P): y+ 2z = 0
a, Tìm hình chiếu vuông góc của M trên d
b, Viết phơng trình đờng thẳng d
1
cắt cả d và d, và nằm trong (P).
Câu 5b: ( 1 điểm). Tìm m để hàm số
2 2
4 5 9
1
x mx m
y
x
+ +
=
có hai cực trị trái dấ
đề số 23
LUYN THI TT NGHIP THPT
Mụn : Toỏn THPT Nm hc: 2008 2009
Thi gian : 150 phỳt ( khụng k thi gian giao
I - Phần chung: ( 7 điểm)
Câu 1: ( 3 điểm) Cho hàm số
( )
1 2 1
1
m x m
y
x
+
=
+
( C
m
) ( m là tham số)
a, Tìm m để ( C
m
) qua điểm A ( 0; -1)
b, Khảo sát sự biến thiên và vẽ đồ thị hàm số với m vừa tìm đợc.
Câu 2: (2,5 điểm)
a, Giải phơng trình:
2 2
2 9.2 2 0
x x
+
+ =
b, Tính tích phân: I =
0
2
1
16 2
4 4
x
dx
x x
+
c, Giải phơng trình sau trên tập số phức C:
2
3 2 0x x + =
.
Câu 3: (1,5 điểm)
Cho hình chóp đều S.ABC, cạnh đáy bằng a, cạnh bên bằng 2a, gọi I là trung
điểm BC.
a, CMR SA vuông góc với BC.
b, Tính thể tích của khối chóp S.ABI theo a.
II Phần riêng : (3 điểm). Thí sinh học chơng trình nào chỉ đợc làm phần
dành riêng cho chơng trình đó. (phần 1 hoặc phần 2).
1. Ch ơng trình chuẩn :
Câu 4a: ( 2 điểm)
Trong không gian Oxyz, cho đờng thẳng d:
và mặt phẳng (P)
x + y z + 5 =0.
a, Tìm toạ độ giao điểm của d và (P).
b, Viết phơng trình hình chiếu vuông góc của d trên (P).
Câu 4b: ( 1 điểm)
Giải Bất phơng trình:
4
log 3 1x <
2. Ch ơng trình nâng cao :
Câu 4b: ( 2 điểm):
a, Viết phơng trình mặt phẳng (P) qua 2 điểm A(3;1;-1)B(2;-1;4) và vuông góc
với (Q): 2x y + 3z + 4 = 0.
b, Tính thể tích của vật thể tròn xoay tạo bởi giới hạn bởi các đờng:
3 1 ; 1 ; 0y x y y= + = =
khi nó quay quanh trục Oy.
Câu 4b: ( 1 điểm).
Giải Bất phơng trình:
1 1
3 3
1 1
log 1 log 3
2 4
x x
<
ữ ữ
24 Đề Thi thử tốt nghiệp năm 2009
I. PHầN CHUNG CHO TấT Cả THí SINH (7 điểm)
Câu I (3,0 điểm)
Cho hàm số
4 2
y x 2x 1= có đồ thị (C)
f. Khảo sát sự biến thiên và vẽ đồ thị (C).
g. Dùng đồ thị (C), hãy biện luận theo m số nghiệm thực của phơng trình
4 2
x 2x m 0 (*) =
Câu II (3,0 điểm)
a. Giải phơng trình
1
7 2.7 9 0
x x
+ =
b. Tính tích phân : I =
+
1
x
0
x(x e )dx
c/Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =
+ +
3 2
2x 3x 12x 2
trên
[ 1;2]
.
Câu III (1,0 điểm)
Cho tứ diện SABC có ba cạnh SA,SB,SC vuông góc với nhau từng đôi một với SA = 1cm,
SB = SC = 2cm. Xác định tâm và tính bán kính của mặt cấu ngoại tiếp tứ diện, tính diện
tích của mặt cầu và thể tích của khối cầu đó.
II. PHầN RIÊNG (3 điểm)
Thí sinh học chơng trình nào thì làm chỉ đợc làm phần dành riêng cho chơng trình
đó
1. Theo ch ơng trình chuẩn :
Câu IV.a (2,0 điểm):
Trong không gian với hệ tọa độ Oxyz, cho 4 điểm A(
2; 1;
1), B(0; 2;
1), C(0; 3; 0),
D(1; 0; 1).
a. Viết phơng trình đờng thẳng BC.
b. Chứng minh rằng 4 điểm A, B, C, D không đồng phẳng.
c. Tính thể tích tứ diện ABCD.
Câu V.a (1,0 điểm):
Tính giá trị của biểu thức
= + +
2 2
P (1 2 i ) (1 2 i)
.
2. Theo ch ơng trình nâng cao :
Câu IV.b (2,0 điểm) :
Trong không gian với hệ tọa độ Oxyz cho điểm M(1;
1;1), hai đờng thẳng
= =
1
x 1 y z
( ) :
1 1 4
,
=
= +
=
2
x 2 t
( ) : y 4 2t
z 1
và mặt phẳng (P) :
+ =y 2z 0
a. Tìm điểm N là hình chiếu vuông góc của điểm M lên đờng thẳng (
2
).
b. Viết phơng trình đờng thẳng cắt cả hai đờng thẳng
1 2
( ) ,( )
và nằm trong mặt phẳng
(P).
Câu V.b (1,0 điểm):
Tìm m để đồ thị của hàm số
+
=
2
m
x x m
(C ) : y
x 1
với m 0 cắt trục hoành tại hai điểm
phân biệt A,B sao cho tuếp tuyến với đồ thị tại hai điểm A,B vuông góc nhau.
25
B GIO DC V O TO MU TN THPT NM 2008 2009
PHN CHUNG CHO TT C CC TH SINH (7,0 im)
Cõu I. (3,0 im)
Cho hm s
3 2x
y
x 1
=
1. Kho sỏt s bin thiờn v v th ca hm s ó cho.
2. Tỡm tt c cỏc giỏ tr ca tham s m ng thng y = mx + 2 ct th
ca hm s ó cho ti hai im phõn bit.
Cõu II. (3,0 im)
1. Gii bt phng trỡnh:
1
2
2x 1
log 0
x 1
<
+
2. Tớnh tớch phõn:
2
0
x
I (sin cos2x)dx
2
= +
3. Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm s f(x) = x e
2x
trờn on
[1 ; 0]
Trớch t cun Cu trỳc
thi
ca NXB Giỏo Dc
Câu III. (1,0 điểm)
Cho khối chóp đều S.ABCD có AB = a, góc giữa mặt bên và mặt đáy bằng 60
0
.
Tính thể tích của khối chóp S.ABCD theo a.
I. PHẦN RIÊNG (3,0 điểm)
Thí sinh học chương trình nào thì chỉ được chọn làm phần dành riêng cho
chương trình đó (phần 1 hoặc phần 2)
1. Theo chương trình Chuẩn:
Câu IVa. (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1 ; 4 ; 2) và mặt phẳng (P) có
phương trình : x + 2y + z – 1 = 0.
1. Hãy tìm tọa độ của hình chiếu vuông góc của A trên mặt phẳng (P).
2. Viết phương trình của mặt cầu tâm A, tiếp xúc với (P).
Câu Va. (1,0 điểm)
Tìm môđun của số phức : z = 4 – 3i + (1 – i)
3
2. Theo chương trình Nâng cao
Câu IVb. (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(−1 ; 2 ; 3) và đường thẳng d có
phương trình :
x 2 y 1 z
1 2 1
− −
= =
.
1. Hãy tìm tọa độ của hình chiếu vuông góc của A trên d.
2. Viết phương trình của mặt cầu tâm A, tiếp xúc với d.
Câu Vb. (1,0 điểm)
Viết dạng lượng giác của số phức: z = 1 –
3
i.