Tải bản đầy đủ (.pdf) (26 trang)

Phát triển tư duy cho học sinh thông qua giải bài toán IMO theo nhiều cách và mở rộng bài toán

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (530.23 KB, 26 trang )

SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

MỤC LỤC
Danh mục chữ cái viết tắt

Trang 2

1. MỞ ĐẦU

Trang 3

1.1 Lý do chọn đề tài

Trang 3

1.2 Mục đích nghiên cứu

Trang 3

1.3 Đối tượng nghiên cứu

Trang 4

1.4 Kế hoạch nghiên cứu

Trang 4

1.5 Phương pháp nghiên cứu

Trang 4


2. NỘI DUNG

Trang 4

2.1 Một số kết quả thường gặp trong tam giác

Trang 4

2.2 Bài toán IMO 1961

Trang 8

2.3 Mở rộng bài toán trong măt phẳng

Trang 15

2.4. Mở  rộng bài toán trong không gian

Trang 20

3. THỰC NGHIỆM SƯ PHẠM

Trang 22

3.1 Kết quả từ thực tiễn 

Trang 22

3.2 Kết quả thực nghiệm


Trang 23

4. KẾT LUẬN

Trang 24

TÀI LIỆU THAM KHẢO

Trang 25

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

MỘT SỐ KÍ HIỆU VIẾT TẮT TRONG ĐỀ TÀI
A,  B,  C  

Góc trong tam giác ABC

a, b, c

Độ dài cạnh đối diện với đỉnh A, B, C tương ứng

p

Nửa chu vi tam giác ABC

R


Bán kính đường tròn ngoại tiếp tam giác ABC

r

Bán kính đường tròn nội tiếp tam giác ABC

S

Diện tích tam giác ABC

ha  

Độ dài đường cao xuất phát từ đỉnh A

V

Thể tích khối tứ diện ABCD

SA  

Diện tích mặt đối diện đỉnh A trong tứ diện ABCD

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

1. MỞ ĐẦU
1.1 Lý do chọn đề tài
           Toán học là môn học có vai trò hết sức quan trọng trong chương trình  

THPT. Toán học không những giúp cho học sinh kỹ năng tính toán mà còn phát 
triển tư duy cho học sinh, đặc biệt là tư duy sáng tạo, khái quát…
       Trong toán học, việc phát triển tư  duy cho học sinh là việc hết sức quan  
trọng. Đối với nhiều học sinh, các em thường hài lòng với việc giải xong một  
bài toán mà không xem xét thêm cách giải khác là khá phổ biến. Trong quá trình 
dạy học tôi thường khuyến khích học sinh giải bài toán theo nhiều cách khác 
nhau, từ đó rèn luyện cho học sinh thói quen giải quyết một vấn đề theo nhiều  
cách khác nhau, tư duy đó rất có ích trong cuộc sống hiện đại ngày nay. Trong 
quá trình dạy học tôi thấy bài toán IMO sau đây rất thú vị, bài toán đó là:   “  
Cho tam giác   ABC  có độ dài ba cạnh là  a,  b,  c  và có diện tích là  S . Chứng  
minh rằng:   a 2 + b 2 + c 2

4S 3. ”     Tôi thấy rằng có rất nhiều cách để  tính 

diện tích tam giác, từ  đó ta có thể  chứng minh bài toán thú vị  này theo nhiều  
cách khác nhau. Mặt khác, giữa mặt phẳng và không gian có mối liên hệ  với 
nhau, các tính chất trong mặt phẳng có thể mở rộng trong không gian, vì vậy ta  
có thể mở rộng bài toán này trong không gian cho tứ diện.
      Với những lý do trên tôi chọn đề tài “  Phát triển tư duy cho học sinh thông  
qua giải bài toán IMO theo nhiều cách và mở  rộng bài toán”. Trong đề  tài này 
tôi trình bày 16 cách giải khác nhau cho bài toán đã nêu, đồng thời mở rộng bài 
toán trong mặt phẳng và trong không gian.
1.2 Mục đích nghiên cứu

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

      ­ Giúp học sinh biết cách vận dụng kiến thức để giải quyết vấn đề nhiều 

cách khác nhau.
      ­ Rèn luyện kỹ năng mở rộng bài toán theo nhiều hướng.
1.3 Đối tượng nghiên cứu
      Là học sinh khá, giỏi lớp 12I, 12K trường THPT Tây Hiếu
1.4 Kế hoạch nghiên cứu
      ­ Từ 20/09/2015 đến 15/10/2015: Chọn đề tài, viết đề cương nghiên cứu.
      ­ Từ 16/10/2015 đến 20/12/2015: Đọc tài liệu lý thuyết, viết cơ sở lý luận. 
      ­ Từ 21/12/2015 đến 16/02/2016: Áp dụng đề tài vào thực tiễn.
      ­ Từ 17/02/2016 đến 15/04/2016: Viết báo cáo, trình bày báo cáo trước tổ 
chuyên môn và xin ý kiến đóng góp.
     ­ Từ 16/04/2016 đến 10/05/2016: Hoàn thiện báo cáo.
1.5 Phương pháp nghiên cứu
      ­ Đọc các tài liệu liên quan để viết cơ sở lý thuyết.
      ­ Phương pháp thực nghiệm.
      ­ Phương pháp thống kê, xử lý số liệu.
2. NỘI DUNG
2.1 Một số kết quả thường gặp trong tam giác
KQ1. Công thức diện tích tam giác
1
1
abc
        S = a.ha = ab sin C =
= pr  
2
2
4R
            = p ( p − a)( p − b)( p − c)  ( công thức Hê rông)
1
           =
2 ( a 2b 2 + b 2c 2 + c 2 a 2 ) − ( a 4 + b 4 + c 4 )                               (1) 

4
Chứng minh công thức (1) ( các công thức còn lại có trong sách giáo khoa 10)
Cách 1. Theo công thức Hê rông ta có
VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

               16S 2 = p ( p − a)( p − b)( p − c )  
                         = (a + b + c)(a + b − c)(b + c − a )(c + a − b )  
(b + c) 2 − a 2 �
a 2 − (b − c) 2 �
                         = �

��

� 
2bc + (b 2 + c 2 − a 2 �
2bc − (b 2 + c 2 − a 2 ) �
                         = �

��

� 

                         = 4b 2c 2 − (b 2 + c 2 − a 2 ) 2  
                        = 2( a 2b 2 + b 2c 2 + c 2 a 2 ) − (a 4 + b 4 + c 4 )  
1
                � S =
2 ( a 2b 2 + b 2 c 2 + c 2 a 2 ) − ( a 4 + b 4 + c 4 )  

4
Cách 2. Áp dụng định lý hàm cosin ta có
                       a 2 = b 2 + c 2 − 2bc cos A  
� 2bc cos A = b 2 + c 2 − a 2
                  � 4b 2c 2 (1 − sin 2 A) = b 4 + c 4 + a 4 + 2b 2c 2 − 2c 2 a 2 − 2a 2b 2  
� 4b 2c 2 = 2(a 2b 2 + b 2c 2 + c 2a 2 ) − (a 4 + b 4 + c 4 )
1
1
                  � S = bc sin A =
2 ( a 2b 2 + b 2 c 2 + c 2 a 2 ) − ( a 4 + b 4 + c 4 ) .
2
4
KQ2. Trong mọi tam giác ABC ta có
A
B
C
                     r = ( p − a ) tan = ( p − b ) tan = ( p − c ) tan .  
2
2
2
Chứng minh. Xét tam giác ABC có đường tròn nột tiếp tâm I tiếp xúc 3 cạnh 
BC, CA, AB tại M, N, P. Khi đó ta có  AP = AN ,  BP = BM ,  CM = CN .  
A

N
P
I

C


B
M

Trong tam giác vuông API ta có 
VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

A
 
2
AP + BP + AN + CN − BM − CM
A
=
tan
2
2
                             
 
AB + AC − BC
A
A
=
tan = ( p − a ) tan .
2
2
2
Chứng minh tương tự ta có các kết quả còn lại.
KQ3. Trong tam giác ABC ta có

                       cot A cot B + cot B cot C + cot C cot A = 1.                                   (2)
A
B
B
C
C
A
                       tan tan + tan tan + tan tan = 1.                              (3)
2
2
2
2
2
2
                           r = PI = AP.tan

Chứng minh (2)
Trong tam giác ABC ta có 
                                cot( A + B ) = cot(π − C )  
1 − cot A cot B

= − cot C
cot A + cot B
                               
 
� 1 − cot A cot B = − cot C cot A − cot C cot B
� cot A cot B + cot B cot C + cot C cot A = 1.
Chứng minh (3)
Trong tam giác ABC ta có 
�A B �

�π C �
                                tan � + �= tan � − � 
�2 2 �
�2 2 �
A
B
tan + tan
2
2 = 1  
                               �
A
B
C
1 − tan tan
tan
2
2
2
A
C
B
C
A
B
� tan tan + tan tan = 1 − tan tan
2
2
2
2
2

2
                              
 
A
B
B
C
C
A
� tan tan + tan tan + tan tan = 1.
2
2
2
2
2
2
KQ4. Trong tam giác ABC ta có

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

3 3
.                                                         (4)
2
A
B
C
1

.                                                             (5)
                      tan tan tan
2
2
2 3 3
A
B
C
                       tan + tan + tan
3.                                                        (6)
2
2
2
                      cot A + cot B + cot C
3.                                                           (7)
                      sin A + sin B + sin C

Chứng minh (4)
Trước hết ta chứng minh  sin x + sin y 2sin
xảy ra khi  x = y.

x+ y
 với  ∀x, y
2

( 0;π ) .  Đẳng thức 

x+ y
x− y
x+ y

cos
2sin
.   Đẳng   thức   xảy   ra   khi 
2
2
2
x = y.  
Áp dụng bất đẳng thức trên ta có
π�

C+ �

π
A+ B
3
sin A + sin B + sin C + sin
2�
sin
+ sin

3
2
2 �



             
 
π�


�A + B + C + 3 �
                                            4sin �
�= 2 3
4




3 3
           � sin A + sin B + sin C �

2
Đẳng thức xảy ra khi tam giác ABC đều
Ta   có  sin x + sin y = 2sin

Chứng minh (5)
Ta có 
2

A
B
B
C
C
A
B
C�
� A
   1 = tan tan + tan tan + tan tan
3 3 �tan tan tan �

2
2
2
2
2
2
2
2�
� 2
A
B
C
1

                                    tan tan tan
2
2
2 3 3
VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

Đẳng thức xảy ra khi tam giác ABC đều
Chứng minh (6)
A
B
B
C
C

A
Ta có  tan tan + tan tan + tan tan = 1  
2
2
2
2
2
2
2
Áp dụng bất đẳng thức cơ bản  ( x + y + z ) 3( xy + yz + zx)  ta có
2

A
A� � A
B
B
C
C
A�
� A
           �tan + tan + tan � 3 �tan tan + tan tan + tan tan �= 3  
2
2� � 2
2
2
2
2
2�
� 2
A

B
C
                                        � tan + tan + tan � 3.  
2
2
2
Đẳng thức xảy ra khi tam giác ABC đều
Chứng minh (7)
Ta có  cot A cot B + cot B cot C + cot C cot A = 1.  
Áp dụng bất đẳng thức cơ bản  ( x + y + z ) 2 3( xy + yz + zx)  ta có
                                    cot A + cot B + cot C
3.
Đẳng thức xảy ra khi tam giác ABC đều 
2.2 Bài toán [IMO 1961] 
Cho tam giác    ABC  có độ  dài ba cạnh là  a,  b,  c  và có diện tích là  S . Chứng 
minh rằng:  a 2 + b 2 + c 2 4S 3.
Cách 1. Ta thấy vế trái là mối liên hệ 3 cạnh, vì vậy ta sử dụng công thức Hê 
rông để giải bài toán này. Ta có
3

4S 3 = 4 3 p( p − a )( p − b)( p − c)
  

�p − a + p − b + p − c �
4 3p �

3


 


4 p2 ( a + b + c )
           =
=
a 2 + b2 + c2.
3
3
Đẳng thức xảy ra khi tam giác ABC đều
2

Cách 2. Sử dụng công thức Hê rông kết hợp bất đẳng thức Côsi. Trước hết ta  
chứng minh bất đẳng thức quen thuộc  8( p − a)( p − b)( p − c) abc.  Ta có
8( p − a)( p − b)( p − c) = 8 ( p − a)( p − b) ( p − b)( p − c) ( p − c)( p − a )
   
                                    (2 p − a − b)(2 p − b − c )(2 p − c − a ) = abc.
Áp dụng bất đẳng thức trên ta có
VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

48S 2 = 48 p ( p − a)( p − b)( p − c) 48 pabc =3(a + b + c)abc
2
2
2
2
  


3(

a
+
b
+
c
)
( a + b + c)
2
2
2 2


        
=(a +b +c ) .
9
9
Lấy căn bậc hai hai vế ta có điều phải chứng minh.
Đẳng thức xảy ra khi tam giác ABC đều

            

4

Cách 3. Theo công thức diện tích Hê rông ta có
16S 2 = 2(a 2b 2 + b 2c 2 + c 2 a 2 ) − (a 4 + b 4 + c 4 ).  
Với mọi số thực  x,  y,  z  ta có  x 2 + y 2 + z 2 xy + yz + zx.  
Áp dụng bất đẳng thức trên ta có: 
          a 4 + b 4 + c 4 a 2b 2 + b 2c 2 + c 2 a 2
� ( a 2 + b 2 + c 2 ) �3 �
2 ( a 2b 2 + b 2 c 2 + c 2 a 2 ) − ( a 4 + b 4 + c 4 ) �



2

         

� ( a 2 + b 2 + c 2 ) �48S 2
2

� a 2 + b 2 + c 2 �4S 3.
Đẳng thức xảy ra khi tam giác ABC đều
Cách   4.   Theo   định   lý   cosin   c 2 = a 2 + b 2 − 2ab cos C   và   công   thức   diện   tích 
1
S = ab sin C , bất đẳng thức cần chứng minh trở thành
2
� π� 2
2
2
0 a 2 − 2ab sin �
C + �+ b �0.  
      a − ab(cos C + 3 sin C ) + b ��
� 6�
� π� 2
2
C + �+ b , ta xem  f ( a)  là tam thức bậc hai ẩn a với 
Xét  f ( a) = a − 2ab sin �
� 6�
π�
2
2�

C + �− b 2 0   
hệ số bậc hai bằng 1, mà  ∆ ' = b sin �
� 6�
Do đó hiển nhiên  f ( a) 0.  Vậy bất đẳng thức đã cho là đúng.
Đẳng thức xảy ra khi tam giác ABC đều
Cách 5. Biến đổi tương đương. Ta có  
       a 2 + b 2 + c 2 − 4S 3 = a 2 + b 2 + (a 2 + b 2 − 2ab cos C ) − 2 3ab sin C


� π�
2
1 − cos �
C+ �
   = 2( a − b) + 4ab �
� 0,  từ đó ta có điều phải chứng minh.
� 3�


VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

Đẳng thức xảy ra khi tam giác ABC đều
Cách 6. Theo định lý cosin trong tam giác ta có
a 2 = b 2 + c 2 − 2bc cos A = b 2 + c 2 − 4S cot A,
                 b 2 = c 2 + a 2 − 2ca cos B = c 2 + a 2 − 4S cot B,
c 2 = a 2 + b 2 − 2ab cos C = a 2 + b 2 − 4cot C.
Suy ra  a 2 + b 2 + c 2 = 4S (cot A + cot B + cot C ) 4S 3.  
Từ đó ta có điều phải chứng minh.

Đẳng thức xảy ra khi tam giác ABC đều
1
1 �
�1
ab + bc + ca = 2S �
+
+
�.
�sin A sin B sin C �
1
1
1
9
+
+
2 3.  
Mặt khác ta có 
sin A sin B sin C sin A + sin B + sin C
Từ đó ta có điều phải chứng minh.
Đẳng thức xảy ra khi tam giác ABC đều
2
2
2
Cách 7. Ta có  a + b + c

Cách 8. Ta có  a + b + c = 2 R (sin A + sin B + sin C ) 3R 3.  
Áp dụng công thức diện tích tam giác ta có
9abc
9abc
9( a + b + c)3 (a + b + c) 2

4S 3 =
=
a 2 + b2 + c2.
3
3R 3 a + b + c 27(a + b + c)
Đẳng thức xảy ra khi tam giác ABC đều
Cách 9. Trước hết ta chứng minh công thức  a 2 = (b − c) 2 + 4S tan

A
.  Ta có
2

a 2 = b 2 + c 2 − 2bc cos A = (b − c) 2 + 2bc(1 − cos A)
              
4S
A
A  
     = (b − c) 2 +
.2sin 2 = (b − c) 2 + 4 S tan .
sin A
2
2
B
C
Tương tự ta có  b 2 = (c − a) 2 + 4S tan ,  c 2 = ( a − b) 2 + 4 S tan .  
2
2
Từ đó ta có
B
C�

� A
a 2 + b 2 + c 2 = (a − b) 2 + (b − c ) 2 + (c − a ) 2 + 4S �tan + tan + tan �
2
2�
    
� 2
                   

4S 3.

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

Đẳng thức xảy ra khi tam giác ABC đều
A
B
C
= ( p − b) tan = ( p − c) tan .  Do đó ta có
2
2
2
A
B
C
A
B
C
 pr 3 = p( p − a)( p − b)( p − c) tan tan tan = S 2 tan tan tan

2
2
2
2
2
2
  
 
A
B
C
� r = p tan tan tan
2
2
2
Mặt khác ta có 
Cách 10. Ta có  r = ( p − a ) tan

2

A
B
B
C
C
A
B
C�
� A
1 = tan tan + tan tan + tan tan

3 3 �tan tan tan �
2
2
2
2
2
2
2
2�
� 2
   
A
B
C
1
tan tan tan
.
2
2
2 3 3
Ta có 
A
B
C
    4S 3 = 4 3 pr = 4 3 p tan tan tan
2
2
2
Đẳng thức xảy ra khi tam giác ABC đều
2


2

4 �a + b + c � 2
2
2

� a +b +c .
3� 2


Cách 11. Gọi G là trọng tâm, O là tâm đường tròn ngoại tiếp tam giác ABC  ta 
uuur uuur uuur uuur
có  3OG = OA + OB + OC , do đó
uuuruuur uuuruuur uuuruuur
2
2
2
2
     9OG = OA + OB + OC + 2 OAOB + OBOC + OCOA  

(

)

2
2
2
2
2

2
2
2
2
2
     = 3R + ( OA + OB − AB ) + ( OB + OC − BC ) + ( OC + OA − AC )  

     = 9 R 2 − ( a 2 + b 2 + c 2 ).    
Do  OG 0  nên  a + b + c
2

             

2

9 a 2b 2 c 2
. Từ đó suy ra
9R =
16S 2

2

2

(a

16S 2 (a 2 + b 2 + c 2 ) 9a 2b 2c 2
2
� 48
+ +S�

+( a+2 b 2

c

)

2 2

2

+ b2 + c 2 )

3

3
a2

b2

c2

4S 3.

Đẳng thức xảy ra khi tam giác ABC đều
Cách 12. Sử dụng tính chất tâm đường tròn nội tiếp tam giác

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

A

N
P

B

I

M

C

                
Gọi I là tâm đường tròn nội tiếp tam giác,  M ,  N ,  P  lần lượt là hình chiếu của 
uuur uur uur r
I lên BC, CA, AB. Ta có  aIM + bIN + cIP = 0.  
r uuur uur uur r
Thật vậy, đặt  u = aIM + bIN + cIP = 0.  Ta có
r uuur uuur uuur uur uuur uur uuur
                 u.BC = aIM .BC + bIN .BC + cIP.BC  
= b.r.a.sin C − c.r.a.sin B = ra(b sin C − c sin B)
                          
 
= ra(2 R sin B sin C − 2 R sin C sin B) = 0
r
uuur
r
uuur
Suy ra   u   vuông góc   BC . Chứng minh tương tự  ta có   u   vuông góc   CA . Mà 

uuur uuur
r r
uuur uur uur r
BC ,  CA   không cùng phương do đó ta có  u = 0  hay  aIM + bIN + cIP = 0.
uuur uur uur r
Bình phương hai vế đẳng thức  aIM + bIN + cIP = 0  ta có 
a 2 r 2 + b 2r 2 + c 2r 2 − 2abr 2 cos C − 2bcr 2 cos A − 2car 2 cos B = 0
� a 2 + b 2 + c 2 = 2ab cos C + 2bc cos A + 2ca cos B
= 4 S cot C + 4S cot A + 4S cot B
= 4 S ( cot A + cot B + cot C ) 4 S 3.
Từ đó ta có điều phải chứng minh.
Đẳng thức xảy ra khi tam giác ABC đều
1
Cách 13.  Ta sử dụng công diện tích  S = ah .
2
                       

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

A

M

H

B


C
         
Xét tam giác ABC có M trung điểm BC và H là chân đường cao kẻ từ A.
�3BC 2

3BC
. AM 2 �
+ AM 2 � 
Ta có  4S 3 = 2 3BC. AH 4.
2
� 4

�3a 2 b 2 + c 2 a 2 � 2
=
2
− �= a + b 2 + c 2 .  
                     � +
2
4 �
�4
Đẳng thức xảy ra khi tam giác ABC đều

Cách 14. Không mất tính tổng quát giả sử  a b c.  Khi đó ta có  BAC

600  

A

B


C

D
                    
Dựng tam giác đều  ACD  sao cho B, D cùng phía đối với AC. Áp dụng định lý 
cosin cho ta giác ABD ta có

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN


BD 2 = AB 2 + AD 2 − 2 AB. AD.cos BAD
= c 2 + b 2 − 2cb.cos ( A − 600 )

        = b 2 + c 2 − 2bc ( cos A.cos 600 + sin A.sin 600 )

(

)

1 2
1
b + c 2 − a 2 ) − 3bc sin A = a 2 + b 2 + c 2 − 4 S 3 .
(
2
4
Do  BD 0  nên ta suy ra điều phải chứng minh.
Đẳng thức xảy ra khi tam giác ABC đều

        = b 2 + c 2 −

Cách 15.  Không mất tính tổng quát giải sử  A 600 .  Dựng tam giác  BAM   

vuông tại  M  có   BAM
= 300 ,   điểm  M,  C  nằm cùng phía với đường thẳng bờ 
AB. 

Dựng tam giác  NAC   vuông tại N có  CAN
= 300 ,  điểm N, B nằm cùng phía với 
với đường thẳng bờ AC. 
A

30°

30°

B

C
M

                     

N

c 3
b 3
, AN = AC.cos300 =


2
2
Áp dụng định lý cosin cho tam giác MAN ta có 

          MN 2 = AM 2 + AN 2 − 2 AM . AN .cos MAN
 
3c 2 3b 2 3bc
=
+

.cos( A − 600 )
4
4
2
3b 2 + 3c 2 3bc
                   =

cos A.cos600 + sin A sin 600 )
(
4
2
3b 2 + 3c 2 3bc cos A 3 3bc sin A
=


4
4
4
Ta có  AM = AB.cos300 =


VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

3b 2 + 3c 2 3(b 2 + c 2 − a 2 ) 3 3S
=


4
8
2
                 
 
3( a 2 + b 2 + c 2 − 4S 3)
=
8
2
Vì  MN 0  nên ta có  a 2 + b 2 + c 2 4S 3.   
Đẳng thức xảy ra khi tam giác ABC đều
Cách 16. Không mất tính tổng quát giải sử  A 600 .  Dựng phía ngoài tam giác 
ABC các tam giác đều ABM và CAN.
N

M

A

B


C

Áp dụng định lý cosin cho tam giác AMN ta có

MN 2 = AM 2 + AN 2 − 2 AM . AN .cos MAN
                 
 
         = c 2 + b 2 − 2bc.cos(2400 − A)
                           = b 2 + c 2 − 2bc(cos 2400 cos A + sin 2400 sin A)  
                           = b 2 + c 2 + bc cos A + 3bc sin A  
b2 + c 2 − a 2
                           = b 2 + c 2 +
+ 2S 3  
2
2
2
Mà  MN 2 ( AM + AN ) = ( b + c )
2(b 2 + c 2 )  , suy ra
b2 + c2 − a 2
        2(b + c ) b + c +
+ 2S 3  
2
        � a 2 + b 2 + c 2 �4 S 3.  
Đẳng thức xảy ra khi tam giác ABC đều
2

2

2


2

2.3 Mở rộng bài toán trong mặt phẳng
VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

Bài toán trên phát biểu cho lũy thừa số mũ bằng 2, ta có thể mở  rộng bài toán  
lũy 
thừa với số mũ chẵn bất kì lớn hơn 1.
Cho tam giác  ABC  có diện tích  S  và độ  dài các cạnh là  a,  b,  c. Với   n ᄋ
chứng  
minh rằng
2n
2n
2n
�4 � n
a 2 n + b2n + c2 n 3� �
S + ( a − b) + ( b − c) + ( c − a)
�3�
       
      + ( b + c − a ) b − c + ( c + a − b ) c − a + ( a + b − c ) a − b .
n

n

n

n


n

n

Để chứng minh bài toán ta chứng minh các bổ đề sau
Bổ đề 1.
     Cho 

x> y 0
, chứng minh:  x m − y m
m 1

( x − y )m .  

                                           Giải
y x− y
,
1  nên 
Ta có  0
x x
m

�y �
��

�x �

y
x


m

m

�y � �x − y �
m
m
m

          
� �+ �
� �1 � x − y �( x − y ) .  
m
�x − y � x − y �x � � x �


x
�x �
Đẳng thức xảy ra khi 

m =1
 
y = 0.

Bổ đề 2.
     Cho 

x, y , z > 0
,  chứng minh rằng 

m 1

xm + ym
     i) 
2
Giải
i) 

m

xm + ym + z m
�x + y �
                     ii) 
,


3
�2 �

m

�x + y + z �

�.  
� 3


VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN

*



SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

Cách 1. Ta có bất đẳng thức đã cho tương đương bất đẳng thức
m

m

� x � � y � 1−m
                                     �
�+ �
� 2    
�x + y � �x + y �
x
Đặt  t =
 (đk:  0 < t < 1 ), ta có bất phương trình
x+ y
                                    f (t ) = t m + (1 − t ) m 21−m.  
1
Ta có  f '(t ) = mt m−1 − m(1 − t ) m−1  . Khi đó  f '(t ) = 0 � t m−1 = (1 − t ) m −1 � t = .  
2
Bảng biến thiên
       

1
0                                                                 1
2
f '(t )                ­                   0              +
f (t)  


                                  21−m  

Dựa vào bảng biến thiên ta có  f (t ) 21−m , ∀t
Vậy bất đẳng thức đã cho đúng.
Cách 2. Theo bất đẳng thức Becnuli ta có

        

m

m

m

m

� 2x � � x − y �
m( x − y )
1+
1+
�x + y � = �

x+ y


� � x+ y�
�2 y � � y − x �
m( y − x )
1+

1+
�x + y � = �

x+ y

� � x+ y�
m

m

� 2 x � �2 y �
     �
+� � �

� 2
x
+
y
x
+
y

� �

m =1
Đẳng thức xảy ra khi 
 
x = y.
ii) Theo câu i) ta có


xm + y m
2

( 0;1) .  

 

m

�x + y �

�.  
2



VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN
m

m
�x + y + z �
x
+
y
+
z



z +�
m
z+


xm + ym
x+ y� �
3



3
   
+
� 

�+ �
2
2
2
2

� �



m
x+ y+z �


�x + y z +

3
m
+

� �x + y + z �
2
                                                 2 � 2
� 2�
� 
2


� � 3






m
m
m
m
x +y +z
�x + y + z �
                      

�.  

3
� 3

m =1
Đẳng thức xảy ra khi 
 
x = y = z.
m

Bổ đề 3.  Cho 
m
2 2

i)  ( x 2 + y )

x, y 0
, chứng minh
m 2

xm + y m
m
m                     ii) 
x +y ,
2

m

    
Giải
i) Nếu  x = 0  hoặc  y = 0  thì bất đẳng thức hiển nhiên đúng.

x2
y2
x
,
y
>
0
,
< 1 , do đó ta có
   Nếu 
 thì ta có:  0 < 2
x + y2 x2 + y2
2

                       

m
2

� x

�2
2 �

�x + y �
m
2

x2
x2 + y2


� y2 �
y2
�2
2 �
2
2
�x + y � x + y
Từ đó ta có điều phải chứng minh.
ii) Theo bất đẳng thức i) ta có 

xm + ym
(x + y )
2

2

m

�x + y � x − y


�+
2
�2 �

m
2




VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN
m

x+ y� x− y
     �

�+
2
�2 �

m

m

2
2 2

�x + y � x − y �     



�+
2
2 �




m

x 2 + y 2 �2
                                    �


� 2 �
m=2
Đẳng thức xảy ra khi 
 
x = y.

x m + y m  ( theo bổ đề 2i)
2

Bổ đề 4. Trong tam giác ABC ta có
              a 2 + b 2 + c 2 4S 3 + (a − b) 2 + (b − c ) 2 + (c − a ) 2  
    Hay  ( p − a )( p − b) + ( p − b)( p − c) + ( p − c)( p − a ) S 3.  
Giải
Cách 1.
Theo cách chứng 10 trong mục 2.1 ta có
B
C�
� A
2
2
2
2
2

2
         a + b + c = (a − b) + (b − c ) + (c − a ) + 4S �tan + tan + tan � 
2
2�
� 2
A
B
C
Mà  tan + tan + tan
3,  từ đó ta có điều phải chứng minh.
2
2
2
Cách 2.
Ta có:  a 2 + b 2 + c 2 4S 3 + (a − b) 2 + (b − c ) 2 + (c − a ) 2  
2
2
2
a 2 − ( b − c ) �+ �
b 2 − ( c − a ) �+ �
c 2 − ( a − b ) ��4S 3
        � �

��
��


       � 4( p − b)( p − c) + 4( p − c)( p − a ) + 4( p − a )( p − b) �4 S 3  
         � xy + yz + zx �S 3   (với  x = p − a; y = p − b; z = p − c  )
         � xy + yz + zx � 3xyz ( x + y + z )  

                ( vì  S =
         

p( p − a )( p − b)( p − c) = xyz ( x + y + z )  ) 

� ( xy + yz + zx) 2 �3xyz ( x + y + z )

� ( xy − yz ) 2 + ( yz − zx) 2 + ( zx − xy ) 2 �0.
Bất đẳng thức cuối luôn đúng, từ đó ta có điều phải chứng minh.
Đẳng thức xảy ra khi tam giác ABC đều.
Quay lại chứng minh bài toán

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN


a > b−c

a 2 > (b − c) 2

b> c−a ��
b 2 > (c − a ) 2  
Trong tam giác ABC ta có  �


c 2 > ( a − b) 2
c > a −b
Do đó, theo bổ đề 1 ta có 

n

a2n − b − c

2n

n
2

a 2 − ( b − c ) �= �
4( p − b) ( p − c) �





2n
  b − c−a

2n

n
2

b 2 − ( c − a ) �= �
4
p

c
p


a

(
)
(
)
� 

� �

c2n − a − b

2n

n
2

c 2 − ( a − b ) �= �
4( p − a ) ( p − b) �





n

n

� a 2n + b 2n + c 2n − a − b


[ 4( p − b)( p − c) ]

n

2n

− b−c

2n

− c−a

2n

+ [ 4( p − c)( p − a) ]
[ 4( p − c)( p − a) ] + [ 4( p − a)( p − b) ]
+
2
2
n

n

[ 4( p − a)( p − b)]
                                                                +

n

+ [ 4( p − b)( p − c ) ]

2

n

n

n

4( p − b)( p − c) + 4( p − c)( p − a ) �
2

n
+
(
a
+
b

c
)
a

b


2


n


4( p − c)( p − a) + 4( p − a)( p − b) �
2

n
 
                             + �
+
(
b
+
c

a
)
b

c

2


n

4( p − a )( p − b) + 4( p − b)( p − c) �
2

n
                             + �
+
(

c
+
a

b
)
c

a

2


( do bổ đề 3ii)

[ 2( p − b)( p − c) + 2( p − c)( p − a)] + [ 2( p − c)( p − a) + 2( p − a)( p − b)]
n
n
                   + [ 2( p − a)( p − b) + 2( p − b)( p − c) ] + ( a + b − c) n a − b +
n

n

                                                        (b + c − a) n b − c + (c+ a − b) n c − a
n

n

 


n

4( p − a)( p − b) + 4( p − b)( p − c ) + 4( p − c)( p − a ) �
n

n
 
3�
+
(
a
+
b

c
)
a

b

3


n
n
n
                                               +(b + c − a) b − c + (c + a − b)n c − a .  
(theo bổ đề 2ii)
n


n
n
n
�4 S �
3 � �+ ( a + b − c) n a − b + (b + c − a )n b − c + (c + a − b) n c − a .
�3�

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

( theo bổ đề 4)
n

2n
2n
2n
�4 �
3 � �S n + a − b + b − c + c − a  
�3�
n
n
n
                      +(a + b − c) n a − b + (b + c − a ) n b − c + (c + a − b) n c − a .
Đẳng thức xảy ra khi tam giác ABC đều.  

Vậy  a 2 n + b 2 n + c 2 n

2.4 Mở rộng bài toán trong không gian.

Tam giác trong mặt phẳng và tứ  diện trong không gian có mối liên hệ  biện 
chứng, 
nhiều tính chất trong tam giác được mở rộng trong không gian đối với tứ diện. 
Do đó, bài toán này ta có thể mở rộng trong không gian thành bài toán sau: 
Cho tứ diện ABCD, đặt  S A = S∆BCD ,  S B = S ∆CDA ,  SC = S ∆DAB ,  S D = S ∆ABC , V  là 
thể tích khối tứ diện ABCD. Chứng minh rằng
27 2
S A3 + S B3 + SC3 + S D3
V 3.
2
Giải
Trước hết ta chứng minh các bổ đề sau
Bổ đề 5. Với mọi số thực  a,  b,  c,  x,  y,  z  ta có 
        a 2 + x 2 + b 2 + y 2 + c 2 + z 2

(a + b + c ) 2 + ( x + y + x ) 2  

Chứng minh. 
Trong hệ trục tọa độ Oxy, xét các điểm  A(a; x),  B (b; y ),  C (c; z ).  
uuur
uuur
uuur
2
2
2
2
OA
=
a
+

x
OB
=
b
+
y
OC
= c2 + z 2
Khi đó ta có 
,  

uuur uuur uuur
OA
+ OB + OC = (a + b + c) 2 + ( x + y + z )2
                     
uuur uuur uuur uuur uuur uuur
Mặt   khác,   ta   luôn   có   OA + OB + OC OA + OB + OC ,   suy   ra   điều   phải 
chứng 
uuur uuur uuur
x y z
minh. Đẳng thức xảy ra khi  OA ,  OB ,  OA  cùng hướng hay  = = .  
a b c
2
Bổ đề 6. Trong tam giác ABC ta có  ( a + b + c ) 12 S 3.  
VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

Chứng minh

Theo bài toán 2.1 ta có  a 2 + b 2 + c 2 4S 3.                                                (*)
1
1 �
�1
+
+
Mặt khác ta có  ab + bc + ca = 2S �
 

�sin A sin B sin C �
9
4S 3  
                                              2 S
sin A + sin B + sin C
                     � 2( ab + bc + ca) �8S 3.                                                        (**)
Từ (*) và (**) ta có  a 2 + b 2 + c 2 + 2(ab + bc + ca ) 12S 3  
                            � (a + b + c) 2 �12 S 3.  
Đẳng thức xảy ra khi tam giác ABC đều.
D

K

A
E

H

C

F


B
         
Quay trở lại bài toán. Gọi H là hình chiếu vuông góc của D lên mặt phẳng
(ABC). Gọi E, F, K lần lượt là hình chiếu vuông góc của H lên AB, BC, CA.
Đặt  DH = h,  HF = x,  HK = y,  HE = z.  Áp dụng định lý Pitago ta có

                  DF = h 2 + x 2 ,  DK = h 2 + y 2 ,  DE = h 2 + z 2  
1
Do đó  S A + S B + SC = ( BC.DF + CA.DK + AB.DE )
2
VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

(
(

)

1
a h2 + x 2 + b h2 + y 2 + c h2 + z 2  
2
1
                                 =
(ah) 2 + (ax) 2 + (bh) 2 + (by ) 2 + (ch) 2 + (cz ) 2   
2
1
2

2
                                 
( ah + bh + ch ) + ( ax + by + cz )  ( Theo bổ đề 5)
2
1
2
                                =
( a + b + c ) h2 + 4 ( S∆HBC + S∆HCA + S∆HAB )  
2
1
                               
12 S D 3h 2 + 4S D2  ( Theo bổ đề 6)
2
2
                              � ( S A + S B + SC ) �3 3S D h 2 + S D2  
                                 =

)

                              � ( S A + S B + SC + S D ) ( S A + S B + SC − S D ) �3 3S D h 2  

2

�1 �
                              � ( S A + S B + SC + S D ) ( S A + S B + SC − S D ) 2 S D �54 3 � Sh � 
�3 �
2
�S A + S B + SC − S D + 2S D �
2
                              � ( S A + S B + SC + S D ) �

��54 3V  
2


3
                              � ( S A + S B + SC + S D ) �216 3V 2  
3
3
3
3
2
                              � 16 ( S A + S B + SC + S D ) �216 3V  

27
                              � S A3 + S B3 + SC3 + S D3 � V 2 3.
2
Đẳng thức xảy ra khi tứ diện ABCD đều. 
3. THỰC NGHIỆM SƯ PHẠM
3.1 Kết quả từ thực tiễn.
     Trước khi dạy thực nghiệm tôi khảo sát lớp 12I và 12K. Qua kết quả khảo  
sát 
tôi thấy rằng phần lớn học sinh   bằng lòng với một cách giải mà mình tìm  
được 
và cũng không hứng thú để tìm cách giải khác.
     Sau khi dạy thực nghiệm cho lớp 12I tôi thấy các em có hứng thú hơn khi 
giải 
toán, các em luôn có xu hướng tìm tòi cách giải khác. Nhiều em đã tìm ra nhiều 
cách giải độc đáo.

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN



SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

3.2 Kết quả thực nghiệm
     Sáng kiến được áp dụng trong năm học 2015 – 2016
     Thực nghiệm được tiến hành tại lớp 12I  (36 học sinh) và 12K (40 học sinh) 
trường THPT Tây Hiếu, thị xã Thái Hòa, Nghệ An. Trong đó lớp 12I được áp
dụng sáng kiến, lớp 12K không áp dụng sáng kiến.
     Sau khi dạy thực nghiệm, tôi cho 2 lớp làm bài kiểm tra sau
TRƯỜNG THPT TÂY HIẾU ĐỀ KIỂM TRA KHẢO SÁT THỰC NGHIỆM
Thời gian: 45 phút

Đề bài: Chứng minh bất đẳng thức sau bằng 4 cách và mở rộng bài toán
                                      a 2 + b 2 + c 2 ab + bc + ca  
Kết quả khảo sát
             
Loại
Lớp
12I
12K

Giỏi

Khá

13.9%
0%

25%

0%

Trung 
bình
36.1%
27.5%

Yếu

Kém

13.9%
30%

11.1%
42.5%

Nhận xét kết quả khảo sát: Lớp 12K không dạy thực nghiệm nên hầu hết các 
em chỉ  giải được một cách và không mở  rộng được bài toán. Ngược lại, lớp 
12I được dạy thực nghiệm nên hầu hết các em giải được hai cách trở  lên và 
mở rộng được bài toán.
Tổng hợp cách giải của học sinh và mở rộng
Cách 1. Áp dụng bất đẳng thức  x 2 + y 2 2 xy  ta có
a2 + b2

2ab

2
2
2bc

                    b + c ��

c2 + a2

2a 2 + 2b 2 + 2c 2 �2ab + 2bc + 2ca  

2ca

                                           � a 2 + b 2 + c 2 �ab + bc + ca  
Đẳng thức xảy ra khi  a = b = c.
Cách 2. Ta có 
            a 2 + b 2 + c 2 �ab + bc + ca � 2a 2 + 2b 2 + 2c 2 − 2ab − 2bc − 2ca �0  
VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


SKKN: GIẢI BÀI TOÁN IMO THEO NHIỀU CÁCH VÀ MỞ RỘNG BÀI TOÁN

                                     � ( a − b) 2 + (b − c) 2 + (c − a ) 2 �0  
Bất đẳng thức cuối đúng nên bất đẳng thức đã cho đúng.
Đẳng thức xảy ra khi  a = b = c.
Cách 3. Bất đẳng thức đã cho tương đương với bất đẳng thức 
                     a 2 − (b + c)a + b 2 + c 2 − bc 0  (*)
Xét tam thức bậc hai ẩn a là  f ( a) = a 2 − (b + c) a + b 2 + c 2 − bc.  
Ta có  ∆ = (b + c) 2 − 4b 2 − 4c 2 + 4bc = −3(b − c) 2 0
Do đó  f ( a) 0  hay bất đẳng thức (*) đúng. Vậy bất đẳng thức đã cho đúng.
Đẳng thức xảy ra khi  a = b = c.
Cách 4. Không mất tính tổng quát, giả sử  c b a.  
Ta có  (a −−b��
)(a −−+
c) �۳

0 + −a 2 ca ab bc 0 a 2 ab ca bc  
� a 2 + b 2 + c 2 �ab + ca − bc + b 2 + c 2
         
� a 2 + b 2 + c 2 �ab + ca + bc + (b − c ) 2 �ab + bc + ca.
Đẳng thức xảy ra khi  a = b = c.  
Cách 5. Không mất tính tổng quát, giả sử  c b a.  
Ta có bất đẳng thức đã cho tương đương với bất đẳng thức
            a 2 − ab + b 2 − bc + c 2 − ca ��
0 a (a − b) + b(b − c ) + c (c − a ) �0
           � a(a − b) + b(b − c) + c(c − b) + c (b − a ) �0  
           � ( a − b)( a − c) + (b − c) 2 �0.   (*)
Do  c b a  nên bất đẳng thức (*) đúng. Vậy bất đẳng thức đã cho đúng.
Đẳng thức xảy ra khi  a = b = c.
1
1
1
2
2
2
Cách 6. Ta có  a 2 + b 2 + c 2 = ab + bc + ca + ( a − b ) + ( b − c ) + ( c − a )  
2
2
2
2
2
2
                    � a + b + c �ab + bc + ca.  
Đẳng thức xảy ra khi  a = b = c.  
Mở rộng 1. Mở rộng theo hướng tăng số mũ.
Cho các số thực a, b, c ta có  a 2 n + b2 n + c 2 n (ab)n + (bc)n + (ca) n , n ᄋ *  

Mở rộng 2. Mở rộng theo hướng tăng số hạng
Cho các số thực  a1 ,  a2 ,...,  an  ta có
                 a12 + a22 + ... + an2 a1a2 + a2 a3 + ... + an a1.  
    
4. KẾT LUẬN

VÕ NAM PHONG – THPT TÂY HIẾU – THÁI HOÀ NGHỆ AN


×