Tải bản đầy đủ (.pdf) (19 trang)

Không gian vector

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (180.08 KB, 19 trang )

Chu
.
o
.
ng 3
Khˆong gian vector
3.1 Kha´i niˆe
.
m vˆe
`
khˆong gian vector
3.1.1 D
-
i
.
nh nghı
˜
a khˆong gian vector
D
-
i
.
nh nghı
˜
a 3.1. Cho mˆo
.
t tˆa
.
p ho
.
.


p E kha´c rˆo
˜
ng va` mˆo
.
t tru
.
`o
.
ng sˆo
´
T cu`ng
v´o
.
i hai phe´p toa´n:
- Phe´p cˆo
.
ng:
E × E −→ E
(x, y) −→ x + y.
- Phe´p nhˆan ngoa`i
T × E −→ E
(λ, x) −→λx.
E cu`ng v´o
.
i hai phe´p toa´n trˆen lˆa
.
p tha`nh mˆo
.
t khˆong gian vector trˆen K, hay
K- khˆong gian vector nˆe

´
u 8 tiˆen d¯ˆe
`
sau d¯ˆay d¯u
.
o
.
.
c thu
.
.
c hiˆe
.
n:
(1) (x + y) + z = x + (y + z); ∀x, y, z ∈ E;
(2) ∃0
E
∈ E sao cho: x + 0
E
= 0
E
+ x = x; ∀x ∈ E;
(3) ∀x ∈ E, ∃ − x ∈ E sao cho: x + (−x) = (−x) + x = 0
E
;
(4) x + y = y + x; ∀x, y ∈ E;
(5) λ(x + y) = λx + λy; ∀x, y ∈ E; ∀λ ∈ K;
(6) (λ + µ)x = λx + µx; ∀x ∈ E; ∀λ, µ ∈ K;
(7) (λµ)x = λ(µx); ∀x ∈ E; ∀λ, µ ∈ K;
47

48 3. Khˆong gian vector
(8) 1x = x, ∀x ∈ K.
Mˆo
˜
i phˆa
`
n tu
.

cu

a E d¯u
.
o
.
.
c go
.
i la` mˆo
.
t vector, mˆo
˜
i sˆo
´
thuˆo
.
c K go
.
i la` mˆo
.

t vˆo
hu
.
´o
.
ng.
3.1.2 V`ai v´ı du
.
.
a. Tˆa
.
p ho
.
.
p V = Mat
m×n
(K) ca´c ma trˆa
.
n cˆa
´
p m × n trˆen tru
.
`o
.
ng K cu`ng v´o
.
i
phe´p toa´n cˆo
.
ng hai ma trˆa

.
n, nhˆan mˆo
.
t sˆo
´
cu

a tru
.
`o
.
ng K v´o
.
i mˆo
.
t ma trˆa
.
n la`
mˆo
.
t K- khˆong gian vector. Vector
−→
0 la` ma trˆa
.
n O, vector d¯ˆo
´
i −A la` ma trˆa
.
n
d¯ˆo

´
i cu

a ma trˆa
.
n A.
b. Cho V la` tˆa
.
p ho
.
.
p ca´c vector hı`nh ho
.
c v´o
.
i vector
−→
0 la` vector co´ mod¯un
b˘a
`
ng 0 va` co´ hu
.
´o
.
ng tu`y y´, ta xa´c d¯i
.
nh phe´p cˆo
.
ng va` phe´p nhˆan ngoa`i trˆen V
nhu

.
sau:
Phe´p cˆo
.
ng:
V × V −→ V
(
−→
x ,
−→
y ) −→
−→
x +
−→
y
−→
x +
−→
y d¯u
.
o
.
.
c xa´c d¯i
.
nh theo quy t˘a
´
c hı`nh bı`nh ha`nh
Vector d¯ˆo
´

i −
−→
x la` vector cu`ng phu
.
o
.
ng v´o
.
i vector
−→
x , co´ d¯ˆo
.
da`i b˘a
`
ng d¯ˆo
.
da`i
vector
−→
x va` ngu
.
o
.
.
c hu
.
´o
.
ng v´o
.

i vector
−→
x .
Phe´p nhˆan ngoa`i v´o
.
i mˆo
.
t sˆo
´
: v´o
.
i α ∈ R,
−→
x ∈ V , α
−→
x la` mˆo
.
t vector cu`ng
phu
.
o
.
ng v´o
.
i
−→
x , co´ d¯ˆo
.
da`i b˘a
`

ng tı´ch cu

a |α| v´o
.
i d¯ˆo
.
da`i cu

a
−→
x va` co´ hu
.
´o
.
ng
cu`ng hu
.
´o
.
ng v´o
.
i
−→
x nˆe
´
u α > 0, ngu
.
o
.
.

c hu
.
´o
.
ng v´o
.
i
−→
x nˆe
´
u α < 0.
Dˆe
˜
thˆa
´
y r˘a
`
ng tˆa
.
p V cu`ng v´o
.
i hai phe´p toa´n trˆen thoa

ma
˜
n 8 tiˆen d¯ˆe
`
cu

a d¯i

.
nh
nghı
˜
a khˆong gian vector. Vˆa
.
y V la` mˆo
.
t khˆong gian vector trˆen R.
c. Cho tru
.
`o
.
ng K, v´o
.
i n ≥ 1, xe´t tı´ch D
-
ˆeca´c:
K
n
= {(x
1
, x
2
, ..., x
n
)/x
i
∈ K, i = 1, 2, ..., n}
cu`ng hai phe´p toa´n:

(x
1
, x
2
, ..., x
n
) + (y
1
, y
2
, ..., y
n
) = (x
1
+ y
1
, x
2
+ y
2
, ..., x
n
+ y
n
)
k(x
1
, x
2
, ..., x

n
) = (kx
1
, kx
2
, ..., kx
n
), k ∈ K.
Dˆe
˜
thˆa
´
y K
n
cu`ng hai phe´p toa´n trˆen la` mˆo
.
t K− khˆong gian vector. Vector
O = (0, 0, ..., 0), vector d¯ˆo
´
i cu

a x = (x
1
, x
2
, ..., x
n
) la` −x = (−x
1
, −x

2
, ..., −x
n
).
D
-
˘a
.
c biˆe
.
t: Khi n = 1 thı` ba

n thˆan K cu
˜
ng la` mˆo
.
t K− khˆong gian vector.
d. Tˆa
.
p ho
.
.
p ca´c sˆo
´
thu
.
.
c R v´o
.
i phe´p cˆo

.
ng sˆo
´
thu
.
.
c va` phe´p nhˆan sˆo
´
thu
.
.
c v´o
.
i
sˆo
´
h˜u
.
u ty

la` mˆo
.
t Q− khˆong gian vector.
e. Tˆa
.
p K[x] ca´c d¯a th´u
.
c mˆo
.
t biˆe

´
n hˆe
.
sˆo
´
trˆen K v´o
.
i phe´p cˆo
.
ng d¯a th´u
.
c va`
phe´p nhˆan mˆo
.
t phˆa
`
n tu
.

thuˆo
.
c tru
.
`o
.
ng K v´o
.
i mˆo
.
t d¯a th´u

.
c la` mˆo
.
t K− khˆong
gian vector.
Ba`i gia

ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
3.1. Kha´ i niˆe
.
m vˆe
`
khˆong gian vector 49
3.1.3 Mˆo
.
t sˆo
´
tı´nh chˆa
´
t d¯o
.
n gia


n cu

a khˆong gian vector.
Cho V la` mˆo
.
t K− khˆong gian vector tu`y y´. Khi d¯o´, ta luˆon co´:
Tı´nh chˆa
´
t 3.1 (Tı´nh duy nhˆa
´
t cu

a phˆa
`
n tu
.

khˆong.). Chı

co´ duy nhˆa
´
t
mˆo
.
t vector 0 ∈ V sao cho
∀x ∈ V : x + 0 = 0 + x = x.
Thˆa
.
t vˆa

.
y, nˆe
´
u θ cu
˜
ng la` mˆo
.
t vector khˆong cu

a V thı`:
θ = θ + 0 = 0.
Tı´nh chˆa
´
t 3.2 (Tı´nh duy nhˆa
´
t cu

a phˆa
`
n tu
.

d¯ˆo
´
i.). V´o
.
i mˆo
˜
i x ∈ V , tˆo
`

n
ta
.
i duy nhˆa
´
t phˆa
`
n tu
.

d¯ˆo
´
i cu

a x la` −x sao cho:
x + (−x) = 0.
Thˆa
.
t vˆa
.
y, nˆe
´
u x

cu
˜
ng la` mˆo
.
t vector d¯ˆo
´

i cu

a x thı` :
−x = −x + 0 = −x + (x + x

) = (−x + x) + x

= 0 + x

= x

.
Tı´nh chˆa
´
t 3.3. Luˆa
.
t gia

n u
.
´o
.
c co´ hiˆe
.
u lu
.
.
c trong V , t´u
.
c la`:

+) (x + z = y + z) ⇒ (x = y), ∀x, y, z ∈ V ;
+) (z + x = z + y) ⇒ (x = y), ∀x, y, z ∈ V.
Thˆa
.
t vˆa
.
y, (x + z = y + z) ⇒ [(x + z) + (−z) = (y + z) + (−z)]
⇒ [x + (z − z) = y + (z − z)] ⇒ (x + 0 = y + 0) ⇒ (x = y).
Tu
.
o
.
ng tu
.
.
cho phˆa
`
n co`n la
.
i.
Tı´nh chˆa
´
t 3.4. ∀x, y, z ∈ V, (x + y = z) ⇔ (x = z − y).
Thˆa
.
t vˆa
.
y, (x + y = z) ⇔ [(x + y) + (−y) = z + (−y)] ⇔ [x + (y − y) = z − y]
⇔ (x + 0 = z − y) ⇔ (x = z − y).
Tı´nh chˆa

´
t 3.5. ∀λ ∈ K, ∀x ∈ V, λx = 0 ⇔

λ = 0 ∈ K
x = 0 ∈ V
Ch´u
.
ng minh. (⇐) λ0 = λ(0 + 0) = λ0 + λ0 ⇒ λ0 = 0 (theo luˆa
.
t gia

n u
.
´o
.
c);
0x = (0 + 0)x = 0x + 0x ⇒ 0x = 0 (theo luˆa
.
t gia

n u
.
´o
.
c).
(⇒) Gia

su
.


λx = 0 va` λ = 0. Khi d¯o´ ∃λ
−1
∈ K va` ta co´:
x = 1x = (λ
−1
λ)x = λ
−1
(λx) = λ
−1
0 = 0, t´u
.
c la` x = 0 ∈ V .
Ba`i gia

ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
50 3. Khˆong gian vector
Tı´nh chˆa
´
t 3.6. ∀λ ∈ K, ∀x ∈ V, −(λx) = (−λ)x = λ(−x).
Thˆa
.
t vˆa

.
y,
λx + (−λ)x = [λ + (−λ)]x = 0x = 0 = λx + [−(λx)] ⇒ (−λ)x = −(λx);
λx + λ(−x) = λ[x + (−x)] = λ0 = 0 = λx + [−(λx)] ⇒ λ(−x) = −(λx)
Vˆa
.
y: −(λx) = (−λ)x = λ(−x).
3.2 Khˆong gian vector con.
D
-
i
.
nh nghı
˜
a 3.2. Mˆo
.
t tˆa
.
p ho
.
.
p con W = ∅ cu

a K− khˆong gian vector V d¯u
.
o
.
.
c
go

.
i la` khˆong gian vector con cu

a V nˆe
´
u W ˆo

n d¯i
.
nh d¯ˆo
´
i v´o
.
i phe´p toa´n cˆo
.
ng va`
phe´p nhˆan ngoa`i trˆen V . T´u
.
c la`, x + y ∈ W va` λx ∈ W v´o
.
i mo
.
i x, y ∈ W,
mo
.
i λ ∈ K.
D
-
u
.

o
.
ng nhiˆen khi W la` mˆo
.
t khˆong gian vector con cu

a V thı` W cu
˜
ng la`
mˆo
.
t khˆong gian vector trˆen tru
.
`o
.
ng K.
Vı´ du
.
.
(1) K− Khˆong gian vector V la` mˆo
.
t khˆong gian con cu

a chı´nh no´ va` d¯u
.
o
.
.
c
go

.
i la` khˆong gian con khˆong thu
.
.
c su
.
.
. Tˆa
.
p ho
.
.
p {0
V
} chı

gˆo
`
m mˆo
.
t vector
khˆong cu
˜
ng la` mˆo
.
t khˆong gian vector con cu

a V va` d¯u
.
o

.
.
c go
.
i la` khˆong
gian con tˆa
`
m thu
.
`o
.
ng cu

a V .
Ta go
.
i khˆong gian con thu
.
.
c su
.
.
cu

a V la` mˆo
.
t khˆong gian con kha´c {0
V
}
va` kha´c V .

(2) Nˆe
´
u coi C la` mˆo
.
t R− khˆong gian vector thı` R ⊂ C la` mˆo
.
t khˆong gian
vector con cu

a C. Nˆe
´
u coi C la` mˆo
.
t C− khˆong gian vector thı` R khˆong
la` mˆo
.
t khˆong gian vector con cu

a C vı` R khˆong ˆo

d¯i
.
nh v´o
.
i phe´p nhˆan
v´o
.
i mˆo
.
t sˆo

´
ph´u
.
c.
(3) Tˆa
.
p W = {a
0
+ a
1
x + a
2
x
x
+ · · · + a
n
x
n
|a
i
∈ K} trong d¯o´ n la` mˆo
.
t sˆo
´
tu
.
.
nhiˆen cho tru
.
´o

.
c, la` mˆo
.
t khˆong gian vector con cu

a K− khˆong gian vector
K[x].
D
-
i
.
nh ly´ 3.1. Cho W la` mˆo
.
t tˆa
.
p con kha´c rˆo
˜
ng cu

a K− khˆong gian vector V .
Khi d¯o´ W la` mˆo
.
t khˆong gian vector con cu

a V khi va` chı

khi
λx + µy ∈ W, ∀x, y ∈ W, ∀λ, µ ∈ K.
Ch´u
.

ng minh. (⇒) Gia

su
.

W la` khˆong gian con cu

a V .
Khi d¯o´, ∀x, y ∈ W, ∀λ, µ ∈ K do λx, µy ∈ W nˆen λx + µy ∈ W .
(⇐) Cho
.
n λ = µ = 1 thı` ∀x, y ∈ W , ta d¯ˆe
`
u co´ x + y ∈ W ;
Ba`i gia

ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
3.3. Su
.
.
phu
.

thuˆo
.
c tuyˆe
´
n t´ınh v`a d¯ˆo
.
c lˆa
.
p tuyˆe
´
n t´ınh. 51
Cho
.
n λ = 1, µ = 0 thı` ∀x ∈ W, y = x, ta d¯ˆe
`
u co´ λx + 0x = λx ∈ W.
Do d¯o´ W la` mˆo
.
t khˆong gian vector con cu

a V .
3.3 Su
.
.
phu
.
thuˆo
.
c tuyˆe
´

n t´ınh v`a d¯ˆo
.
c lˆa
.
p tuyˆe
´
n t´ınh.
3.3.1 Tˆo

ho
.
.
p tuyˆe
´
n tı´nh va` biˆe

u thi
.
tuyˆe
´
n tı´nh.
D
-
i
.
nh nghı
˜
a 3.3. Cho x
1
, x

2
, ..., x
n
la` n vector (n ≥ 1) cu

a K− khˆong gian
vector V va` λ
1
, λ
2
, ..., λ
n
la` n vˆo hu
.
´o
.
ng trong K. Vector
x = λ
1
x
1
+ λ
2
x
2
+ · · · + λ
n
x
n
=

n

i=1
λ
i
x
i
d¯u
.
o
.
.
c go
.
i la` tˆo

ho
.
.
p tuyˆe
´
n tı´nh cu

a hˆe
.
vector (x
1
, x
2
, ..., x

n
) = (x
i
)
i=1,n
v´o
.
i ho
.
hˆe
.
sˆo
´

1
, λ
2
, ..., λ
n
) = (λ
i
)
i=1,n
.
Khi vector x la` mˆo
.
t tˆo

ho
.

.
p tuyˆe
´
n tı´nh cu

a hˆe
.
(x
i
)
i=1,n
thı` ta ba

o x biˆe

u
thi
.
tuyˆe
´
n tı´nh d¯u
.
o
.
.
c qua hˆe
.
(x
i
)

i=1,n
.
Vı´ du
.
. Cho
−→
x
1
= (1, −2),
−→
x
2
= (3, 1),
−→
x = (5, −3) ∈ R
2
.
Ta co´ 2
−→
x
1
+
−→
x
2
= (5, −3) =
−→
x .
Vˆa
.

y
−→
x la` tˆo

ho
.
.
p tuyˆe
´
n tı´nh cu

a hˆe
.
(
−→
x
1
,
−→
x
2
), hay
−→
x biˆe

u thi
.
tuyˆe
´
n tı´nh d¯u

.
o
.
.
c
qua hˆe
.
(
−→
x
1
,
−→
x
2
).
Nhˆa
.
n xe´t.
(1) Ca´ch biˆe

u diˆe
˜
n x =
n

i=1
λ
i
x

i
no´i chung khˆong duy nhˆa
´
t.
Vı´ du
.
. Trong khˆong gian vector thu
.
.
c R
2
, xe´t 3 vector x
1
= (−1, 0), x
2
=
(0, −1), x
3
= (1, 1). Khi d¯o´ vector khˆong 0 = (0, 0) biˆe

u thi
.
tuyˆe
´
n tı´nh
d¯u
.
o
.
.

c qua hˆe
.
(x
1
, x
2
, x
3
) b˘a
`
ng ı´t nhˆa
´
t hai ca´ch sau:
0 = 0x
1
+ 0x
2
+ 0x
3
;
0 = 1.x
1
+ 1.x
2
+ 1.x
3
.
(2) Nˆe
´
u x = 0 ∈ V thı` v´o

.
i mo
.
i hˆe
.
vector (x
i
)
i=1,n
⊂ V , x bao gi`o
.
cu
˜
ng biˆe

u
thi
.
tuyˆe
´
n tı´nh d¯u
.
o
.
.
c qua (x
i
)
i=1,n
.

Vı´ du
.
. 0 =
n

i=1
λ
i
x
i
, λ
i
= 0, ∀i = 1, n. Trong tru
.
`o
.
ng ho
.
.
p na`y ta no´i
0 biˆe

u thi
.
tuyˆe
´
n tı´nh tˆa
`
m thu
.

`o
.
ng qua hˆe
.
trˆen. Nˆe
´
u 0 co´ ı´t nhˆa
´
t hai
ca´ch biˆe

u thi
.
tuyˆe
´
n tı´nh qua hˆe
.
(x
i
)
i=1,n
thı` ta no´i 0 biˆe

u thi
.
tuyˆe
´
n tı´nh
khˆong tˆa
`

m thu
.
`o
.
ng qua hˆe
.
(x
i
)
i=1,n
.
Ba`i gia

ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
52 3. Khˆong gian vector
3.3.2 D
-
ˆo
.
c lˆa
.
p tuyˆe

´
n t´ınh v`a phu
.
thuˆo
.
c tuyˆe
´
n t´ınh.
D
-
i
.
nh nghı
˜
a 3.4. Hˆe
.
n vector (n ≥ 1) (x
i
)
i=1,n
trong K− khˆong gian vector
V d¯u
.
o
.
.
c go
.
i la` d¯ˆo
.

c lˆa
.
p tuyˆe
´
n tı´nh nˆe
´
u vector khˆong chı

co´ duy nhˆa
´
t mˆo
.
t ca´ch
biˆe

u thi
.
tuyˆe
´
n tı´nh qua hˆe
.
d¯o´ b˘a
`
ng tˆo

ho
.
.
p tuyˆe
´

n tı´nh tˆa
`
m thu
.
`o
.
ng. Hˆe
.
khˆong
d¯ˆo
.
c la
.
p tuyˆe
´
n tı´nh go
.
i la` hˆe
.
phu
.
thuˆo
.
c tuyˆe
´
n tı´nh.
Nhu
.
vˆa
.

y, hˆe
.
(x
i
)
i=1,n
d¯ˆo
.
c lˆa
.
p tuyˆe
´
n tı´nh khi va` chı

khi

n

i=1
λ
i
x
i
= 0 ∈ V

⇒ (λ
1
= λ
2
= · · · = λ

n
= 0 ∈ K).
Co`n hˆe
.
(x
i
)
i=1,n
phu
.
thuˆo
.
c tuyˆe
´
n tı´nh nˆe
´
u va` chı

nˆe
´
u co´ ı´t nhˆa
´
t mˆo
.
t ho
.
vˆo
hu
.
´o

.
ng (λ
i
)
i=1,n
khˆong d¯ˆo
`
ng th`o
.
i b˘a
`
ng khˆong sao cho
n

i=1
λ
i
x
i
= 0 ∈ V .
Vı´ du
.
.
(1) Cho V = R
3
la` mˆo
.
t R− khˆong gian vector. Xe´t hˆe
.
{x

1
= (1, 1, 1), x
2
= (1, 1, 0), x
3
= (1, 0, 0)}.
Gia

su
.

tˆo
`
n ta
.
i λ
1
, λ
2
, λ
3
∈ R sao cho:
λ
1
x
1
+ λ
2
x
2

+ λ
3
x
3
= 0 ⇔ (λ
1
+ λ
2
+ λ
3
, λ
1
+ λ
2
, λ
1
) = 0






λ
1
+ λ
2
+ λ
3
= 0

λ
1
+ λ
2
= 0
λ
1
= 0






λ
1
= 0
λ
2
= 0
λ
3
= 0
Vˆa
.
y hˆe
.
d¯a
˜
cho d¯ˆo

.
c lˆa
.
p tuyˆe
´
n tı´nh trong R
3
.
(2) Cho V = R
2
la` mˆo
.
t R− khˆong gian vector. Xe´t hˆe
.
3 vector :
{x
1
= (1, −2), x
2
= (1, 4), x
3
= (3, 5)}.
Gia

su
.

co´ λ
1
, λ

2
, λ
3
∈ R sao cho:
λ
1
x
1
+ λ
2
x
2
+ λ
3
x
3
= 0 ⇔ (λ
1
+ λ
2
+ 3λ
3
, −2λ
1
+ 4λ
2
+ 5λ
3
) = 0



λ
1
+ λ
2
+ 3λ
3
= 0
−2λ
1
+ 4λ
2
+ 5λ
3
= 0


λ
1
+ λ
2
= −3λ
3
−2λ
1
+ 4λ
2
= −5λ
3







λ
1
= −
7
6
λ
3
λ
2
= −
11
6
λ
3
T`u
.
d¯ˆay ta co´ thˆe

cho
.
n ra rˆa
´
t nhiˆe
`
u ho

.
vˆo hu
.
´o
.
ng (λ
i
)
i=1,3
khˆong d¯ˆo
`
ng th`o
.
i
b˘a
`
ng khˆong sao cho
3

i=1
λ
i
x
i
= 0
Vˆa
.
y hˆe
.
d¯a

˜
cho phu
.
thuˆo
.
c tuyˆe
´
n tı´nh.
Ba`i gia

ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
3.3. Su
.
.
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh v`a d¯ˆo
.

c lˆa
.
p tuyˆe
´
n t´ınh. 53
Quy u
.
´o
.
c. Hˆe
.
∅ la` hˆe
.
d¯ˆo
.
c lˆa
.
p tuyˆe
´
n tı´nh. Vector 0 ∈ V la` tˆo

ho
.
.
p tuyˆe
´
n tı´nh
tˆa
`
m thu

.
`o
.
ng cu

a hˆe
.
∅ va` la` vector duy nhˆa
´
t biˆe

u thi
.
tuyˆe
´
n tı´nh qua hˆe
.
∅.
Nhˆa
.
n xe´t.
(1) {
−→
0 } la` hˆe
.
phu
.
thuˆo
.
c tuyˆe

´
n tı´nh.
(2) Nˆe
´
u hˆe
.
(
−→
x
i
)
i=1,n
d¯ˆo
.
c lˆa
.
p tuyˆe
´
n tı´nh trong V thı` v´o
.
i mo
.
i
−→
x ∈ V ,
−→
x co´
khˆong qua´ mˆo
.
t ca´ch biˆe


u thi
.
tuyˆe
´
n tı´nh qua hˆe
.
(
−→
x
i
)
i=1,n
.
(3) Cho hˆe
.
(
−→
x
i
)
i=1,n
d¯ˆo
.
c lˆa
.
p tuyˆe
´
n tı´nh trong V va`
−→

x ∈ V , nˆe
´
u
−→
x biˆe

u thi
.
tuyˆe
´
n tı´nh d¯u
.
o
.
.
c qua hˆe
.
(
−→
x
i
)
i=1,n
thı` ca´ch biˆe

u diˆe
˜
n d¯o´ la` duy nhˆa
´
t.

Ch´u
.
ng minh. Gia

su
.

−→
x biˆe

u thi
.
tuyˆe
´
n tı´nh d¯u
.
o
.
.
c qua hˆe
.
(
−→
x
i
)
i=1,n
t´u
.
c la`

tˆo
`
n ta
.
i ca´c λ
i
∈ K sao cho
−→
x = λ
1
−→
x
1
+ λ
2
−→
x
2
+ · · · + λ
n
−→
x
n
.
Nˆe
´
u ngoa`i ca´c λ
i
trˆen co`n tˆo
`

n ta
.
i ca´c µ
i
∈ K sao cho
−→
x = µ
1
−→
x
1
+ µ
2
−→
x
2
+ · · · + µ
n
−→
x
n
.
Thı` ta co´:
λ
1
−→
x
1
+ λ
2

−→
x
2
+ · · · + λ
n
−→
x
n
= µ
1
−→
x
1
+ µ
2
−→
x
2
+ · · · + µ
n
−→
x
n
⇔ (λ
1
− µ
1
)
−→
x

1
+ (λ
2
− µ
2
)
−→
x
2
+ · · · + (λ
n
− µ
n
)x
n
=
−→
0













λ
1
− µ
1
= 0
λ
2
− µ
2
= 0
· · ·
λ
n
− µ
n
= 0
(do hˆe
.
(
−→
x
i
)
i=1,n
d¯ˆo
.
c lˆa
.
p tuyˆe
´

n tı´nh)
⇔ λ
i
= µ
i
, ∀i = 1, n. Vˆa
.
y su
.
.
biˆe

u thi
.
tuyˆe
´
n tı´nh cu

a
−→
x qua hˆe
.
(
−→
x
i
)
i=1,n
la` duy nhˆa
´

t.
3.3.3 V`ai t´ınh chˆa
´
t vˆe
`
hˆe
.
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh v`a hˆe
.
d¯ˆo
.
c lˆa
.
p tuyˆe
´
n
t´ınh.
Tı´nh chˆa
´
t 3.7. (i) Hˆe
.
gˆo
`
m mˆo

.
t vector {
−→
x } d¯ˆo
.
c lˆa
.
p tuyˆe
´
n tı´nh khi va` chı

khi
−→
x =
−→
0 .
(ii) Mo
.
i hˆe
.
vector ch´u
.
a
−→
0 d¯ˆe
`
u phu
.
thuˆo
.

c tuyˆe
´
n tı´nh.
Tı´nh chˆa
´
t na`y kha´ d¯o
.
n gia

n, ba
.
n d¯o
.
c tu
.
.
ch´u
.
ng minh.
Ba`i gia

ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×