Tải bản đầy đủ (.doc) (8 trang)

Bai tap ve Vec to

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (115.5 KB, 8 trang )

Mt s bi tp v vect
A. Khái niệm véc tơ
1. Cho ABC. Có thể xác định đợc bao nhiêu vectơ khác
0

2. Cho tứ giác ABCD
a/ Có bao nhiêu vectơ khác
0

b/ Gọi M, N, P, Q lần lợt là trung điểm AB, BC, CD, DA.
CMR :

MQ
=

NP
3. Cho ABC. Gọi M, N, P lần lợt là trung điểm AB, BC, CA.
a/ Xác định các vectơ cùng phơng với

MN
b/ Xác định các vectơ bằng

NP
2. Cho hai hình bình hành ABCD và ABEF. Dựng các vectơ

EH


FG
bằng


AD
CMR : ADHE, CBFG, DBEG là hình bình hành.
3. Cho hình thang ABCD có hai đáy là AB và CD với AB=2CD. Từ C vẽ

CI
=

DA
. CMR :
a/ I là trung điểm AB và

DI
=

CB
b/

AI
=

IB
=

DC
4. Cho ABC. Gọi M, N, P lần lợt là trung điểm của BC, CA, AD. Dựng

MK
=

CP



KL
=

BN
a/ CMR :

KP
=

PN
b/ Hình tính tứ giác AKBN
c/ CMR :

AL
=
0

B. Phép toán véc tơ
1. Cho 4 điểm A, B, C, D. CMR :

AC
+

BD
=

AD
+


BC
5. Cho 5 điểm A, B, C, D, E.
CMR :

AB
+

CD
+

EA
=

CB
+

ED
6. Cho 6 điểm A, B, C, D, E, F.
CMR :

AD
+

BE
+

CF
=


AE
+

BF
+

CD
7. Cho 8 điểm A, B, C, D, E, F, G, H.
CMR :

AC
+

BF
+

GD
+

HE
=

AD
+

BE
+

GC
+


HF
8. Gọi O là tâm của hình bình hành ABCD. CMR :
a/

DO
+

AO
=

AB
1
Mt s bi tp v vect
b/

OD
+

OC
=

BC
c/

OA
+

OB
+


OC
+

OD
=
0

d/

MA
+

MC
=

MB
+

MD
(với M là 1 điểm tùy ý)
9. Cho tứ giác ABCD. Gọi O là trung điểm AB.
CMR :

OD
+

OC
=


AD
+

BC
10. Cho ABC. Từ A, B, C dựng 3 vectơ tùy ý

'AA
,

'BB
,

'CC
CMR :

'AA
+

'BB
+

'CC
=

'BA
+

'CB
+


'AC
.
11. Cho hình vuông ABCD cạnh a. Tính

+
ADAB
theo a
12. Cho hình chữ nhật ABCD, biết AB = 3a; AD = 4a.
a/ Tính

+
ADAB

b/ Dựng
u

=

+
ACAB
. Tính
u


13. Cho ABC vuông tại A, biết AB = 6a, AC = 8a
a/ Dựng
v

=


+
ACAB
.
b/ Tính
v

.
14. Cho tứ giác ABCD, biết rằng tồn tại một điểm O sao cho các véc tơ
, , ,OA OB OC OD
uuur uuur uuur uuur
có độ dài bằng
nhau và
OA OB OC OD+ + +
uuur uuur uuur uuur
= 0. Chứng minh ABCD là hình chữ nhật
2. Cho ABC. Gọi M, N, P lần lợt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.
a/ CMR :

AM
+

BN
+

CP
=
0

b/ CMR :


OA
+

OB
+

OC
=

OM
+

ON
+

OP
15. Cho ABC có trọng tâm G. Gọi MBC sao cho

BM
= 2

MC
a/ CMR :

AB
+ 2

AC
= 3


AM
b/ CMR :

MA
+

MB
+

MC
= 3

MG
16. Cho tứ giác ABCD. Gọi E, F lần lợt là trung điểm của AB, CD và O là trung điểm của EF.
a/ CMR :

AD
+

BC
= 2

EF
b/ CMR :

OA
+

OB
+


OC
+

OD
=
0

c/ CMR :

MA
+

MB
+

MC
+

MD
= 4

MO
(với M tùy ý)
d/ Xác định vị trí của điểm M sao cho

MA
+

MB

+

MC
+

MD
nhỏ nhất
17. Cho tứ giác ABCD. Gọi E, F, G, H lần lợt là trung điểm AB, BC, CD, DA và M là 1 điểm tùy ý.
2
Mt s bi tp v vect
a/ CMR :

AF
+

BG
+

CH
+

DE
=
0

b/ CMR :

MA
+


MB
+

MC
+

MD
=

ME
+

MF
+

MG
+

MH
c/ CMR :

+
ACAB
+

AD
= 4

AG
(với G là trung điểm FH)

18. Cho hai ABC và DEF có trọng tâm lần lợt là G và H.
CMR :

AD
+

BE
+

CF
= 3

GH
19. Cho hình bình hành ABCD có tâmO và E là trung điểm AD. CMR :
a/

OA
+

OB
+

OC
+

OD
=
0

b/


EA
+

EB
+ 2

EC
= 3

AB
c/

EB
+ 2

EA
+ 4

ED
=

EC
3. Cho 4 điểm A, B, C, D. CMR :

AB


CD
=


AC
+

DB
20. Cho 6 điểm A, B, C, D, E, F. CMR :
a/*

CD
+

FA


BA


ED
+

BC


FE
=
0

b/

AD



FC


EB
=

CD


EA


FB
c/

AB


DC


FE
=

CF


DA

+

EB
21. Cho ABC. Hãy xác định điểm M sao cho :
a/

MA


MB
+

MC
=
0

b/

MB


MC
+

BC
=
0

c/


MB


MC
+

MA
=
0

d/

MA


MB


MC
=
0

e/

MC
+

MA



MB
+

BC
=
0

22. Cho hình chữ nhật ABCD có AB = 3a, AD = 4a.
a/ Tính

AD


AB

b/ Dựng
u

=

CA


AB
. Tính
u


23. Cho ABC đều cạnh a. Gọi I là trung điểm BC.
a/ Tính



ACAB

b/ Tính

BA


BI

24. Cho ABC vuông tại A. Biết AB = 6a, AC = 8a.
Tính


ACAB

4. Cho ABC. Gọi M, N, P lần lợt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.
3
Mt s bi tp v vect
a/ CMR :

AM
+

BN
+

CP
=

0

b/ CMR :

OA
+

OB
+

OC
=

OM
+

ON
+

OP

5. Cho ABC có trọng tâm G. Gọi M BC sao cho

BM
= 2

MC
a/ CMR :

AB

+ 2

AC
= 3

AM
b/ CMR :

MA
+

MB
+

MC
= 3

MG
25. Cho tứ giác ABCD. Gọi E, F lần lợt là trung điểm của AB, CD và O là trung điểm của EF.
a/ CMR :

AD
+

BC
= 2

EF
b/ CMR :


OA
+

OB
+

OC
+

OD
=
0

c/ CMR :

MA
+

MB
+

MC
+

MD
= 4

MO
(với M tùy ý)
26. Cho tứ giác ABCD. Gọi E, F, G, H lần lợt là trung điểm AB, BC, CD, DA và M là 1 điểm tùy ý.

a/ CMR :

AF
+

BG
+

CH
+

DE
=
0

b/ CMR :

MA
+

MB
+

MC
+

MD
=

ME

+

MF
+

MG
+

MH
c/ CMR :

AB
+

AC
+

AD
= 4

AG
(với G là trung điểm FH)
27. Cho hai ABC và DEF có trọng tâm lần lợt là G và H.
CMR :

AD
+

BE
+


CF
= 3

GH
28. Cho hình bình hành ABCD có tâm O và E là trung điểm AD. CMR :
a/

OA
+

OB
+

OC
+

OD
=
0

b/

EA
+

EB
+ 2

EC

= 3

AB
c/

EB
+ 2

EA
+ 4

ED
=

EC
29. Cho tam giác ABC, Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI, gọi J là điểm trên BC kéo dài
sao cho 5JB = 2JC.
a) Tính
, ,AI AJ theo AB AC
uur uur uuur uuur
b) Gọi G là trọng tâm tam giác ABC . Tính
AG
uuur
theo
AI
uuur

AJ
uur
6. Cho ABC có M, D lần lợt là trung điểm của AB, BC và N là điểm trên cạnh AC sao cho


AN
=
2
1

NC
. Gọi K là trung điểm của MN.
a/ CMR :

AK
=
4
1

AB
+
6
1

AC
b/ CMR :

KD
=
4
1

AB
+

3
1

AC
30. Cho ABC. Trên hai cạnh AB, AC lấy 2 điểm D và E sao cho

AD
= 2

DB
,

CE
= 3

EA
. Gọi
M là trung điểm DE và I là trung điểm BC. CMR :
4
Mt s bi tp v vect
a/

AM
=
3
1

AB
+
8

1

AC
b/

MI
=
6
1

AB
+
8
3

AC
31. Cho 4 điểm A, B, C, D thỏa 2

AB
+ 3

AC
= 5

AD
CMR : B, C, D thẳng hàng.
32. Cho ABC, lấy M, N, P sao cho

MB
= 3


MC
;

NA
+3

NC
=
0



PA
+

PB
=
0

a/ Tính

PM
,

PN
theo

AB



AC
b/ CMR : M, N, P thẳng hàng.
33. Cho tam giác ABC.Gọi A là điểm đối xứng với A qua B, B là điểm đối xứng với B qua C, C là
điểm đối xứng với C qua A.Chứng minh các tam giác ABC và ABC có cùng trọng tâm.
34. Cho tam giác ABC và điểm M tuỳ ý. Gọi A, B, C lần lợt là điểm đối xứng của M qua các trung
điểm K, I, J của các cạnh BC, CA, AB
a/ Chứng minh ba đờng thẳng AA, BB, CC đồng qui
b/ Chứng minh khi M di động , MN luôn qua trọng tâm G tam giác ABC
35. Cho tam giác ABC. Tìm tập hợp các điểm M thoả mãn tng đtều kiện sau :
a/
MA MB=
uuur uuur
.
b/
MA MB MC O+ + =
uuur uuur uuuur ur
c/ |
C + = +
uuuur uuuur uuuur uuuur
d/
C
3
+ =
2
uuuur uuur uuuur uuuur

e/ |
C + =
uuuur uuur uuuur uuuur


C. Trục Toạ độ trên trục:
7. Trên trục x'Ox cho 2 điểm A, B có tọa độ lần lợt là 2 và 5.
a/ Tìm tọa độ của

AB
.
b/ Tìm tọa độ trung điểm I của đoạn thẳng AB
c/ Tìm tọa độ của điểm M sao cho 2

MA
+ 5

MB
=
0

d/ Tìm tọa độ điểm N sao cho 2
NA
+ 3
NB
= 1
36. Trên trục x'Ox cho 3 điểm A, B, C có tọa độ lần lợt là a, b, c.
a/ Tìm tọa độ trung điểm I của AB
b/ Tìm tọa độ điểm M sao cho

MA
+

MB



MC
=
0

c/ Tìm tọa độ điểm N sao cho 2

NA
3

NB
=

NC
37. Trên trục x'Ox cho 2 điểm A, B có tọa độ lần lợt là 3 và 1.
5

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×