Tải bản đầy đủ (.pdf) (36 trang)

Tính tạo hàm của hàm số tại điểm mút và ứng dụng vào dự báo đường huyết toán ứng dụng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.64 MB, 36 trang )

..

1

MỤC LỤC
LỜI MỞ ĐẦU ................................................................................................... 1
CHƯƠNG I: KHÁI NIỆM VỀ BÀI TỐN ĐẶT KHƠNG CHỈNH ............. 4
1.1. Khái niệm về bài tốn chỉnh và khơng chỉnh ........................................... 4
1.2. Ví dụ về bài tốn khơng chỉnh .................................................................. 5
CHƯƠNG II: PHƯƠNG PHÁP SAI PHÂN HIỆU CHỈNH ....................... 10
2.1.Bài tốn tính gần đúng đạo hàm .............................................................. 10
2.2.Phương pháp chọn bước lưới thích nghi ................................................ 10
2.3. Phương pháp sai phân hiệu chỉnh để tính gần đúng đạo hàm một phía
tại điểm mút khi dữ liệu có nhiễu ................................................................. 13
CHƯƠNG III: SỬ DỤNG PHƯƠNG PHÁP SAI PHÂN HIỆU CHỈNH ĐỂ
DỰ BÁO ĐƯỜNG HUYẾT ........................................................................... 25
KẾT LUẬN ..................................................................................................... 32
TÀI LIỆU THAM KHẢO.............................................................................. 33


2

LỜI CẢM ƠN

Trong suốt q trình làm luận văn, tơi ln nhận được sự hướng dẫn,chỉ bảo tận
tình và giúp đỡ nghiêm túc của GS.TSKH Phạm Kỳ Anh (Khoa Toán - Cơ - Tin học,
Trường Đại học Khoa Học Tự Nhiên, Đại học Quốc gia Hà Nội). Tôi xin chân thành bày
tỏ lòng cảm ơn sâu sắc đến Thầy.Thầy đã dành nhiều thời gian hướng dẫn cũng như giải
đáp thắc mắc của tôi. Thầy đã giúp đỡ tôi bổ sung nhiều về kiến thức, khả năng nghiên
cứu,chọn lọc và tổng hợp các tài liệu để hồn thành luận văn.Tơi xin kính chúc thầy và gia
đình mạnh khỏe, hạnh phúc.


Qua đây, tôi xin gửi tới các Thầy, Cô tham gia giảng dạy khóa Cao học Tốn 2012
- 2014 tại trường Đại Học Khoa Học - Đại học Thái Nguyên và Viện Toán học lời cảm ơn
sâu sắc nhất - Các Thầy, Cô đã mang đến cho tôi nhiều kiến thức bố ích khơng chỉ về
chun mơn mà cịn cả trong cuộc sống.
Tôi cũng xin chân thành cảm ơn các bạn đồng môn đã giúp đỡ tôi trong thời gian
học tập tại Trường Đại học Khoa học - Đại học Thái Nguyên và trong q trình hồn thiện
luận văn này.
Cuối cùng tơi xin gửi lời cảm ơn tới gia đình tơi.Những người đã động viên, chăm
sóc và tạo điều kiện tốt nhất cho tơi để tơi có được thành quả ngày hơm nay.

Thái Nguyên, tháng 9 năm 2014
Người thực hiện

Nguyễn Hải Đăng


3

LỜI MỞ ĐẦU
Có rất nhiều vấn đề trong khoa học cũng như trong cuộc sống thực tế dẫn
tới các bài tốn đặt khơng chỉnh, như xử lý ảnh, xử lý tiếng nói, thăm dị tài
ngun bằng phương pháp đo trọng lực, chụp ảnh cắt lớp bằng máy tính, vv...
Bài tốn tính gần đúng đạo hàm hàm sổ tại điểm mút là một bài tốn đặt
khơng chỉnh. Giải quyết bài tốn này và ứng dụng của nó trong dự báo đường
huyết có ý nghĩa quan trọng trong việc điều trị bệnh tiểu đường.
Điều này thúc đẩy tơi tìm hiểu và nghiên cứu về ứng dụng của bài tốn tính
gần đúng đạo hàm hàm số tại điểm mút và áp dụng vào dự báo đường huyết.
Trong luận văn này, tơi xin trình bày những kết quả lý thuyết của bài tốn
tính gần đúng đạo hàm hàm số tại điểm mút và ứng dụng trong dự báo đường
huyết của nó theo bài báo V. Naumova, s.v. Pereverzyev, and s. Sivananthan,

Adaptive parameter choice for one-sided íĩnite difference schemes and its
application in diabetes technology, Journal of Complexity, 28(2012) 524-538.
Nội dung luận văn được chia làm 3 chương:
Chương 1 giới thiệu một số khái niệm cơ bản và ví dụ về bài tốn đặt
khơng chỉnh.
Chương 2 trình bày bài tốn tính gần đúng đạo hàm hàm số tại điểm mút,
bao gồm phương pháp tiếp cận giải quyết bài tốn, phương pháp chọn bước lưới
thích nghi, phương pháp sai phân hiệu chỉnh để giải bài toán.
Chương 3 trình bày về áp dụng của bài tốn tính gần đúng đạo hàm hàm
số tại điếm mút vào dự báo đường huyết.
Do thời gian và kiến thức còn hạn chế nên luận văn khơng tránh khỏi
những thiếu sót. Kính mong các Thầy, Cơ và các bạn đóng góp ý kiến để luận
văn này được hoàn thiện.


4

CHƯƠNG I: KHÁI NIỆM VỀ BÀI TỐN ĐẶT
KHƠNG CHỈNH
1.1. Khái niệm về bài tốn chỉnh và khơng chỉnh
Năm 1932 J.H’adamard đưa ra khái niệm bài toán đặt chỉnh khi nghiên
cứu về ảnh hưởng của các điều kiện biên lên nghiệm của phương trình đạo hàm
riêng dạng elliptic hoặc parabolic.
Bài tốn tìm nghiệm x ∈ X theo dữ kiện f ∈ Y từ phương trình
A (x) = f ,

(1.1)

trong đó A là tốn tử đưa khơng gian metric X vào khơng gian metric Y,
được gọi là bài toán chỉnh the H’Adamard nếu có:

1. Với mỗi f ∈ Y tồn tại nghiệm x ∈ X .
2. Nghiệm x đó được xác định một cách duy nhất.
3. Nghiệm x phụ thuộc liên tục vào các dữ kiện f và A.
Nếu ít nhất một trong ba điều kiện trên khơng thoả mãn, bài tốn (1.1)
được gọi là bài tốn khơng chỉnh (cịn gọi là bài tốn đặt khơng chính quy hoặc
bài tốn thiết lập khơng đúng đắn).
Cần lưu ý rằng một bài tốn có thể đặt không chỉnh trên một cặp không gian
metric này, nhưng lại thiết lập đúng đắn trên một cặp không gian metric khác.
Để đơn giản, sau đây ta luôn giả sử rằng tốn tử A cho trước một cách
chính xác, còn vế phải f cho bởi fδ với sai số ρY ( fδ , f ) ≤ δ . Như vậy, với
( fδ ,δ ) ta cần phải tìm một phần tử xδ ∈ X hội tụ đến x0 là nghiệm chính xác

của (1.1) khi δ → 0. Phần tử xδ có tính chất như vậy được gọi là nghiệm xấp xỉ
của bài tốn đặt khơng chỉnh nói trên. Nếu ta kí hiệu:
Qδ = { x ∈ X : ρY ( A( x), fδ ) ≤ δ }

thì nghiệm đúng của phương trình trên phải nằm trong tập Qδ . Nhưng tập
Qδ này cịn q rộng, vì vậy, khơng phải mọi phần tử của Qδ đều có thể coi là

nghiệm xấp xỉ của (1.1) được. Bài toán đặt ra là phải chọn phần tử nào của Qδ
làm nghiệm xấp xỉ cho (1.4). Để thực hiện được điều này ta cần có thêm thơng


5
tin về nghiệm chính xác x0 . Việc sử dụng thơng tin định tính về nghiệm (tính
trơn hoặc tính đơn điệu của nghiệm,vv...) cho ta một hướng khác trong việc xây
dựng thuật tốn tìm nghiệm xấp xỉ cho bài tốn đặt khơng chỉnh (1.1).
1.2. Ví dụ về bài tốn khơng chỉnh
1. Bài tốn tính gần đúng đạo hàm.
Giả sử hàm y = f ( x) có đạo hàm. Ta cần tính đạo hàm bằng số

f '( x) = lim
h→ 0

f ( x + h) − f ( x )
h

tại điểm x . Trong thực tế nhiều khi ta không biết chính xác hàm f mà chỉ
biết xấp xỉ của nó là fδ. Vấn đề này ta sẽ bàn kỹ ở mục sau. Ở đây ta giả sử hàm f
đã cho chính xác.
Bằng cách chọn dãy {hk } sao cho hk → 0 khi k → ∞ và tính tỷ sai phân.
Dk =

f ( x + hk ) − f ( x)
, k = 0,1,..., N .
hk

Khi đó, ta có thể nghĩ rằng với N đủ lớn, tức hN đủ nhỏ, DN sẽ là xấp xỉ
tốt của f '( x) . Vậy thì với hN nhỏ bao nhiêu ta sẽ nhận được xấp xỉ tốt. Liệu hN
càng nhỏ có cho ta xấp xỉ càng tốt hay không? Để trả lời cho câu hỏi đó ta xét ví
dụ sau. Cho hàm số f ( x) = exp( x) , tính đạo hàm f '(1) với hk = 10− k ta có bảng
kết quả
k

hk

f k = f (1 + hk )

fk − e

Dk =


fk − e
hk

1

0.1

3.0041660

0.285884196

2.858841560

2

0.01

2.7456011

0.027319187

2.731918700

3

10-3

2.7210014


0.002719642

2.719642000

4

10-4

2.7185536

0.000271842

2.7184200000

5

10-5

2.7183090

0.000027183

2.718300000

6

10-6

2.7182845


0.000002719

2.719000000

7

10-7

2.7182827

0.000000272

2.720000000

8

10-8

2.7182818

0.000000028

2.800000000


6
9

10-9


2.7182818

0.000000002

3.000000000

10

10-10

2.7182818

0.000000000

0.000000000

Bảng trên cho ta thấy nếu

k = 10 , thì

Dk = 0 . Trong khi đó

f '(1) ≈ 2.718282 . Như vậy khi k = 5 tỷ sai phân cho ta xấp xỉ tốt hơn cả. Điều đó

nói lên rằng Dk tiến gần tới f '( x) ở một thời khắc nào đó sau lại rời xa nó. Cũng ở
ví dụ trên ta thấy 0.0007 = D6 − D5 ≥ D5 − D4 = 0.00012 . Quan sát này gợi ý cho
ta nên tính Dk đến lúc DN +1 − DN ≥ DN − DN −1 thì thơi.
2. Phương trình tích phân Fredholm loại I
b


∫ K (t , s)ϕ (s)ds =

f 0 (t ),

t ∈ [ c, d ]

(1.2)

a

Ở đây nghiệm là một hàm ϕ ( s) , vế phải f 0 (t ) là một hàm số cho trước và
nhân tích phân K (t , s) cùng với ∂K / ∂t được giả thiết là các hàm liên tục. Ta tìm
nghiệm ϕ ( s) trong lớp các hàm liên tục trên [ a, b] với khoảng cách (còn được
gọi là độ lệch) giữa hai hàm ϕ1 và ϕ 2 là
ρC[a ,b] (ϕ1 ,ϕ 2 ) = max ϕ1 ( s ) − ϕ2 ( s ) .
s∈[ a ,b]

Sự thay đổi vế phải được đo bằng độ lệch trong không gian L2 [ c, d ] , tức
là khoảng cách giữa hai hàm f1 (t ) và f 2 (t ) trong L2 [ c, d ] được biểu thị bởi đại
lượng
1/ 2

2
d

ρ L [c,d] ( f1 , f 2 ) =  ∫ f1 (t ) − f 2 (t ) dt 
c

2


Giả sử phương trình (1.1) có nghiệm ϕ0 ( s ) . Khi đó với vế phải
b

f1 (t ) = f 0 (t ) + N ∫ K (t , s)sin(ws) ds,
a

phương trình (1.1) có nghiệm
ϕ1 ( s ) = ϕ0 ( s ) + N sin(ws).

Với N bất kỳ nhưng cố định và w đủ lớn, thì khoảng cách giữa hai hàm f 0
và f i trong L2 [ c, d ]


7
1/ 2

2
 d  b
 
ρ L [c,d] ( f 0 , f1 ) = N  ∫  ∫ K (t , s)sin(ws) ds  dt 
 
 c  a
2

có thể làm nhỏ tuỳ ý. Thật vậy, đặt
K max = max

s∈[ a ,b ],t∈[ c , d ]

K (t , s ) ,


ta tính được
1/ 2

2
 d 

1
b
ρ L [c,d] ( f 0 , f1 ) ≤ N  ∫  K max cos(ws) a  dt 
w
 
 c 
2

N K max c0
,
w



ở đây c0 là một hằng số dương. Ta chọn N và w lớn tuỳ ý, nhưng N / w lại
nhỏ. Khi đó,
ρC [a, b] (ϕ0 ,ϕ1 ) = max ϕ0 ( s ) − ϕ1 ( s) = N
s∈[a,b]

có thể lớn bất kỳ.
Khoảng cách giữa hai nghiệm ϕ0 và ϕ1 trong L2 [a, b] cũng có thể lớn bất
kỳ. Thật vậy,
1/ 2


2
b

ρ L 2[a,b] (ϕ0 ,ϕ1 ) =  ∫ ϕ0 ( s) − ϕ1 ( s ) ds 
a


= N

1/ 2

b

= N  ∫ sin 2 (ws) ds 
a


b−a 1

sin(w (b - a) cos (w (b+a)) .
2
2w

Dễ dàng nhận thấy hai số N và w có thể chọn sao cho ρ L 2[c, d] ( f 0 , f1 ) rất
nhỏ nhưng vẫn cho kết quả ρ L 2[a, b] (ϕ0 ,ϕ1 ) rất lớn.
3. Bài tốn tính tổng Fourier


f1 (t ) = ∑ an cos(nt ),

n=0

với hệ số (a0, a1, ..., an...) ∈ l2 được cho xấp xỉ bởi cn = an + ε / n, n ≥ 1 và
c0 = a0 . Khi đó, chuỗi Fourier tương ứng


f 2 (t ) = ∑ cn cos(nt )
n =0


8
cũng có hệ số (c0 , c1 ,..., cn ,...) ∈ l2 . Khoảng cách giữa chúng là
1/ 2

ε1 =

{∑ (c − a ) }


2

n

n

n =0

1/ 2

π2

∞ 1
= ε ∑ 2  = ε
6
 n=1 n 

Do đó, khoảng cách giữa hai bộ hệ số này có thể làm nhỏ bất kỳ vì ε có
thể lấy nhỏ tuỳ ý. Trong khi đó, hiệu

1
f 2 (t ) − f1 (t ) = ε ∑ cos(nt )
n =1 n

có thể lớn tùy ý. Ví dụ, tại t = 0 chuỗi trên phân kỳ. Điều đó nói lên rằng
nếu khoảng cách giữa hai hàm f1 và f 2 được xét trong không gian các hàm với
độ đo đều, thì bài tốn tính tổng chuỗi Fourier là không ổn định khi hệ số của
chuỗi có sự thay đổi. Tuy nhiên, nếu xét trong khơng gian L2 [ 0,π ] , thì
1/ 2

2
π ∞

2
π

 ∫ [ f 2 (t ) − f1 (t )] dt  =  ∫ ∑ (cn − an )cos(nt ) dt 
0

 0 n=1

1/ 2


1/ 2

∞ π

= ∑ (cn − an ) 2 
 n=1 2


= ε1

π
.
2

Như vậy, bài toán lại ổn định, tức là khi dữ kiện ban đầu an cho bởi xấp
xỉ cn với sai số khá nhỏ, thì các chuỗi Fourier tương ứng cũng sai khác nhau
khơng nhiều trong L2 [0, π ] .
4. Bài toán Cauchy cho phương trình Laplace hai chiều
∂ 2u ∂ 2u
+
= 0,
∂x 2 ∂y 2

u ( x,0) = f ( x),

∂u
∂y

(1.2)

= ϕ ( x), −∞ < x < ∞,

(1.3)

y =0

ở đây f ( x) và ϕ ( x) là các hàm cho trước. Nếu lấy f ( x) = f1 ( x) ≡ 0 và
1
ϕ ( x) = ϕ1 ( x) = sin( ax) , thì nghiệm của bài tốn trên là
a
u1 ( x, y ) =

1
sin(ax) sh(ay ),
a2

a > 0.


9
Nếu lấy f ( x) = f 2 ( x) = ϕ ( x) = ϕ 2 ( x) ≡ 0 , thì nghiệm của bài tốn (1.2) (1.3) là u2 ( x, y ) ≡ 0 . Với khoảng cách giữa các hàm cho trước và nghiệm được
xét trong độ đo đều ta có
ρC ( f1 , f 2 ) = sup f1 ( x ) − f 2 ( x) = 0,
x

1
ρC (ϕ1 ,ϕ 2 ) = sup ϕ1 ( x) − ϕ2 ( x) = .
x
a


Với a khá lớn thì khoảng cách giữa hai hàm ϕ1 và ϕ 2 lại khá nhỏ. Trong
khi đó, khoảng cách giữa các nghiệm
ρC (u1 , u2 ) = sup u1 ( x, y ) − u2 ( x, y )
( x, y )

= sup
( x, y )

1
1
sin(ax) sh(ay ) = 2 sh(ay ),
2
a
a

với y > 0 cố định lại lớn bất kỳ. Chính vì vậy, đây cũng là bài tốn đặt
khơng chỉnh.
Những ví dụ trên dẫn đến một lớp bài tốn rất quan trọng trong lĩnh vực
tính tốn. Đó là lớp các bài tốn đặt khơng chỉnh. Để trình bày một số khái niệm
và kết quả về bài tốn đặt khơng chỉnh, trong mục tiếp theo, chúng tôi xin nhắc
lại một số kiến thức của Giải tích hàm.


10

CHƯƠNG II: PHƯƠNG PHÁP SAI PHÂN HIỆU CHỈNH
2.1.Bài tốn tính gần đúng đạo hàm
Chúng ta nghiên cứu bài tốn tính gần đúng đạo hàm y’(B) của hàm y(t)
tại điểm biên của khoảng [b, B] với giả thiết là tại các mốc cho trước
B = tN > tN −1 > · · · > t1 ≥ b ,


(1)

ta chỉ biết các giá trị nhiễu yδ (tj ) của y(tj), sao cho
y (t1 ) − yδ (t j ) ≤ δ .

(2)

Như trong Chương I đã trình bày, bài tốn tính gần đúng đạo hàm là đặt
khơng chỉnh. Do đó, để tính ổn đinh đạo hàm của một hàm số, ta cần sử dụng
các phương pháp hiệu chỉnh (hay còn gọi là các phương pháp chỉnh hóa)
Để tính y′ (τ ) tại một điểm trong τ ∈ (b, B) ta có thể sử dụng công thức sai
phân hữu hạn như một phương pháp chỉnh hóa
n

y '(τ ) ≈ Sn ,h yδ (τ ) =


j =− n

a nj
h

yδ (τ + jh)

(3)

Trong đó độ dài bước h được dùng làm tham số chỉnh hóa. Trong cách
tiếp cận này, ta giả thiết rằng bước h lưới có thể được chọn tự do tùy thuộc vào
mức nhiễu δ. Tuy nhiên cách tiếp cận như vậy không phù hợp cho nhiều bài toán

thực tế, bởi lẽ các mốc (1) cho trước và không thể chọn tùy ý. Ví dụ, trong bài
tốn dự báo đường huyết, các mốc trên là thời điểm lấy mẫu máu của bệnh nhân.
Hơn nữa, cơng thức (3) khơng thể dùng để tính giá trị đạo hàm tại điểm biên - là
mục tiêu chính của bản luận văn này.
2.2.Phương pháp chọn bước lưới thích nghi
Với mục tiêu như vậy, chúng ta nghiên cứu một phương pháp khác cho
phép tìm gần đúng đạo hàm bằng cơng thức sai phân hữu hạn một phía. Giả sử
rằng dãy (1) được tạo bởi các điểm của một số lưới đều với độ dài bước lưới h1
> h2 > · · · > hν, trong đó


11
N

v

N s −1

{tk }k =1 = ∪{t j .s } j =0

(4)

s =1

B −b
với t j .s = B − jhs . j = 0,1.....N s − 1.N s = 
 , và [a] biểu thị phần
h
 s 


nguyên của a. Khi đó nếu ta có lưới với độ dài bước hs, thì ta cũng có thể sử
dụng các lưới có độ dài bước hi = ihs , i = 1, 2, . . . ,
Khi đó cơng thức sai phân hữu hạn một phía dùng để tính y′ (B) có thể viết
dưới dạng
a nj
yδ ( B − jhs ),
j = 0 hs
n

y '( B) ≈ Sa.h .γ δ = ∑
s

n ≤ Ns.

(5)

Trên quan điểm lý thuyết độ phức tạp thơng tin (Information-Based
Complexity, viết tắt là IBC) thì tập hợp các công thức (5) với một dãy cố định
n

các hệ số {a nj } j =0

Ns
n=1

có thể xem như một họ các thuật tốn mà chi phí tính tốn
n

tăng tỷ lệ thuận với lượng (n + 1) thông tin { y (t j .s )} j =0 được sử dụng, hoặc ít
nhất cùng bậc O(n). Tuy nhiên, những thuật tốn này làm việc với thơng tin có

n
nhiễu { yδ (t j .s )} j =0 , n = 1,2....N . Hơn nữa phiếm hàm Sy := y′ (B) không bị chặn

trong không gian các hàm liên tục C [0, 1]. Do tính khơng bị chặn này, bài tốn
tính gần đúng đạo hàm là đặt không chỉnh và không thể xử lý được trong khuôn
khổ lý thuyết IBC. Trái ngược với những bài tốn đặt chỉnh với thơng tin nhiễu,
trong trường hợp đang xét sự tăng khơng kiểm sốt của bậc n trong (5) khơng
chỉ dẫn tới những chi phí tính tốn khơng cần thiết mà cịn làm khuếch đại của
sai số lan truyền nhiễu (xem Ví dụ 1dưới đây). Do đó, mục tiêu là dùng giá trị n
làm tham số chỉnh hóa để tìm trong số các thuật tốn (5) một thuật toán mà sai
số lan truyền nhiễu được cân bằng với sai số xấp xỉ Sy tại y từ thông tin không
nhiễu tương ứng. Sai số xấp xỉ thường giảm khi lượng thông tin (n + 1) tăng.
Tuy nhiên, khơng phải lúc nào bài tốn được xem xét cũng rơi vào trường hợp
này (xem Nhận xét 1 và minh họa của Giả thiết 3 với Hình 1 và 2). Điều này


12
phần nào giải thích sự khác biệt giữa những kết quả trình bày trong luận văn với
một số kết quả đã có trong các tài liệu về tính gần đúng đạo hàm.

Hình 1. Hàm số φ (n) (đường nét liền) và Ψ (n)

δ
(đường nét đứt) cho
hs

hs = 10−1 , δ = 10−4 và y ∈ C 3 (bảng trên) và y ∈ C 4 bảng dưới)

Do đó, nếu độ dài bước hs trong công thức (5) không thể chọn tùy ý, thì
cơng thức sai phân hữu hạn bậc cao có thể kém hiệu quả nếu như bậc n không

phụ thuộc vào mức sai số δ và bước lưới hs. Vấn đề này rất quan trọng trong
thực tế, khi kết quả của phép tính đạo hàm bằng số kém chính xác có thể dẫn tới
những hệ lụy nguy hiểm. Ví dụ, từ Bảng 10 và 11 trình bày ở cuối luận văn, có
thể thấy rằng việc sử dụng cơng thức tính đạo hàm bằng số với độ dài bước tốt
nhất và một bậc cao nhất, cố định trước, làm gia tăng đáng kể phần trăm dự báo
sai lượng đường trong máu (BG = blood glucose) của bệnh nhân tiểu đường so
với cơng thức sử dụng tham số n thích hợp.
Trong bản khóa luận này, chúng ta sẽ trình bày một cách tiếp cận mới


13
chọn tham số tối ưu n dựa trên nguyên lý cân bằng
2.3. Phương pháp sai phân hiệu chỉnh để tính gần đúng đạo hàm một phía
tại điểm mút khi dữ liệu có nhiễu

Bây giờ chúng ta trở lại với việc phân tích bài tốn tính gần đúng đạo hàm
tại điểm biên B. Cho y : [b, B] → R là một hàm khả vi liên tục r- lần, với r ≥ 2.
Sai số giữa y′ (B) và đại lượng tính theo (5) có thể ước lượng như sau
y '( B) − Sn ,h , yδ ≤ y '( B) − Sn ,hs y + Sn ,h , y − Sn ,h , yδ .
s

s

Hình 2. Hàm số φ (n) (đường nét liền) và Ψ (n)

(6)

s

δ

(đường nét đứt) cho
hs

hs = 10−1 , δ = 10−4 và y ∈ C 5 (bảng trên) và y ∈ C 6 bảng dưới)

Trong đó số hạng đầu ở vế phải là sai số xấp xỉ, còn số hạng thứ hai là sai
số lan truyền nhiễu. Đối với số hạng thứ hai chúng ta có đánh giá
S n,h , y − Sn ,h yδ ≤ ψ (n)
s

s

δ
hs

(7)

ở đây ψ (n) = ∑ j =0 a nj , và với n = 0, ta đặt ψ (0) = 0 . Chú ý rằng theo giả
n


14
thiết (2) ước lượng (7) không thể cải thiện hơn được.
Để ý rằng cơng thức nào có dạng (5) xác định một phiếm hàm tuyến tính
liên tục Sn,h trong khơng gian các hàm liên tục
S n ,h =
s

ψ ( n)
. Mục đích của chúng ta là dùng một tập hợp

hs

C[0, 1] với chuẩn

{S }
n , hs

Ns
n =1

các phiếm hàm như vậy để xấp xỉ phiếm hàm không bị chặn Sy = y’ (B). Do đó,
Ns

để đảm bảo một xấp xỉ tốt, các phiếm hàm được chọn từ tập hợp {Sn ,h }n=1 không
s

bị chặn đều. Trong nhiều tài liệu, công thức dạng (5) được xét với giả thiết
∥Sn,hs ∥ tăng khi n tăng.
Do đó, với mỗi hs cố định, chúng ta cần một số giả thiết sau về hàm ψ (n).
Giả thiết 1. Hàm ψ (n) là một hàm tăng theo n.
Ví dụ sau minh họa cho giả thiết này.
Ví dụ 1. Theo (9) chúng ta xét công thức đạo hàm một phía dạng
(5) với hệ số cho trong Bảng 1. Chú ý rằng nếu y(t) là một đa thức đại
số bậc n trên đoạn [b, B], khi đó ta có y′ (B) = Sn,hs y, trong đó cơng thức
Sn,hs với hệ số từ Bảng 1.
Sau đây ta sẽ sử dụng những công thức này để tiến hành thử nghiệm số,
bởi vì trong các ứng dụng thực tiễn hiếm khi sử dụng các cơng thức có bậc cao
hơn. Ngun nhân có thể thấy được trong kiểm tra bằng số với hàm (21) dưới
đây. Từ Bảng 4 cho thấy với một số độ dài bước (ví dụ h = 0.056, h = 0.039)
việc dùng cơng thức bậc cao hơn thậm chí cho các hàm giải tích có thể dẫn đến

sự giảm bậc của độ chính xác. Hệ quả tương tự có thể thấy ở các hàm có độ trơn
hữu hạn (xem ví dụ Bảng 5).


15
Bảng 1
Các hệ số của cơng thức một phía dạng (5).
n

a0n

a1n

a2n

a3n

a4n

a5n

1

1

-1

2

3

2

-2

1
2

3

11
6

-3

3
2



1
3

4

25
12

-4

3




4
3

1
4

5

137
60

-5

5



10
3

5
4



1
5


6

49
20

-6

15
2



20
3

15
4



6
5

a6n

1
6

Bảng 2

Các giá trị của hàm ψ (n) với n tương ứng.
n

1

2

3

4

5

6

ψ ( n)

2

4

6.67

10.67

17.07

27.73

Với cơng thức có hệ số nằm trong Bảng 1, các giá trị của hàm ψ (n) được

cho trong Bảng 2. Rõ ràng là các công thức một phía với hệ số ở Bảng 1 thỏa
mãn Giả thiết 1.
M

Giả sử chúng ta được cho một tập hợp hữu hạn N = {n1} j =1 các bậc có thể
của công thức (5). Chú ý rằng với các công thức từ Ví dụ 1 chúng ta có

N=

{1, 2, …, 6}.
Sau đó, đối với bước lưới cố định hs, tập hợp tương ứng các giá trị xấp xỉ
của đạo hàm y′ (B) là

{S

M

n1 , hs

yδ }i =1 .

Tiếp theo chúng ta sẽ phân tích cách chọn n ∈ N để có được một xấp xỉ


16
M
tốt của đạo hàm y′ (B) từ tập hợp {S n ,h yδ }i =1 . Ở đây, chúng ta đề xuất một chiến
1

s


lược chọn sai khác một thừa số hằng số với sai số tốt nhất có thể.
Chú ý rằng ước lượng (7) của sai số truyền nhiễu không phụ thuộc vào
hàm cần tính đạo hàm, trong khi số hạng đầu trong ước lượng (6) lại phụ thuộc
vào độ trơn (thường khơng biết trước) của hàm này. Do đó, cần có chiến lược
chọn bậc n∈ N thích nghi với độ trơn chưa biết của y. Chúng ta sẽ phát biểu
chiến lược đó dưới các giả thiết bổ sung sau.
Giả thiết 2.
ψ (1)

δ
< y '( B) − S1.h y .
hs

(8)

s

Chú ý rằng nếu điều kiện (8) khơng thỏa mãn, thì việc chọn n > 1 là vơ
nghĩa, bởi vì sai số truyền nhiễu vượt trội hơn sai số xấp xỉ với mọi n ∈ N.
Giả thiết 3. Giả sử rằng với y ∈ C r , r ≥ 2 và hs > 0, tồn tại một hàm
liên tục

φ (u ) = φ (u : hs. y ), u ∈ [1, nM ] , mà
(i ) y '( B ) − Sn ,h y ≤ φ ( n; hs , y ), n ∈ N ;
s

(ii) nếu nmin là số nhỏ nhất mà
nmin = argmin {φ (n), n ∈ N } .
thì hàm φ(n) khơng tăng trên [1, nmin ) và với bất kỳ n ∈ [nmin , nM ]

(n ) ≤ ψ ( n )

δ
hs

(9)

Mọi hàm số thỏa mãn Giả thiết 3 được gọi là hàm chấp nhận được. Ký
hiệu tập tất cả các hàm chấp nhận được bằng Φ(y, hs ).
Nếu Giả thiết 3(ii) khơng thỏa mãn thì mức nhiễu là thấp và khơng đáng
kể. Ví dụ, nếu (9) khơng được thỏa mãn với n = nmin, thì có thể bỏ qua sai số


17
truyền nhiễu và n = nmin là lựa chọn tốt nhất cho dữ liệu nhiễu, cũng như dữ liệu
khơng nhiễu.
Ví dụ tiếp theo minh họa cho những giả thiết này.
Ví dụ 1 (tiếp theo). Xét bài tốn tính đạo hàm bậc nhất của hàm
y ∈ C r [0, 1] tại điểm biên t =1. Tương tự như [18] để loại trừ ảnh hưởng
của điểm biên t = 0, ta giả sử rằng y ∈ C r = {y : y ∈ C r [0, 1], y(i) (0) = 0, i
= 0, 1, . . . , r − 1}.
Khi đó theo định lý Taylor y có khai triển sau:
(t − τ )r+−1 ( r )
y (t )dτ .
0 ( r − 1)!
1

y (t ) = ∫

trong đó (a)+ = max{a, 0}.

Từ sơ đồ sai phân hữu hạn (5) ta thu được ước lượng
 y '(1) − Sn ,h , y  ≤ y

1
(r )
c

s


0

n
(1 − τ ) r+−2 n a j (1 − jhs − τ ) r+−1
−∑
dτ :
(r − 2)! j =0 hs
(r − 1)!

(10)

ở đây ∥ · ∥C biểu thị chuẩn max trong C [0, 1].
Từ (10), ta có một hàm chấp nhận được
φ (n; hs , y ) = y ( r ) c hsr −1Vr (n, hs ) ,

(11)

trong đó
1− r 1
s

0

Vr (n, hs ) = h



n
(1 − τ ) r+−2 n a j (1 − jhs − τ ) r+−1
−∑
dτ .
(r − 2)! j =0 hs
( r − 1)!

(12)

Sử dụng (12) ta có thể dễ dàng tính tốn (bằng số và bằng cơng thức) các
giá trị Vr (n, hs ). Đồ thị của các hàm chấp nhận được (11) cho hs = 10−1 và
||y(r )||C = 10r −3 , r = 3, 4, 5, 6, được trình bày ở Hình 1 và 2. Để tiện theo
dõi, đồ thị của hàm ψ (n)

δ
cho δ = 10−4 cũng được dựng trong các hình này.
hs


18
Từ những hình vẽ này, có thể kết luận rằng với mức nhiễu được xem xét,
Giả thiết 3 được thỏa mãn cho bất kỳ hàm y ∈ C r nào mà ∥y(r ) ∥C ≤10r−3, r
= 3, 4, 5, 6. Chú ý rằng để minh họa dáng điệu của các hàm một cách rõ ràng
hơn, chúng ta giữ nguyên tỷ lệ của mọi đồ thị.

Nhận xét 1. Chú ý rằng Giả thiết 3 tổng quát hơn giả thiết hàm chấp nhận
được là không tăng.
Từ (7) và Giả thiết 3, hiệu số giữa y’ (B) và (5) được ước lượng như sau
y '( B ) − Sn ,h , yδ ≤ φ (n) + ψ (n)
s

δ
.
hs

(13)

Theo (13) đại lượng

δ
e( y.N .Sn ,h ) = min inf φ ( n) + ψ ( n) 
n∈N φ∈Φ ( y , h )
hs 

s

(14)

s

là ước lượng sai số tốt nhất có thể để xấp xỉ y’ (B) bằng họ công thức
Sn,hs dưới Giả thiết 1-3 và (2).
Bây giờ chúng ta trình bày nguyên lý chọn thích nghi tham số n+∈ N để
đạt được cận sai số tốt nhất có thể nhân với 6ρ, trong đó
ψ (ni + 1)

.
i =1.... M −1
ψ (ni )

ρ = ρ ( N ) = max

Nói riêng, từ Bảng 2 trong Ví dụ 1 có thể thấy rằng ρ(N ) = 2 cho N = {1,
. . . , 6}.
Ta thấy n+ có thể được chọn khi chỉ biết giá trị dữ liệu nhiễu yδ (tj ) với
bước lưới cố định hs, mà không cần bất kỳ thông tin tiên nghiệm nào về độ trơn
của y ∈ C r [b, B ] .
Xét tập hợp


δ
N ( S n ,h ) = ni ∈ N : S n ,h , yδ − S n ,h , yδ ≤ Cψ (n j ) . j = i + 1, i + 2.....M 
hs


s

i

s

j

s

(15)



19
trong đó C là một tham số điều chỉnh. Cụ thể, chúng ta cho C = 4 trong
chứng minh lý thuyết và điều chỉnh giá trị của C trong các thử nghiệm số.
Bậc n+ mà chúng ta quan tâm được xác định là
n+ = min { N ( Sn ,h )}.
s

Cần nhấn mạnh rằng một hàm chấp nhận được, cũng như bất kỳ thơng tin
nào về tính trơn của hàm y khơng được sử dụng vào q trình chọn n+. Bây giờ,
chúng ta phát biểu kết quả chính của mục này.
Định lý. Cho y ∈ C 2 [b, B]. Khi đó từ Giả thiết 1-3 ta có
y '( B ) − Sn ,h , yδ ≤ 6 ρ e( y.N .Sn ,h ) .(16)
+

s

s

Chứng minh. Cho φ ∈ Φ(y, hs ) là một hàm chấp nhận được bất kỳ. Ta
xác định các số

δ
n* = n* (φ ) = min n ∈ N : φ (n) ≤ ψ ( n)  .
hs 





δ
n** = n** (φ ) = arg min φ (n j ) + ψ (n j ) .n j ∈ N  .
hs



Từ Giả thiết 3, ta có n* ≤ nmin. Do đó
ψ (n* )

vì hoặc
ψ (ns − 1)


δ
δ 
≤ ρ (φ  (n** ) + ψ (n** ) 
hs
hs 


n∗∗≤ n∗−1
δ
< φ (n* − 1) và
hs
ψ (n* )

(17)

δ

ψ (n* )
=
ψ (n* − 1) ≤ ρφ (n** )
hs ψ (n* − 1)

δ 
< ρ  φ (n** ) + ψ (n** )  , ρ > 1,
hs 



20
hoặc n* < n** , trong trường hợp này
ψ (n* )


δ
δ
δ 
< ψ (n** ) < ρ  φ (n** ) + ψ (n** )  .
hs
hs
hs 


Hơn nữa, chú ý rằng với nj > n∗ , nj ∈ N thì
φ ( n j ) < ψ (n j )

δ
hs


(18)

Trong trường hợp nj > nmin bất đẳng thức (18) suy ra từ Giả thiết 3. Nếu
với nj ≤ nmin ta giả sử bất đẳng thức (18) không đúng, tức là φ (n j ) ≥ ψ (n j )

δ
.
hs

Từ đây suy ra
φ (n* ) ≥ φ (n j ) ≥ ψ (n j )

δ
δ
> ψ (n* ) .
hs
hs

Điều này mâu thuẫn với định nghĩa của n∗ .
Bây giờ ta sẽ kết luận rằng n∗ ≥ n+. Thực vậy, với mọi nj > n∗ , nj ∈ N,
ta có
S n ,h , yδ − Sn ,h , yδ ≤ y '( B) − Sn ,h , yδ + y '( B ) − Sn ,h , yδ
*

s

j

*


s

s

≤ φ (n* ) + ψ (n* )
≤ 2ψ (n* )

j

s

δ
δ
+ φ (n j ) + ψ (n j )
hs
hs

δ
δ
+ φ (n j ) + ψ (n j )
hs
hs

δ
δ
δ
< 2 ψ (n* ) + 2 ψ (n j ) < 4 ψ (n j )
hs
hs

hs

Có nghĩa là n∗∈ N (Sn,hs ) và
n∗ ≥ n+ = min{N (Sn,hs )}.
Khi đó sử dụng (17) ta được


21
y '( B ) − Sn ,h , yδ ≤ y '( B ) − Sn ,h , yδ + Sn ,h , yδ − Sn ,h , yδ
*

s

*

s

≤ φ (n* ) + ψ (n* )

s

j

s

δ
δ
δ
+ 4ψ (n* ) ≤ 6ψ (n* )
hs

hs
hs


δ 
≤ 6 ρ  φ (n** ) + ψ (n** ) 
hs 


δ
≤ 6 ρ min
φ (n) + ψ (n) 
n∈N
hs 


Ước lượng này đúng cho hàm chấp nhận được bất kỳ φ ∈ Φ( y, hs ) .Do đó
chúng ta kết luận rằng

δ
y '( B ) − Sn + ,h , yδ ( B) ≤ 6 ρ min inf φ ( n) + ψ ( n)  .
n∈Φ φ∈Φ ( y , h )
hs 

s

s

Định lý được chứng minh xong.
*) Thử nghiệm số

Để minh họa các kết quả lý thuyết ở phần trên, chúng tôi xét bài tốn tính
đạo hàm bậc nhất của hàm y ∈ C r [0,1], r ≥ 2 ở biên phải t = 1 bằng cơng thức sai
phân hữu hạn một phía (5). Nguyên lý cân bằng (15), (16) được dùng làm tiêu
chí chọn bậc tối ưu n+ ∈ N.
Để thử nghiệm số ta xét hàm số có độ trơn hữu hạn
7

7

7

7

7

y (t ) = t + t − 0.25 + t − 0.5 + t − 0.75 + t − 0.85 ∈ C 6 [ 0,1] ,

(20)

cũng như các hàm giải tích
t3 t2
y (t ) = − ∈ C ∞ [ 0,1] .
3 2

(21)

y (t ) = et ∈ C ∞ [ 0,1] .

(22)


Các giá trị số yδ(1 − jhs) cho các hàm trong thử nghiệm số được làm nhiễu
từ hàm y (1 − jhs) dưới dạng

yδ(1 − jhs) = y (1 − jhs) + δξj , trong đó δ∼ 10−5


22
và ξj là đại lượng ngẫu nhiên phân bố đều trên đoạn [−1, 1]. Cho thí
nghiệm bằng số của chúng ta, chúng ta xem xét 8 lưới cách đều nhau với các
kích thước bước
hs = 1.5− s , s = 4,5....11 .

(23)

Và cơng thức sai phân hữu hạn một phía (5) với các hệ số trong Ví dụ 1.
Bảng 3
Kết quả ứng dụng quy tắc lựa chọn (16)
Hàm
(20)
(21)
(22)

Kích thước bước

hs

0.167

0.125


0.083

0.056

0.039

0.026

0.017

0.012

5

5

5

5

5

5

5

5

Bậc n+
Cấp độ chính xác


10

Bậc n+
Cấp độ chính xác

5
10

Bậc n+
Cấp độ chính xác

-1

-4

5
10

-4

10

-2

5
10

10


5

-4

5
10

10

-3

10
10

10

5

-4

10

5

-3

-3

-4


5
10

5

-3

10

-3

-4

-3

5
10

-3

10

-3

5
10

10-3

5


-4

5
10

10

-3

10

5

-3

10-3

5

-2

10

5

-3

10-2


Bảng 4
Các cấp độ chính xác của cơng thức phép lấy vi phân bằng số cho hàm
phân tích (21) và kích thước bước (23).
Kích thước bước hs

Bậc n
1

2

-4

5
-4

6

10

10

10-4

10-2

10-2

10-4

10-4


10-4

10-4

0.083

10-2

10-3

10-4

10-4

10-4

10-4

0.056

10-2

10-3

10-4

10-4

10-4


10-3

0.039

10-2

10-4

10-3

10-3

10-3

10-3

0.026

10-2

10-3

10-3

10-3

10-4

10-3


0.017

10-3

10-4

10-4

10-4

10-3

10-3

0.012

10-3

10-4

10-3

10-3

10-3

10-3

0.125


-4

4

10

10

-2

3

10

0.167

-2


23
Bảng 5
Cấp độ chính xác của cơng thức phép lấy vi phân bằng số cho hàm số có
độ phẳng hữu hạn (20) và kích thước bước (23).
Kích thước bước hs

Bậc n
1

2


3

4

5

6

0.167

100

100

10-1

10-1

10-1

10-3

0.125

100

10-1

10-1


10-1

10-2

10-3

0.083

100

10-1

10-2

10-2

10-3

10-3

0.056

100

10-1

10-3

10-3


10-3

10-3

0.039

10-1

10-1

10-3

10-3

10-4

10-3

0.026

10-1

10-2

10-4

10-4

10-3


10-3

0.017

10-1

10-2

10-4

10-4

10-3

10-3

0.012

10-1

10-2

10-3

10-3

10-3

10-3


Trước tiên, đối với kích thước bước hs chúng ta tìm bậc tối ưu n+ ∈N
bằng nguyên tắc cân bằng (15), (16). Như chúng ta đã đề cập trong ứng dụng
thơng số điều chỉnh trong (15) có thể được thay đổi. Có thể thay đổi bằng cách:
chúng ta tái tạo dữ liệu sử dụng vài hàm số, như là (21) chẳng hạn, và tìm một
giá trị C mà dẫn đến hoạt động nguyên tắc (16) tốt trên dữ liệu được tái tạo. Giá
trị C này được dùng trong các ứng dụng số học. Qua quá trình thay đổi như vậy,
chúng ta đã tìm được C = 0.0021.
Kết quả của những ứng dụng của quy tắc lựa chọn (16) cho các hàm số
(20)-(22) và kích thước bước (23) được trình bày ở Bảng 3.
Ta có thể mong đợi sơ đồ sai phân hữu hạn bậc cao hơn cho phép độ
chính xác cao hơn, mà tốt nhất là với mức nhiễu được cho là δ. Dùng Bảng 3,
chúng ta có thể kết luận rằng đối với kích thước bước cố định thì lại khác. Ví dụ,
trong trường hợp hàm (20), thuộc C r [0, 1], r =6, cấp độ chính xác được đảm
bảo tốt nhất trong giới hạn mức nhiễu được biết đến là δ r −1 . Cho r = 6 và
δ ∼ 10−5 cho cấp độ 10-4 và cấp độ này thực sự đạt được bằng công thức


24
Sn,hs cho n = n+ = 5, hs = 0.039. Đồng thời, những tính tốn trực tiếp
cho thấy rằng đối với hàm số được xem xét, công thức S6,hs cho cấp độ chính
xác chỉ ở cấp 10-3 cho mọi hs từ (23) (xem Bảng 5).
Bảng 6
Lỗi ước tính tạo bởi

Sn+( h ) , h + yδ .
+

Hàm số


(20)

(21)

(22)

Cấp độ chính xác

10-4

10-4

10-4

5

5

5

0.039

0.167

0.167

Bậc n+
Kích thước bước hs

*) Kết hợp nguyên tắc cân bằng và tiêu chí bán tối ưu

Bảng 3 cũng cho thấy độ chính xác của cơng thức Sn + ,hs phụ thuộc vào
hs . Do đó, trong trường hợp có vài lựa chọn giá trị của hs , ví dụ như trong (23),
thì hãy tự nhiên mà tận dụng nó. Vì mục đích đó, một người có thể dùng cách
tiếp cận tự khám phá được biết đến là tiêu chí bán tối ưu
Một khi n = n+ = n+ (hs ) được chỉ rõ là một hàm số của hs (xem ví dụ, Bảng
3), tiêu chí bán tối ưu có thể được thực hiện như sau. Đối với mọi hs có sẵn, cần
tính tốn xác định được cho bởi Sn+( h ) + h yδ (5). Khi đó một người cần tính tốn
s

s

sai phân tuyệt đối
σ ( s) = Sn+( h ), hs yδ − Sn (hs − 1).hs −1 yδ
+

s

và tìm

h+ = hρ : p = arg min {σ ( s), s = 5......11}

(24)

Lỗi ước định tạo Sn+( h )+ h yδ bởi cho các hàm số được xem xét được giới thiệu
s

s

trong Bảng 6. Có thể thấy từ Bảng 3 và 6, trong cả ba trường hợp, việc kết hợp tiêu
chí bán tối ưu và nguyên tắc cân bằng thực sự cho lựa chọn giá trị hs tốt nhất.



25

CHƯƠNG III: SỬ DỤNG PHƯƠNG PHÁP SAI PHÂN HIỆU
CHỈNH ĐỂ DỰ BÁO ĐƯỜNG HUYẾT
Ở phần này, chúng ta nói đền khả năng sử dụng cách tiếp cận nói trên
trong kiểm soát bệnh tiểu đường, cụ thể là dự đoán mức đường trong máu.
Kiểm soát bệnh tiểu đường tập trung chủ yếu là giữ nồng độ đường trong
máu gần mức bình thường nhất có thể mà khơng gây nguy hiểm, gọi là sự giảm
và tăng đường huyết, khi mức đường trong máu lần lượt thấp hơn 70 (ml/dL)
hoặc cao hơn 180 (mg/dL). Có thể đạt được điều này bằng cách cân bằng lượng
insulin nhờ tiêm, các bữa ăn theo chế độ kiêng và tập luyện thể thao. Luôn nhớ
rằng loại insulin tác dụng nhanh trong vòng 10-15 (phút), và loại dùng trong
bữa ăn phản ứng với mức đường trong khoảng 5-10 (phút), do đó việc biết hàm
lượng đường trong máu (BG) trong tương lai ít nhất trước 15 phút là vơ cùng
quan trọng.
Các tiến triển gần đây trong kiểm soát bệnh tiểu đường liên quan đến một
hệ thống Giám sát mức đường liên tục (CGM). Những thiết bị này liên tục giám
sát mức đường liên tục trong ngày, cụ thể thì đo lượng BG mỗi 5-10 (phút).
Do đó, khái niệm chung trong kiểm sốt bệnh tiểu đường đó là phán đốn
BG trong tương lai sử dụng các dữ liệu CGM. Tầm quan trọng của việc phán
đốn này đã được trình bày trong nhiều tài liệu y học.
Về toán học, bài toán có thể được đưa cơng thức như sau. Giả sử rằng vào thời
điểm t = t N = B, chúng ta được mức đường huyết yN , yN −1 , yN −2 ,... , yN −n+1 của một
bệnh nhân tại các thời điểm tN >tN −1> tN −2 >.....> tN −n+1 trong khoảng lấy mẫu
SH = tN − tN −n+1 . Mục đích là đưa ra một phán đốn dùng những số liệu quá khứ để
dự đoán nồng độ BG yj = y(tj ) cho thời gian trong tương lai m trong khoảng dự
đoán PH = tN+m − tN mà tN < tN+1 < tN+2 < ....< tN
Có nhiều phương pháp dự đoán, và nhiều thiết bị báo mức đường máu đã

được đề xuất.Trong mục này chúng ta dùng phương pháp dự báo dựa trên phép
lấy đạo hàm bằng số.


×