Tải bản đầy đủ (.pdf) (132 trang)

Nghiên cứu tổng hợp một số vật liệu rây phân tử MeAPO4 ứng dụng làm xúc tác cho phản ứng oxi hoá n parafin

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.63 MB, 132 trang )

....

BỘ GIÁO DỤC ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Vũ Ngọc Quyền

NGHIÊN CỨU TỔNG HỢP MỘT SỐ VẬT LIỆU RÂY PHÂN TỬ
MeAPO4 ỨNG DỤNG LÀM XÚC TÁC CHO PHẢN ỨNG
OXI HOÁ n-PARAFIN

LUẬN ÁN TIẾN SĨ HOÁ HỌC

Hà Nội, 2012


BỘ GIÁO DỤC ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Vũ Ngọc Quyền

NGHIÊN CỨU TỔNG HỢP MỘT SỐ VẬT LIỆU RÂY PHÂN
TỬ MeAPO4 ỨNG DỤNG LÀM XÚC TÁC CHO PHẢN ỨNG
OXI HỐ n-PARAFIN

Chun ngành: Hố dầu và xúc tác Hữu cơ
Mã số: 62.44.35.01

LUẬN ÁN TIẾN SĨ HOÁ HỌC

NGƯỜI HƯỚNG DẪN KHOA HỌC



1. PGS. TS Nguyễn Văn Phất
2. GS. TS Đào Văn Tường

Hà Nội - 2012


LỜi CAM ĐOAN
Tơi xin cam đoan đây là cơng trình nghiên cứu khoa học của riêng tôi, các
số liệu và kết quả nghiên cứu trong Luận án là trung thực và chưa từng được cơng
bố dưới bất kỳ hình thức nào.
Hà Nội, năm 2012
Nghiên cứu sinh

Vũ Ngọc Quyền


1
MỤC LỤC
LỜI MỞ ĐẦU ............................................................................................... 8
CHƯƠNG 1. TỔNG QUAN ................................................................... 10
1.1. Rây phân tử .................................................................................. 10
1.1.1. Khái niệm .............................................................................. 10
1.1.2. Phân loại rây phân tử............................................................. 10
1.2. Rây phân tử zeolit ........................................................................ 11
1.2.1. Khái niệm .............................................................................. 11
1.2.2. Phân loại ................................................................................ 11
1.2.3. Cấu trúc tinh thể .................................................................... 12
1.2.4. Tính chất................................................................................ 13
1.3. Rây phân tử aluminophosphat...................................................... 17

1.3.1. Khái niệm .............................................................................. 17
1.3.2. Phân loại và cấu trúc của rây phân tử AlPO4 ........................ 17
1.4. Rây phân tử metalaluminophotphate (MeAPO4) ......................... 19
1.4.1. Giới thiệu về rây phân tử MeAPO4 ....................................... 19
1.4.2. Thay thế đồng hình của Me................................................... 20
1.4.3. Ứng dụng và lý thuyết quá trình tổng hợp xúc tác MeAPO4:
......................................................................................................... 28
1.5. Tổng quan về phản ứng oxi hố. .................................................. 30
1.5.1. Phản ứng oxi hóa và phân loại .............................................. 30
1.5.2. Q trình oxi hố có xúc tác trong pha lỏng đồng thể .......... 31
1.5.3. Xúc tác dị thể ........................................................................ 33
1.5.4. Phản ứng oxi hóa n-parafin ................................................... 34
1.5.5. Một số kết quả đã nghiên cứu về oxi hoá n-parafin.............. 37
CHƯƠNG 2. THỰC NGHIỆM VÀ PHƯƠNG PHÁP .......................... 39
NGHIÊN CỨU ........................................................................................ 39
2.1. Tổng hợp MeAPO4 (Me = V, Ti, Fe) ........................................... 39
2.1.1 Nguyên tắc tổng hợp .............................................................. 39
2.1.2. Tiến hành tổng hợp ............................................................... 40
2.2. Các phương pháp nghiên cứu đặc trưng xúc tác và nghiên cứu
phản ứng oxi hóa n-hexan ................................................................. 42
2.2.1. Ph Tomishige, K. Kunimori. Role of
active oxygen transients in selective catalytic reduction of N2O with CH4 over FeZeolite catalysts. Appl Catal B: Environmental 70 (2007) 342.
[82]. N.R. Shiju, S. Fiddy, O. Sonntag, et al., Selective oxidation of benzene to phenol
over FeAlPO catalysts using nitrous oxide as oxidant, Chem. Commun., 47(2006) 4955.
[83]. S. T. Wilson, B. M. Lok, C. A. Messina, et al. Aluminophosphat molecular sieves:
a new class of microporous crystalline inorganic solids. J Am Chem Soc 104 (1982)
1146.
[84]. S. T. Wilson, B. M. Lok, E. M. Flanigen, Crystalline metallophosphate
compositions. United States Patent, 4310440, 1982 January 12.
[85]. S. Iman, C.R.A. Catlow, F.Cora, Site ordering of dopant ions in microporous

aluminophosphats size effects. Micropo. Mesopo. Materials 59 (2003) 161.
[86]. C. Pophal, T. Yogo, K. Yamada, K. Segawa, Selective catalytic reduction of
nitrous oxide over Fe-MFI in the presence of propene as reductant. Appl. Catal. B 16
(1998) 177.
[87]. M. Kögel, R. Mönnig, W. Schwieger, A. Tissler, T. Turek, J. Catal. 182 (1999)
470.
[88]. G. Centi and F. Vanazza. Selective catalytic reduction of N2O in industrial
emissions containing O2, H2O and SO2: behavior of Fe/ZSM-5 catalysts Catal. Today
53 (1999) 683.
[89]. K. Yamada, S. Kondo and K. Segawa. Selective catalytic reduction of nitrous
oxide over Fe-ZSM-5: the effect of ion-exchange level. Micropor. Mesopor. Mater. 35–
36 (2000) 227.
[90]. R.W. van den Brink, S. Booneveld, J.R. Pels, D.F. Bakker and M.J.F.M. Verhaak.
Catalytic removal of N2O in model flue gases of a nitric acid plant using a promoted Fe
Zeolite Appl. Catal. B 32 (2001) 73.
[91]. S. Kameoka, K. Kita, T. Takeda, S. Tanaka, S. Ito, K. Yuzaki, T. Miyadera and K.
Kunimori. Simultaneous removal of N2O and CH4 as the strong greenhouse‐effect gases
over Fe-BEA Zeolite in the presence of excess O2. Catal. Lett. 69 (2000) 169.
[92]. J. Pérez-Ram´ırez, F. Kapteijn, G. Mul, X. Xu, J.A. Moulijn. Ex-framework
FeZSM-5 for control of N2O in tail-gasesCatal. Today 76 (2002) 55.
[93]. T. Nobukawa, M. Yoshida, S. Kameoka, S. Ito, K.Tomishige, and K. Kunimori.
In-Situ Observation of Reaction Intermediate in the Selective Catalytic Reduction of


123
N2O with CH4 over Fe Ion-Exchanged BEA Zeolite Catalyst for the Elucidation of Its
Reaction Mechanism Using FTIR. J. Phys. Chem. B 108 (2004) 4071.
[94]. M.N. Debbagh, C. Salinas Martı´nez de Lecea, J. Pe´rez-Ramı´rez. Catalytic
reduction of N2O over steam-activated FeZSM-5 Zeolite Comparison of CH4, CO, and
their mixtures as reductants with or without excess O2. Applied Catalysis B:

Environmental 70 (2007) 335.
[95]. J. N.Armor, Catalytic reduction of nitrogen oxides with methane in the presence
of excess oxygen: arenew. Catal Today 26 (1995) (2) 147.
[96]. S. Kameoka, T. Suzuki, K. Yuzaki, T. Takeda, S. Tanaka, S. Ito, T. Miyadera and
K. Kunimori, Selective catalytic reduction of N2O with methane in the presence of
excess oxygen over Fe-BEA Zeolite, Chem. Commun. (2000) 745.
[97]. P.K. Roy, G.D. Pirngruber, The surface chemistry of N2O decomposition on ironcontaining Zeolites (II)—The effect of high-temperature pretreatments. J. Catal. 227
(2004) 164.
[98]. V.N. Parmon, G.I. Panov , A. Uriarte b, et a1., Nitrous oxide in oxidation
chemistry and catalysis: application and production, Catal. Today, 100 (2005) 115.
[99]. G.I. Panov, Advances in Oxidation Catalysis; Oxidation of Benzene to Phenol by
Nitrous Oxide, CATTECH 4 (2000) 18.
[100]. V.I. Sobolev, K.A. Dubikov, O.V. Panna and G.I. Panov, Selective oxidation of
methane to methanol on a FeZSM-5 surface, Catal. Today 24 (1995) 251.
[101]. G.I. Panov, V.I. Sobolev, K.A. Dubikov, A.E. Parmon, N.S. Ovanyesan, A.E.
Shilov and A.A. Shteinman, Iron complexes in Zeolites as a new model of methane
monooxygenase. React. Kinet. Catal. Lett. 61 (1997) 251.
[102]. K.A. Dubkov, N.S. Ovanesyan, A.A. Shteinman, E.V. Starokon and G.I. Panov,
Evolution of Iron States and Formation of α-Sites upon Activation of FeZSM-5
Zeolites, J. Catal. 207 (2002) 341.
[103]. G.I. Panov, K.A. Dubkov and E.V. Starokon, Active oxygen in selective
oxidation catalysis Catal. Today 117 (2006) 148.
[104]. E.V. Starokon, K.A. Dubkov, L.V. Pirutko and G.I. Panov, Mechanisms of Iron
Activation on Fe-Containing Zeolites and the Charge of α-Oxygen, Top. Catal. 73
(2003) 137.
[105]. K.A. Dubkov, V.I. Sobolev, G.I. Panov, Low-Temperature Oxidation of
Methane to Methanol on FeZSM-5 Zeolite, Kinet. Catal. 39 (1998) 72.
[106]. K.A. Dubkov, V.I. Sobolev, E.P. Talsi, M.A. Rodkin, N.H. Watkins, A.A.
Shteinman, G.I. Panov, Kinetic isotope effects and mechanism of biomimetic oxidation
of methane and benzene on FeZSM-5 Zeolite, J. Mol. Catal. A: Chem. 123 (1997) 155.



124
[107]. V. S. Chernyavsky, L. V. Pirutko, A. K. Uriarte, A. S. Kharitonov, G. I. Panov,
On the involvement of radical oxygen species O−in catalytic oxidation of benzene to
phenol by nitrous oxide, J. Catal 245 (2007) 466.
[108]. G. I. Panov, E. V. Starokon, L. V. Pirutko, E. A. Paukshtis, V. N. Parmon, New
reaction of anion radicals O− with water on the surface of FeZSM-5, J. Catal 0 (2007) 1.
[109]. C. Pophal, T. Yogo, K. Yamada, K. Segawa, Selective catalytic reduction of
N2O by C3H6 over Fe-MFI Catal. Lett. 44(1997) 271.
[110]. P.K. Roy, R. Prins, G.D. Pirngruber. The effect of pretreatment on the
reactivity of Fe-ZSM-5 catalysts for N2O decomposition: Dehydroxylation vs. teaming.
Appl Catal B: Environmental 80 (2008) 226.
[111]. El-M. El-Malki, R.A. van Santen, W.M.H. Sachtler. Isothermal oscillations
during N2O decomposition over Fe/ZSM-5: effect of H2O vapor. Micro Meso
Materials 35–36 (2000) 235.
[112]. V.I. Sobolev, K.A. Dubkov, E.A. Paukshtis, L.V. Pirutko, M.A. Rodkin, A.S.
Kharitonov, G.I. Panov, On the role of BrOnsted acidity in the oxidation of benzene to
phenol by nitrous oxide. Appl. Catal. A 141 (1996) 185.
[113]. L.M. Kustov, A.L. Tarasov, V.I. Bogdan, A.A. Tyrlov, J.W. Fulmer, Selective
oxidation of aromatic compounds on Zeolites using N2O as a mild oxidant. Catal.
Today 61 (2000) 123.
[114]. K.A. Dubkov, N.S. Ovanesyan, A.A. Shteinman, E.V. Starokon, G.I. Panov,
Evolution of Iron States and Formation of α-Sites upon Activation of FeZSM-5
Zeolites J. Catal. 207 (2002) 341.
[115]. A. Ribera, I.W.C.E. Arends, S. de Vries, J. Pe´rez-Ramirez, R.A. Sheldon,
Preparation, Characterization, and Performance of FeZSM-5 for the Selective
Oxidation of Benzene to Phenol with N2O. J. Catal. 195 (2000) 287.
[116]. L.V. Pirutko, V.S. Chernyavsky, A.K. Uriarte, G.I. Panov, Oxidation of benzene
to phenol by nitrous oxide Activity of iron in Zeolite matrices of various composition.

Appl. Catal. A 227 (2002) 143.
[117]. Q. Zhu, B.L. Mojet, R.A.J. Janssen, E.M.J. Hensen, J. van Grondelle, P.C.M.M.
Magusin, R.A. van Santen, N2O Decomposition over Fe/ZSM-5: Effect of HighTemperature Calcination and Steaming. Catal. Lett. 81 (2002) 205.
[118]. P. Kubanek, B. Wichterlova, Z. Sobalik, Nature of Active Sites in the Oxidation
of Benzene to Phenol with N2O over H–ZSM-5 with Low Fe Concentrations. J. Catal.
211 (2002) 109.
[119]. J. Jia, K.S. Pillai, W.M.H. Sachtler, One-step oxidation of benzene to phenol
with nitrous oxide over Fe/MFI catalysts. J. Catal. 221 (2004) 119.
[120]. J.F. Jia, B. Wen, W.M.H. Sachtler, Identification by Isotopic Exchange of
Oxygen Deposited on Fe/MFI by Decomposing N2O. J. Catal. 210 (2002) 453.


125
[121]. X.B. Feng, W.K. Hall, FeZSM-5: A Durable SCR Catalyst for NOx Removal
from Combustion Streams。J. Catal. 166 (1997) 368.
[122]. H.Y. Chen, W.M.H. Sachtler, Activity and durability of Fe/ZSM-5 catalysts for
lean burn NOx reduction in the presence of water vapor. Catal. Today 42 (1998) 73.
[123]. W.K. Hall, X.B. Feng, J. Dumesic, R. Watwe, Problems in preparation of
FeZSM-5 catalysts,Catal. Lett. 52 (1998)13.
[124]. R.W.V.D. Brink, S. Booneveld, J.R.

Pels, D.F. Bakker, M.J.F.M.

Verhaak。Catalytic removal of N2O in model flue gases of a nitric acid plant using a
promoted Fe Zeolite. Appl Catal B: Environmental 32 (2001) 73.
[125]. G.D.

Pirngruber,

M。Luechinger,


P.K.

Roy,

A.

Cecchetto,

and

P。Smirniotis, N2O decomposition over iron-containing Zeolites prepared by
different methods: a comparison of the reaction mechanism,J. Catal 224 (2004) 429.
[126]. J.A.Z. Pieterse, S. Booneveld, R.W. van den Brink. Evaluation of Fe-Zeolite
catalysts prepared by different methods for the decomposition of N2O. Appl. Catal. B
51(2004) 215.
[127]. M. Kögel, V.H. Sandoval, W. Schwieger, A. Tissler and T. Turek. Selective
catalytic reduction of N2O in industrial emissions containing O2, H2O and SO2: behavior
of Fe/ZSM-5 catalysts. Catal. Lett. 51 (1998) 23.
[128]. A.V. Kucherov, C.N. Montreuil, T.N. Kucherova, M. Shelef, In situ hightemperature ESR characterization of FeZSM-5 and FeSAPO-34 catalysts in flowing
mixtures of NO, C3H6, and O2. Catal.Lett. 56 (1998) 173.
[129]. H.T. Lee, H.K. Rhee, Stability of Fe/ZSM-5 de-NOx catalyst: effects of iron
loading and remaining Brønsted acid sites,Catal. Lett. 61 (1999) 71.
[130]. L.J. Lobree, I.C. Hwang, J.A. Reimer, A.T. Bell, Investigations of the State of
Fe in H–ZSM-5。J. Catal. 186 (1999) 242.
[131]. P. Marturano, L. Drozdova, G.D. Pirngruber, A. Kogelbauer, R. Prins, The
mechanism of formation of the Fe species in Fe-ZSM-5 prepared by CVD。Phys.
Chem. Chem. Phys. 3 (2001) 5585.
[132]. Q. Zhu, E.J.M. Hensen, B.L. Mojet, J.M.H.C. van Wolput and R.A. van Santen,
N2O decomposition over Fe/ZSM-5: reversible generation of highly active cationic Fe

species. Chem. Commun. (2002) 1232.
[133]. K. Asano, C. Ohnishi, S. Iwamoto. Potassium-doped Co3O4 catalyst for direct
decomposition of N2O. Appl Catal B: Environmental 78 (2008) 242.


126
[134]. J. Haber, M. Nattich, T. Machej. Alkali-metal promoted rhodium-on-alumina
catalysts for nitrous oxide decomposition. Appl Catal B: Environmental 77 (2008) 278.
[135]. L.Z. Gao, C.T. Au. Studies on the decomposition of N2O over Nd2CuO4,
Nd1.6Ba0.4CuO4 and Nd1.8Ce0.2CuO4. J.M.Catal A: Chemical 168 (2001) 173.
[136]. L. Xue, C. Zhang, H. He, Y. Teraoka. Promotion effect of residual K on the
decomposition of N2O over cobalt–cerium mixed oxide catalyst. Catal Today 126
(2007) 449.
[137]. J.N. Armor, T.A. Braymer, T.S. Farris, Y. Li, F.P. Petrocelli, E.L. Weist, S.
Kannan and C.S. Swamy, Calcined hydrotalcites for the catalytic decomposition of N2O
in simulated process streams. Appl. Catal. B 7 (1996) 397.
[138]. G. Centi, S. Perathoner, F. Vazzana, M. Marella, M. Tomaselli and M.
Mantegazza, Novel catalysts and catalytic technologies for N2O removal from industrial
emissions containing O2, H2O and SO2。Adv. Environ. Res. 4 (2000) 325.
[139]. V.K. Tzitzios and V. Georgakilas, Catalytic reduction of N2O over Ag–Pd/Al2O3
bimetallic catalysts,Chemosphere 59 (2005) 887.
[140]. F.J. Perez-Alonso, I. Melián-Cabrera, M. López Granados, F. Kapteijn, J.L.G.
Fierro,Synergy of FexCe1−xO2 mixed oxides for N2O decomposition. J. Catal 239
(2006) 340。
[141]. L.Yan, T. Ren, X. Wang, D.Ji, J. Suo. Catalytic decomposition of N2O over
MxCo1−xCo2O4 (M = Ni, Mg) spinel oxides. Appl Catal B: Environmental 45 (2003)
85.
[142]. R.A. Grinsted, H.W. Jen, C.N. Montreuil, M.J. Rokosk and Shelef. The relation
between deactivation of CuZSM-5 in the selective reduction of NO and dealumination
of the Zeolite。Zeolites 13 (1993) 602.

[143]. K.C.C. Kharas, H.J. Robota and D.L. Lui. Deactivation in Cu-ZSM-5 lean-burn
catalysts。Appl. Catal. 2 (1993) 225.
[144]. G.Kapteijn, J. Rodriguez-Mirasol, J.A. Mou-lijn, Kinetic Analysis of the
Decomposition of Nitrous Oxide over ZSM-5 Catalysts. J. Catal. 167 (1997) 256.
[145]. J. Pérez-Ram´ırez, F. Kapteijn, G. Mul, J.A. Moulijn, Highly active SO2resistant ex-framework FeMFI catalysts for direct N2O decomposition. Appl Catal B:
Environmental 35 (2002) 227.
[146]. A. Singh, S. Gangopadhyay, P.K. Nanda, S. Bhattacharya, C. Sharma, C.
Bhan,Trends of greenhouse gas emissions from the road transport sector in India,S
ci.To. Lenvironment 390 (2008) 124。


127
[147]. M. Galle, D.W. Agar and W. Watzenberger. Thermal N2O decomposition in
regenerative heat exchanger reactors. Chem. Eng. Sci. 56 (2001) 1587.
[148]. C.N. Hinshelwood and CR. Prichard, A comparison between the homogeneous
thermal decomposition of nitrous oxide and its heterogeneous catalytic decomposition
on the surface of platinum. J. Chem. Sot., 127 (1925) 327.
[149]. G. Centi, A. Galli, B. Montanari, S. Perathoner, A. Vaccari. Catalytic
decomposition of N2O over noble and transition metal containing oxides and Zeolites.
Role of some variables on reactivity. Catal Today 35 (1997) 113.
[150]. G. Centi, L. Dall’Olio, S.Perathoner, In situ activation phenomena of Rh
supported on zirconia samples for the catalytic decomposition of N2O. Appl. Catal A:
General 194 –195 (2000) 79.
[151]. K. Doi, Y.Y. Wu, R. Takeda, A. Matsunami, N. Arai, T. Tagawa , S.
Goto,Catalytic decomposition of N2O in medical operating rooms over Rh/Al2O3,
Pd/Al2O3, and Pt/Al2O3. Appl. Catal B: Environmental 35 (2001) 43.
[152]. V.K. Tzitzios, V. Georgakilas. Catalytic reduction of N2O over Ag–Pd/Al2O3
bimetallic catalysts. Chemosphere 59 (2005) 887.
[153]. R.J.Wu, T.Y.Chou, C.T.Yeh, Enhancement effect of gold and silver on nitric
oxide decomposition over Pd/Al2O3 catalysts. Appl.Cata1 B, 1995(6) 105.

[154]. A.Satsuma, H. Maeshimaa, K. Watanabe. Effects of methane and oxygen on
decomposition of nitrous oxide over metal oxide catalysts. Catal Today 63 (2000) 347.
[155]. P.Zemva, A.Lesar, I.Kobal, M. Senegacnik. Interpretation of kinetic isotope
effects in the decomposition of N2O over CoO. Chem Physics 264 (2001) 413.
[156]. L. Xue, C. Zhang, H.He, Y. Teraoka. Catalytic decomposition of N2O over
CeO2 promoted Co3O4 spinel catalyst. Appl Catal B: Environmental 75 (2007) 167.
[157]. C. Ohnishi, K. Asano, S. Iwamoto, K. Chikama, M. Inoue. Alkali-doped Co3O4
catalysts for direct decomposition of N2O in the presence of oxygen. Catal Today 120
(2007) 145.
[158]. J.T. Houghton, et al. (Eds.), Climate Change 2001, The Scientific Basis
Contribution of the Working Group I to the Third Assessment Report of the IPCC,
Cambridge, 2001.
[159]. J. Perez-Ramirez, Prospects of N2O emission regulations in the European
fertilizer industry,Appl. Catal. B Environ. 70 (2007) 31.
[160]. Kyoto Protocol to the United Nations Framework Convention on Climate Change, Annex A, Kyoto,
Japan, December 1997 (available on line at: />[161]. Bi-Zeng Zhan, Björn Modén, Jihad Dakka, José G. Santiesteban, Enrique Iglesia
Catalytic oxidation of n-hexane on Mn-exchanged zeolites:Turnover rates,
regioselectivity, and spatial constraints,Journal of Catalysis 245 (2007) 316–325.


128
[162]. JOHN MEURIG THOMAS,* ROBERT RAJA,GOPINATHAN SANKAR,
AND ROBERT G. BELL, Molecular Sieve Catalysts for the Regioselective and Shape
Selective Oxyfunctionalization of Alkanes in Air, Acc. Chem. Res. 2001, 34, 191-200
[163]. J. Sudhakar Reddy, S. Sivasanker and P. Ratnasamy Selective oxidation of nhexane over a titanium silicate molecular sieve with MEL structure Joud of Molecular
Cata&is, 70 (1991) 335-342
[164] Fengqiu Chen, Manh Huy Do, Wen Zheng, Dang-guo Cheng, Xiaoli Zhan,
Catalytic reduction of NO with CH4 over FeAlPO-5 catalyst, Catalysis
Communications, July 2008
[165[ Sung Hwa, Taihuan Jin,, Young Ho Kim Phase-selective crytallization of cobaltincorporated aluminophosphate moleculer sieves with large pore by microwave

iradiation, Microporous an Mrssopous Materials (2007).
[166] J. Sudhakar Reddy, S. Sivasanker and Ratnasamy Selective oxidation on n-hexan
over a titannium silicate molecular sieve with MEL structure, Journal of Molecular
Catalysis, 70 (1991).
[167] P. Concepcirn a A. Corrna a J.M. L6pez Nieto J. Prrez-Pariente, Selective
oxidation of hydrocarbons on V- and/or Co-containing aluminophosphate (MeAPO-5)
using molecular oxygen, Applied Catalysis A: General 143 (1996) 17-28
[168] M.J. Haanepen, J.H.C. van Hooff, VAPO as catalyst for liquid phase oxidation
reactions Part I: preparation, characterisation and catalytic Performance, Applied
Catalysis A: General 152 (1997) 183-201
[169] M. Hassan Zahedi-Niaki, S.M. Javaid Zaidi, Serge Kaliaguine, Acid properties of
titanium aluminophosphate molecular sieves, Microporous and Mesoporous Materials
32 (1999) 251–255
[170] Xiuling Jiao, Dairong Chen, Wenqin Pang, Yong Yue Solvothermal synthesis and
characterization of TiAPO-41 Materials Letters 51Ž2001.236–239


129
DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ
1.

2.

3.

4.

5.

6.


7.

Vũ Ngọc Quyền, Nguyễn Văn Phất, Hoàng Văn Hoan, Nguyễn
Thị Hà; Thử nghiệm sử dụng muối Natri của axit béo từ quá trình
oxi hố n-parafin làm chất tẩy rửa; Khoa học và cơng nghệ số 53/2011.p 53
Vũ Ngọc Quyền, Đào Quốc Tuỳ, Hoàng Thanh Bình, Nguyễn
Văn Phất; Nghiên cứu chuyển hố cao lanh Tun Quang thành
Zeolit;; Tạp chí Hố học số T.43 (5A), năm 2005, p107-111.
Vũ Ngọc Quyền, Nguyễn Văn Phất, Hoàng Văn Hoan, Ngô Xuân
Anh; Tổng hợp và ứng dụng xúc tác FeAPO trong phản ứng oxi
hố n-parafin; Cơng nghiệp Hố chất số 10/2009, p 24-25.
Son. V. Dang, Quyen N.Vu, Junjiro KAWASAKI, Leonila
ABELLA; an investigation on the removal of arsenic from
simulated groundwater by adsortion using iron an iron oxide (III),
, Journal of environmental Science for Sustaninable Society. Vol
3. March 2009, p19-28
Vũ Ngọc Quyền, Đào Quốc Tuỳ; Tổng hợp và đặc trương của
VAPO dùng trong phản ứng oxi hố n-hexan; Tạp chí Cơng
Nghiệp Hoá Chất, số T12/2011, p 29-34.
Vũ Ngọc Quyền, Đào Quốc Tuỳ; Tổng hợp và đặc trương của
FeAPO dùng trong phản ứng oxi hố n-hexan; Tạp chí Cơng
Nghiệp Hố Chất, số T12/2011, p35-39.
Vũ Ngọc Quyền, Nguyễn Văn Phất, Đào Văn Tường; Nghiên cứu
tổng hợp và đặc trưng xúc tác VAPO, ứng dụng trong phản ứng
oxi hóa n-hexan, , Hội nghị xúc tác toàn quốc lần thứ IV, 8/2007,
p 413-417.




×