Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC SƯ PHẠM
NGUYỄN NGỌC GIANG
NGHIÊN CỨU BIỂU HIỆN PEPTIT KHÁNG NGUYÊN TỪ
PROTEIN VỎ CỦA VIRUT VIÊM NÃO NHẬT BẢN LÀM TIỀN
ĐỀ ĐỂ SẢN XUẤT VĂCXIN DÙNG QUA ĐƯỜNG MIỆNG
Chuyên ngành: Di truyền học
Mã số: 60.42.70
LUẬN VĂN THẠC SĨ SINH HỌC
Người hướng dẫn khoa học: TS. Lê Quỳnh Liên
THÁI NGUYÊN – 2009
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC SƯ PHẠM
NGUYỄN NGỌC GIANG
NGHIÊN CỨU BIỂU HIỆN PEPTIT KHÁNG NGUYÊN TỪ
PROTEIN VỎ CỦA VIRUT VIÊM NÃO NHẬT BẢN LÀM TIỀN
ĐỀ ĐỂ SẢN XUẤT VĂCXIN DÙNG QUA ĐƯỜNG MIỆNG
LUẬN VĂN THẠC SĨ SINH HỌC
THÁI NGUYÊN – 2009
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
LỜI CAM ĐOAN
Tôi xin cam đoan các kết quả trong thí nghiệm này đều được tôi làm
thực tế và chưa có công trình nào công bố trên các bài báo, tạp chí, hay các
phương tiện thông tin đại chúng.
Tác giả
Nguyễn Ngọc Giang
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
LỜI CẢM ƠN
Tôi xin bày tỏ lòng biết ơn sâu sắc tới TS. Lê Quỳnh Liên đã tận tình
hướng dẫn, động viên, giúp đỡ tôi trong suốt quá trình học tập và nghiên
cứu.
Trong quá trình thực hiện và hoàn thành đề tài tôi đã nhận được sự
giúp đỡ và những kinh nghiệm quý báu từ GS.TS. Lê Trần Bình, TS. Chu
Hoàng Hà, TS. Lê Văn Sơn, TS. Nguyễn Hữu Cường cùng tập thể cán bộ
phòng Công nghệ Tế bào Thực vật, Viện Công nghệ Sinh học. Từ đáy
lòng, tôi xin bày tỏ lòng biết ơn sâu sắc với sự gúp đỡ đó để tôi có thể hoàn
thành luận văn.
Tôi cũng xin bày tỏ lòng biết ơn tới các thầy cô trong bộ môn Sinh,
Trường Đại học Sư phạm, Đại học Thái Nguyên đã dạy dỗ, giúp đỡ tôi
trong suốt quãng thời gian học tập tại trường.
Nhân dịp này, tôi cũng xin bày tỏ lòng biết ơn tới gia đình, bạn bè và
những người thân bên cạnh đã động viên khích lệ và tạo điều kiện cho tôi
hoàn thành luận văn này.
Thái Nguyên, ngày 1 tháng 10 năm 2009
Học viên
Nguyễn Ngọc Giang
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
DANH MỤC CHỮ VIẾT TẮT
Amp: Ampicillin
AS: Acetosyringone
A. Tumefaciens: Agrobacterium Tumefaciens
Bp : cặp baze
Carbe: Carbenicillin
CNSH: Công nghệ sinh học
CNTBTV: Công nghệ tế bào Thực vật
Da: Dalton
Đoạn 27aa: Đoạn gen mã hoá cho đoạn peptít 27 axit amin của virut viêm
não Nhật Bản
Đoạn 27aa_LTB: Đoạn gen nối giữa đoạn 27aa và gen LTB
DNA: Deoxyribonucleic acid
E.coli: Escheria Coli
EDTA: Ethylen dimine tetra- acetic acid
HEPES: N-2-huydroxyethylpiperazine-N’-ethanesulfonic acid
IPTG: Isopropylthio-beta-D-glactoside
Kana: Kanamycin
Kb: kilobaze
LB: Luria Bertani
LTB: Labile enterotoxin B
OD: Mật độ quang học
PBS: Phosphate buffer saline
PCR: Polymerase chain reaction
Rifa: Rifampicin
SDS: Sodium dodecyl sulphat
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
SDS- PAGE: SDS-Polyacrylamide gel electrophoresis
Spec: Spectinomycin
TE: Tris-EDTA
VNNB: viêm não Nhật Bản
X-gal: 5-bromo-4 chloro- 3 indolyl-beta-D-glactoside
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
MỤC LỤC
LỜI CAM ĐOAN
LỜI CẢM ƠN
DANH MỤC CHỮ VIẾT TẮT
DANH MỤC CÁC BẢNG
DANH MỤC CÁC HÌNH
MỞ ĐẦU .......................................................... Error! Bookmark not defined.
Chƣơng 1 TỔNG QUAN TÀI LIỆU ............... Error! Bookmark not defined.
1.1 Bệnh viêm não Nhật Bản ........................ Error! Bookmark not defined.
1.1.1 Nguồn gốc bệnh viêm não Nhật BảnError! Bookmark not defined.
1.1.2 Nguồn lây truyền bệnh ................. Error! Bookmark not defined.
1.1.3 Đặc điểm biểu hiện của bệnh: ...... Error! Bookmark not defined.
1.2 Virut viêm não Nhật Bản (virut VNNB) Error! Bookmark not defined.
1.2.1. Đặc điểm hình thái và tính chất lý hoá của virut VNNBError! Bookmark not defined.
1.2.2. Sự nhân bản của virut ................. Error! Bookmark not defined.
1.2.3. Cấu trúc của virut VNNB ........... Error! Bookmark not defined.
1.2.4. Khả năng gây đáp ứng miễn dịch của đoạn peptit kháng
nguyên 27 axit amin của virut VNNB .. Error! Bookmark not defined.
1.3 Các loại văcxin phòng bệnh VNNB ........ Error! Bookmark not defined.
1.3.1 Văcxin bất hoạt sản xuất từ não chuộtError! Bookmark not defined.
1.3.2 Văcxin VNNB bất hoạt sản xuất từ tế bàoError! Bookmark not defined.
1.3.3 Văcxin sống giảm độc lực ............. Error! Bookmark not defined.
1.3.4 Nghiên cứu phát triển văcxin mớiError! Bookmark not defined.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Chƣơng 2 VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨUError! Bookmark not defined.
2.1 Vật liệu .................................................... Error! Bookmark not defined.
2.1.1. Vật liệu thực vật .......................... Error! Bookmark not defined.
2.1.2. Vật liệu sinh học phân tử ............ Error! Bookmark not defined.
2.1.2.1. Mồi............................................. Error! Bookmark not defined.
2.1.2.2. Plasmid ...................................... Error! Bookmark not defined.
2.1.2.3 Các chủng vi sinh vật và các nguyên liệu dùng trong thí
nghiệm.................................................... Error! Bookmark not defined.
2.1.2.4 Các loại máy móc ....................... Error! Bookmark not defined.
2.1.3 Hoá chất ........................................ Error! Bookmark not defined.
2.1.4 Các môi trƣờng nuôi cấy và các dung dịchError! Bookmark not defined.
2.2 Phƣơng pháp nghiên cứu ....................... Error! Bookmark not defined.
2.2.1. Nhân đoạn 27 aa và LTB bằng PCRError! Bookmark not defined.
2.2.2 Phƣơng pháp PCR từ khuẩn lạc (colony PCR)Error! Bookmark not defined.
2.2.3 Thiết kế vector pET21_27aa_LTB biểu hiện đoạn peptit kháng
nguyên trong E.coli ............................... Error! Bookmark not defined.
2.2.4. Biểu hiện đoạn peptit kháng nguyên trong E.coliError! Bookmark not defined.
2.2.5. Thiết kế vector pCB_27aa_LTB biểu hiện đoạn peptit kháng
nguyên trong tế bào thực vật ................ Error! Bookmark not defined.
2.2.6. Biểu hiện đoạn peptit kháng nguyên trong tế bào thực vậtError! Bookmark not defined.
2.2.7. Kiểm tra biểu hiện của protein tái tổ hợpError! Bookmark not defined.
Chƣơng 3 KẾT QUẢ VÀ THẢO LUẬN ........ Error! Bookmark not defined.
3.1 Nhân đoạn gen 27 aa ............................... Error! Bookmark not defined.
3.2 Nhân gen LTB và nối với gen 27 aa ....... Error! Bookmark not defined.
3.3 Thiết kế vector biểu hiện gen 27 aa_LTB trong E.coliError! Bookmark not defined.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
3.4 Biểu hiện protein tái tổ hợp trong E.coli BL21Error! Bookmark not defined.
3.4.1 Biến nạp vector tái tổ hợp vào chủng vi khuẩn E.coli BL21Error! Bookmark not defined.
3.4.2 Biểu hiện gen 27aa_LTB trong E.coli BL21Error! Bookmark not defined.
3.5. Biểu hiện tạm thời gen 27aa_LTB trong thực vậtError! Bookmark not defined.
3.5.1 Thiết kế vector biểu hiện gen 27aa_LTB trong thực vậtError! Bookmark not defined.
3.5.2 Lai đoạn 27aa_LTB_cmyc_KDEL với vector chuyển gen
pCB301 .................................................. Error! Bookmark not defined.
3.5.3 Biến nạp vào A. tumefaciens......... Error! Bookmark not defined.
3.5.4 Biểu hiện tạm thời gen 27aa_LTB trong cây thuốc láError! Bookmark not defined.
KẾT LUẬN ...................................................... Error! Bookmark not defined.
KIẾN NGHỊ ..................................................... Error! Bookmark not defined.
TÀI LIỆU THAM KHẢO ............................... Error! Bookmark not defined.
PHỤ LỤC
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
DANH MỤC CÁC BẢNG
Tên bảng Trang
Bảng 1 Mồi nhân gen 27 aa và gen LTB 17
Bảng 2 Các loại plasmid dùng trong thí nghiệm 18
Bảng 3 Máy móc dùng trong thí nghiệm 19
Bảng 4 Hóa chất dùng trong thí nghiệm 19
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
DANH MỤC CÁC HÌNH
Tên hình Trang
Hình 1.1: Sơ đồ cấu trúc các protein đƣợc mã hoá bởi hệ gen của virut VNNB 7
Hình 1.2: Sơ đồ vị trí đoạn 27 axit amin trên protein E 10
Hình 1.3: Khả năng sinh ra tế bào lympho từ các peptid khác nhau 11
Hình 1.4 Khả năng sản sinh ra IFN-γ và IL-4 11
Hình 1.5: Khả năng gây đáp ứng miễn dịch của văcxin thực vật 15
Hình 2.1: Sơ đồ quá trình gắn nối đoạn 27 axit amin với gen LTB 20
Hình 2.2: Sơ đồ thí nghiệm thiết kế vector pET21_27aa_LTB biểu hiện đoạn
peptide kháng nguyên trong E.coli
22
Hình 2.3: Sơ đồ thí nghiệm biểu hiện tạm thời gen 27aa_LTB trong cây thuốc lá 24
Hình 3.1: Điện di sản phẩm PCR nhân đoạn gen 27aa 27
Hình 3.2: Điện di sản phẩm PCR nhân đoạn LTB và ghép nối 27aa_LTB
28
Hình 3.3: Điện di sản phẩm cắt plasmid pBT_27aa_LTB 29
Hình 3.4: Kết quả so sánh trình tự đoạn 27 aa_LTB với trình tự gốc lần 30
Hình 3.5: Điện di sản phẩm cắt plasmid pET21_27aa_LTB 32
Hình 3.6: Điện di sản phẩm cắt plasmid pET21_27aa_LTB tách từ E.coli BL21 33
Hình 3.7: Điện di sản phẩm biểu hiện protein ở E.coli BL21 34
Hình 3.8: Điện di sản phẩm cắt plasmid pTRA_27aa_LTB bằng HindIII 36
Hình 3.9: Điện di sản phẩm cắt plasmid pCB_27aa_LTB bằng HindIII 37
Hình 3.10: Kết quả điện di sản phẩm PCR colony 38
Hình 3.11: Kết quả PCR từ plasmid các dòng A. tumefaciens 39
Hình 3.12: Sơ đồ ảnh các bƣớc Agro- infiltration 40
Hình 3.13: Mẫu lá tiêm gen Gus đƣợc nhuộm bởi X-Gluc 41
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
PHỤ LỤC
* Các dung dịch:
- Dung dịch Lameli buffer
Stock 1X 2X
50mM Tris pH 6,8 1M 0,5ml 1ml
2%SDS 20% 1ml 2ml
10% Glycerin 87% 1-1,5ml 2,3ml
0,01% DTT 1M 50μl 50μl
0,2% Bromphenol blue 1% 50μl 50μl
H
2
O 6,8ml 3,7ml
- Các dung dịch sử dụng trong tách chiết plasmid từ vi khuẩn:
+ SolI: Tris- HCL 25mM, pH=8; EDTA 10mM, pH=8; glucose 50mM.
+ SolII: NaOH 0,2M; SDS 1%.
+ SolIII: kali axetat 3M; axit axetic 11,5%; natri axetat 3M.
- Dung dịch đệm TE: Tris-HCL 10mM, pH=8; EDTA 1mM, pH=8
- Dung dịch chloroform: isoamylalcohol (24:1): 24ml chloroform: 1ml
isoamylalcohol
- Dung dịch đệm TAE đặc 50 lần: Tris- HCL 24,2%, axit axetic 5,71 ml,
10ml EDTA 0,5M pH=8
- Dung dịch nhộm gel ethidium bromide: 0,5μg/ml
- Các dung dịch trong điện di trên gel polyacrylamid(SDS- PAGE)
+ Bis- Acrylamid 30%; APS 10%; Glycerol 50%; TEMED
+ Đệm Tris- HCL 1,5M(pH=6,8)
* Các loại môi trƣờng
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- Môi trường LB lỏng: 0,5% dịch chiết nấm men; 1% bacto-pepton; 1%
NaCl.
- Môi trường LB đặc: môi trường LB lỏng thêm 1,5% Bacto-aga
- Môi trường chứa chất cảm ứng IPTG: môi trường LB có bổ xung IPTG tới
nồng độ cuối cùng 1mM
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
1
MỞ ĐẦU
Virut là nguyên nhân gây ra những căn bệnh nguy hiểm cho con người
trong đó có virut viêm não Nhật Bản (Japanese Encephalitis Virus- JEV).
Virut viêm não Nhật Bản xâm nhập vào cơ thể làm tổn hại hệ thần kinh
gây ra những tổn thương nghiêm trọng dẫn đến tử vong hoặc để lại các di
chứng nặng sau khi hồi phục. Ðến nay, bệnh viêm não Nhật Bản cũng như
nhiều bệnh do siêu vi gây ra khác chưa có thuốc đặc trị. Ðiều trị chủ yếu là
làm bớt đi phần nào các triệu chứng, cứu người bệnh qua khỏi cơn nguy kịch
do suy hô hấp, trụy tim mạch, nhiễm trùng. Sau đó thì điều trị những di chứng
phục hồi vận động, tâm thần kinh nhưng kết quả điều trị phục hồi này rất hạn
chế. Do vậy, việc phòng tránh là hết sức cần thiết.
Đã từ lâu văcxin là phương thuốc phòng ngừa bệnh hiệu quả cho con
người. Và để phòng bệnh viêm não Nhật Bản thì cũng đã có rất nhiều loại
văcxin được sản xuất. Tuy nhiên, đại đa số các loại văcxin này thường có quy
trình sản xuất phức tạp, trải qua các quá trình làm lạnh khắt khe...
Gần đây, văcxin thực vật được quan tâm nhiều vì nó có nhiều ưu điểm
như dễ dàng thu sinh khối, dễ tăng quy mô sản xuất, có tính ổn định cao trong
quá trình bảo quản và sử dụng, an toàn.
Bên cạnh đó, những nghiên cứu trên protein vỏ của virut viêm não Nhật
Bản cho thấy đoạn 27 axit amin nằm trên protein vỏ của virut viêm não Nhật
Bản có khả năng tạo ra kháng thể chống lại virut này.
Ngoài ra, nghiên cứu trên tiểu đơn vị liên kết nội độc tố không bền nhiệt
của E.coli (heat- labile enterotoxin: LT) cho thấy tiểu đơn vị B (LTB) có khả
năng sinh miễn dịch ở niêm mạc ruột. LTB tái tổ hợp có thể kích thích các
đáp ứng miễn dịch niêm mạc để chống lại LT. Do vậy, LTB có thể được sử
dụng tăng cường hiệu quả miễn dịch của văcxin thực vật.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
2
Dựa theo những căn cứ trên, do đó chúng tôi đã chọn đề tài: “Nghiên cứu
biểu hiện peptit kháng nguyên từ protein vỏ của virut viêm não Nhật Bản
làm tiền đề để sản xuất văcxin dùng qua đường miệng ”.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
3
Chƣơng 1 TỔNG QUAN TÀI LIỆU
1.1 Bệnh viêm não Nhật Bản
1.1.1 Nguồn gốc bệnh viêm não Nhật Bản
Bệnh viêm não Nhật Bản (VNNB) được phát hiện vào năm 1871. Năm
1924, tại Nhật Bản xảy ra một vụ dịch có tới 6000 người mắc và có đến 60%
trong số này tử vong [20]. Năm 1959, Buecher và Scherer đã khẳng định chim
và lợn là những vật chủ chính bị nhiễm virut và nhờ có muỗi là vectơ hút máu
các động vật nhiễm truyền virut sang cho người [5].
Các nước trong khu vực châu Á bao gồm: Nhật Bản, Trung Quốc, Đài
Loan, Triều Tiên, Philippine, vùng viễn đông Nga, tất cả các nước Đông Nam
Á và Ấn Độ đều nằm trong vùng lưu hành của virut VNNB. Dần dần nó đã
lây lan đến các vùng khác không thuộc châu Á như vùng Torres của Australia
[13] [36]. Hàng năm, trong khu vực này có khoảng 50.000 trường hợp mắc và
trong đó có khoảng 10.000 tử vong, số sống sót mang nhiều di chứng thần
kinh rất nặng nề [42].
Bệnh VNNB thường xảy ra quanh năm, nhưng dịch thường bắt đầu
trong mùa mưa khi quần thể muỗi phát triển tối đa và nhiệt độ ở các khu vực
này thích nghi cho nguồn bệnh [52]. Thường là vào khoảng tháng 5 đến tháng
9 ở các nước bán nhiệt đới và nhiệt đới phụ thuộc vào mật độ muỗi và động
vật khuếch đại, lượng mưa, chim di cư và canh tác nông nghiệp là các yếu tố
quan trọng. Tỷ lệ mắc giảm dần ở Trung Quốc, Hàn Quốc và Nhật Bản nhưng
lại tăng lên ở Bangladest, Myanmar, Ấn Độ, Nepal, Bắc Thái Lan và Việt
Nam [52].
1.1.2 Nguồn lây truyền bệnh
Hầu hết các trường hợp lây truyền bệnh là do muỗi hoặc côn trùng đốt
các loài chim, chim là ký chủ mang mầm bệnh, nhưng bản thân chim thường
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
4
không biểu hiện bệnh. Ngoài ra còn có các vật chủ khác mang mầm bệnh như
động vật có vú, nhất là lợn [3].
Muỗi Culex là vector truyền bệnh, chủ yếu là các loài: Culex
tritaeniorhyncus: là muỗi thường gặp ở châu Á. Culex gelidus: thường gặp ở
Malaysia và Singapore. Culex vishnui: ở Ấn Độ. Culex pseudovishnui: ở Ấn
Độ. Culex annulirostris: ở Guam. Culex pipiens: ở phía đông Liên Xô cũ.
Muỗi cái có thể truyền bệnh từ đời mẹ sang đời con, muỗi Culex
tritaeniorhyncus sinh sản phát triển nhiều nhất ở đồng ruộng, nó đốt chim, gia
súc và người. Muỗi Culex đốt truyền vào ban đêm. Tỷ lệ nhiễm ở muỗi vào
khoảng 1-3% [21]. Loài muỗi này sống chủ yếu ở đồng ruộng lúa nước nhưng
có thể di chuyển vào vùng dân cư sinh sống gần đó. Các ca bệnh thường là ở
vùng ngoại ô thành phố [21], [45], [52].
Ở Việt Nam có hai nhóm chim có khả năng truyền bệnh:
- Nhóm chim sống trong làng mạc, lũy tre, ở các loài cây ăn quả như: chim
bông lau, chim rẻ quạt, chim sẻ nhà, chim liếu điếu, chim chích chòe.
- Nhóm chim ăn ngoài đồng: cò, sáo, quạ, cu gáy, chèo bẻo.
Có một số loài súc vật khác bị nhiễm trùng tiềm tàng như gà, dê, bò, ngựa,
lợn và loài bò sát (rắn, rùa).
Ở nước ta loài muỗi này có nhiều ở miền Bắc vào các tháng nóng. Ban
ngày sống trong các bụi cây ngoài vườn, ban đêm bay vào nhà cắn hút máu
gia súc và người, chúng thích đẻ trứng trong ruộng lúa và mương máng. Lợn
tham gia dây truyền bệnh thường ở dưới dạng nhiễm trùng thể ẩn [3].
1.1.3 Đặc điểm biểu hiện của bệnh:
Triệu chứng của bệnh thường là sốt, đau người, mệt mỏi, đặc biệt là viêm
não ở người lớn. Ở trẻ em có thể gây đau dạ dày, ruột và rối loạn tinh thần,
ngủ gà ngay ở giai đoạn đầu, lên cơn co giật. Bệnh nặng có thể dẫn đến hôn
mê và có thể không hồi phục lại được. Một số trường hợp tiến triển bệnh
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
5
viêm màng não rất nhanh, chỉ trong phút chốc. Hầu hết các trường hợp đều để
lại những di chứng hết sức nặng nề. Hầu hết di chứng để lại ở trẻ dưới 10 tuổi.
Thời kỳ ủ bệnh 5-16 ngày. Sau đó, khởi bệnh ồ ạt bằng các triệu chứng
sốt cao đột ngột, đau đầu, đau cơ, buồn nôn, nôn. Tiếp đến là rối loạn ý thức
xuất hiện các dấu hiệu như lú lẫn, mê sảng, hôn mê. Rối loạn vận động như
trương lực cơ tăng, chân tay co cứng, cứng gáy, cử động bất thường, có các
cơn co giật. Nặng hơn là liệt nửa người hoặc liệt toàn thân. Bệnh để lại di
chứng liệt vận động hoặc rối loạn tinh thần [2].
1.2 Virut viêm não Nhật Bản (virut VNNB)
1.2.1. Đặc điểm hình thái và tính chất lý hoá của virut VNNB
Virut VNNB nằm trong nhóm virut Arbo (arthropod borne viruses). Hệ
gen của virut Arbo thường là ARN, hầu hết chúng đều có vỏ lipit và bị bất
hoạt bởi ether hoặc sodium deoxycholate [4] [7]. Nhóm virut Arbo có trên
350 loài, trong đó Arbo gây bệnh cho người có trên 75 loài. Nhiều virut Arbo
được xếp vào họ Togaviridae, Bunyaviridae, Reoviridae, Rhabdoviridae... Họ
Togaviridae được chia thành 2 chi là Alphavirus thuộc nhóm A và họ
Flaviviridae thuộc nhóm B trong đó virut VNNB thuộc họ Flaviviridae [2].
Virut VNNB có đường kính trung bình 40-50nm, dạng hình cầu. Màng
lipid kép của virut gắn vào lớp vỏ là glycoprotein E và protein màng M. Sợi
ARN làm vật liệu di truyền được bao bọc bởi nucleocapsid. Hệ gen của virut
VNNB mã hóa cho 10 protein gồm 3 protein cấu trúc và 7 protein không cấu
trúc trong một khung đọc mở liên tục và trật tự từ đầu 5’ đến đầu 3’ và các
vùng không mã hóa [31]. Hạt virut VNNB tinh khiết cho thấy sợi ARN chiếm
6%, protein 66%, lipid 17% và carbonhydrate chiếm 9%, cấu trúc của lớp
lipid kép phụ thuộc vào tế bào chủ, nơi virut nhân lên [41] [48].
Virut VNNB có hệ số lắng 200S. Trọng lượng phân tử 60-70 x 10
6
dalton. Độ bền vững thích hợp nhất là pH 8. Virut dễ bị bất hoạt bởi nhiệt độ
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
6
cao: 50
o
C trong 50 phút, 37
o
C trong vài giờ. Nhiệt độ thấp như -80
o
C, -20
o
C
virut tồn tại trong nhiều năm và trong nitơ lỏng (-196
o
C) virut tồn tại vĩnh
cửu. Virut VNNB rất nhạy với dung môi hòa tan như ether, sodium
deoxycholate, dễ dàng bị bất hoạt bởi tia cực tím, formaldehyt... [1]
1.2.2. Sự nhân bản của virut
Trên màng tế bào thường có những thụ thể, khi virut xuất hiện sẽ nhận
biết và tiến đến bám vào thụ thể. Màng tế bào bao bọc hạt virut và đưa virut
vào trong nội bào. Màng tế bào bị tác động và tạo khe hở cho virut thâm nhập
vào bên trong tế bào gây cảm ứng tổng hợp ARN [9] [33] [38]. Bước vào quá
trình cởi áo, sợi ARN được bộc lộ là sợi ARN đơn để tạo thành ARN phân
cực (-) bổ sung thành chuỗi ARN kép nhờ phiên mã sớm và thông tin trung
gian sao chép sợi ARN kép được làm khuôn để tổng hợp các sợi ARN mới
theo cách bán bảo tồn và không đối xứng. Protein cũng được tổng hợp liên
tiếp thành các đoạn protein cấu trúc và không cấu trúc [44]. ARN và protein
của virut được tổng hợp trên lưới nội chất có hạt, vùng quanh nhân trong
nguyên sinh chất của tế bào chủ. Sản phẩm tổng hợp được lắp ráp ở màng tế
bào chất tạo ra các hạt virion. Các hạt virion được giải phóng qua bộ máy
Golgi bằng ngoại bào xuất tiết và các virut mới tiếp tục xâm nhập vào tế bào
khác [14] [15] [16].
Virut VNNB nhân lên trên nhiều loại tế bào cả ở trên tế bào tiên phát và
tế bào thường trực có nguồn gốc từ người, khỉ, gặm nhấm, lợn, chim, gia cầm
và muỗi [6] [7] [12]. Virut nhân lên gây hủy hoại tế bào (CPE) nhưng cũng có
một số loại tế bào quan sát dưới kính hiển vi quang học, không thấy hiện
tượng CPE [33].
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
7
1.2.3. Cấu trúc của virut VNNB
Hình 1.1: Sơ đồ cấu trúc các protein được mã hoá bởi hệ gen của virut VNNB
Hệ gen của virut VNNB mã hoá cho các protein khác nhau, các protein
này được chia thành hai nhóm chính là protein cấu trúc và protein phi cấu
trúc. Nhóm protein cấu trúc chiếm ¼ chiều dài hệ gen bao gồm: protein lõi C,
protein tiền màng (preM) và protein màng. Các protein không cấu trúc là phần
còn lại của hệ gen. Đầu 3’ sợi ARN của virut VNNB không chứa đuôi polyA
nhưng được coi là làm khuôn mẫu cho các cấu trúc tiếp theo. Từ đầu 5’ các
gen được mã hóa cho protein C của ARN [39] [49].
Nhóm protein cấu trúc bao gồm:
a) Protein C
Protein C rất vững chắc, chứa khoảng 127 axit amin, trong đó thành phần
bao gồm một số lớn axit amin Lys và Arg. Protein C có các axit amin liên kết
với nhau rất chặt chẽ, có thể loại trừ khả năng trung hòa của phân tử ARN của
virut với các tác nhân liên quan [31] [38].
b) Protein M
Phía ngoài tế bào của virut trưởng thành có chứa protein M. Protein M có
chứa dạng protein preM chưa trưởng thành trong tế bào chủ và preM có tới
165 axit amin không trùng lặp với protein E. Từ đó đã có một số nghiên cứu
sản xuất văcxin VNNB tái tổ hợp sử dụng protein E để tổng hợp preM của
C
preM
E
NS1
5’
Protein cấu trúc
Protein không cấu trúc
NS3 NS4 NS5
3’
NS2
NS2A
NS2B
NS4A
NS4B
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
8
virut với mục đích tạo các nếp gấp chính xác tại protein M và lắp ráp vào
protein E của 1 flavivirus nào đó. Trước khi virut được giải phóng ra ngoài tế
bào,preM được phân cắt bởi một phân tử protease để tạo thành protein M
hoàn chỉnh [38] [43] [53]. Sự sắp xếp lại các cấu trúc oligo trên bề mặt hạt
virut do sự ly giải preM ra ngoài tế bào làm tăng khả năng gây nhiễm của
virut trưởng thành tới vật chủ [18] [30].
c) Protein E
Protein E là một glycoprotein. Protein E bao gồm khoảng 494-501 axit
amin có trọng lượng phân tử 55-60KDa và là thành phần cấu tạo chính của vỏ
(E). Các chuỗi axit amin tương đồng cho thấy protein E là một protein cấu
trúc có tính bảo tồn cao trong các virut thuộc nhóm flavivirus. Protein E có
liên quan chặt chẽ đến chức năng sinh học của virut như chức năng bám dính,
thụ cảm thể, ngưng kết hồng cầu, trung hòa kháng thể, điều chỉnh pH nội
nguyên sinh chất của tế bào chủ [35] [37].
So sánh cấu trúc protein E của JEV với cấu trúc có trình tự axit amin
tương đồng khác cho thấy protein E là một protein cấu trúc có tính bảo thủ
cao, Nhờ đặc điểm tương đồng của các protein vỏ trong chi flavivirus người
ta đã xác định cấu trúc không gian của JEV dựa trên cơ sở cấu trúc không
gian của TBE (tick-bome encephalitis) và phương pháp xây dựng mô hình với
kiến thức đã biết. Kolaskar và Kulkami-Kale năm 1999 và năm 2002 đã đưa
ra mô hình cấu trúc không gian protein E của JEV là một homodimer gồm:
khoảng 30 chuỗi ( có thể ít hơn hoặc nhiều hơn tùy thuộc vào chủng) chia làm
9 phiến β (8 phiến đối song song và một phiến có cấu truc hình học topo), hai
xoắn α và ba domain [1].
Các chuỗi không ở vị trí cố định trong không gian mà thường trôi và
chuyển động trong không gian nhờ một số axit amin. Cấu trúc không gian của
protein E được duy trì bởi 6 cấu trúc disulfide bảo thủ. Một liên kết disulfide
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
9
trong đó có vai trò trong việc duy trì cấu trúc mà gấp nếp giống như protein
lõi kháng trypsin. Domain I là một trung tâm thùng AY ( AY- barrel) gồm
128 axit amin từ vị trí 1- 51, 137-196 và 293-311. Domain II là vùng nhị
trùng hoá kéo dài gồm 71 axit amin từ vị trí 52-136 và 197-192. Domain III
có phân tử giống Ig đầu C gồm 100 axit amin từ vị trí 312-411. Dựa vào cấu
trúc không gian của protein E của TBE cho thấy phiến ABED của domain III
nối với domain I và vùng thong lọng cd (loop-cd) của domain III. Cấu trúc
không gian protein E của một số chủng khác nhau có một số sai khác giữa các
chủng về số lượng chuỗi, số lượng phiến và số lượng axit amin trong mỗi
chuỗi biến đổi mặc dù điểm bắt đầu và kết thúc vẫn khớp nhau. Chủng JEV
Sri Lanka có thêm 6 chuỗi ngắn và hai phiến nhỏ so với chủng JEV
NakaYama nhưng có một chuỗi chỉ có ở chủng JEV Nakayama. Một phiến
nằm trên domain II tạo 2 sợi từ axit amin 335-336 và 360-361. Protein E có
liên quan chặt chẽ đến chức năng sinh học của virut như chức năng bám dính,
thụ cảm thể, ngưng kết hồng cầu, trung hoà kháng thể, điều chỉnh pH nội
nguyên sinh chất của tế bào [1].
1.2.4. Khả năng gây đáp ứng miễn dịch của đoạn peptit kháng nguyên 27
axit amin của virut VNNB
Với mỗi loại kháng nguyên khác nhau thì có thể sinh ra các kháng thể
tương ứng để trung hoà kháng nguyên hoặc không sinh ra kháng thể nào. Với
virut thì những kháng nguyên này thường nằm ngay trên bề mặt hạt virut.
Trong virut VNNB thì kháng nguyên ngưng kết hồng cầu và hoạt tính trung
hòa là preM và E [8] [28] [32] [40]. Hai thành phần preM và E có khả năng
gây ra đáp ứng miễn dịch với hạt virut nguyên vẹn. Điều này được thể hiện
bởi thí nghiệm của Kitano và Suzuki bằng cách tách chiết ngưng kết tố hồng
cầu trên bề mặt hạt virut VNNB rồi gây miễn dịch cho chuột nhắt trắng. Kết
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
10
quả là kháng thể trung hòa ở chuột được gây miễn dịch với hạt virut VNNB
nguyên vẹn.
Có nhiều nghiên cứu cho thấy glycoprotein E đóng vai trò quan trọng
trong quá trình gây ra đáp ứng miễn dịch. Protein E khi bị cắt đầu C không
những vẫn có khả năng gây đáp ứng miễn dịch mà còn bảo vệ cơ thể vật chủ
tốt hơn so với protein E hoàn chỉnh.
Trên protein E có chứa một đoạn 27 axit amin (từ axit amin 373 đến
399). Theo những nghiên cứu cho thấy đoạn 27 axit amin này có thể kéo dài
và tăng cường khả năng tạo ra kháng thể trung hoà chống lại virut
VNNB.
Hình 1.2: Sơ đồ vị trí đoạn 27 axit amin trên protein E
Một nghiên cứu gần đây của một nhóm tác giả người Trung Quốc đã tiến
hành khi gắn nối đoạn gen mã hoá cho đoạn 27 axit amin này với protein sốc
nhiệt Hsp70. Sau đó biểu hiện trong E.Coli đoạn 27 axit amin riêng lẻ và đoạn
27 axit amin đã gắn với Hsp70, protein biểu hiện được thu lại và tiêm vào
chuột. Kết quả cho thấy khả năng sinh kháng thể của đoạn 27 axit amin khi
gắn với Hsp70 cao hơn so với đoạn peptit 27 axit amin riêng rẽ [10].
Hình 1.3 so sánh về khả năng sản sinh ra các tế bào lympho từ chuột
được gây miễn dịch bởi các peptit 27 aa có hoặc không có dầu khoáng, peptit
27 aa dung hợp với hsp70 và JEV SA14-14-2.
27aa
Protein E
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
11
Peptit 27 aa dung hợp với hsp70 tổng hợp có giá trị OD 570 cao nhất,
trong khi sự có mặt của dầu khoáng không có hiệu quả đặc biệt. Không có sự
khác biệt lớn giữa xử lý văcxin JEV SA 14-14-2 với kiểm soát không miễn
dịch [10].
Mặt khác tính miễn dịch của chuột bởi đoạn 27 aa với hsp70 cũng được
thể hiện bằng khả năng sản sinh ra lượng IFN-γ (hình 1.4)
Nồng độ IFN-γ được tạo ra cao hơn hẳn so với ở các đối tượng kháng
nguyên khác cho thấy việc gắn kết giữa đoạn peptit 27 aa với hsp70 đã làm
gia tăng khả năng gây đáp ứng miễn dịch [10]. Điều này suy ra rằng cũng có
Hình 1.4. Khả năng sản sinh ra IFN-γ và IL-4
1: Peptit 27 aa riêng lẻ
2: Peptit 27 aa có dầu
khoáng
3: Peptit 27 aa dung hợp
với hsp70
4: JEV SA14-14-2
5: Không miễn dịch
1 2 3 4 5
1: Peptit 27 aa riêng lẻ
2: Peptit 27 aa có dầu
khoáng
3: Peptit 27 aa dung hợp
với hsp70
4: JEV SA14-14-2
5: Không miễn dịch
Hình 1.3. Khả năng sinh ra tế bào lympho từ các kháng nguyên khác nhau
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
12
thể gắn kết đoạn peptit 27 aa này với một gen nào đó có ưu điểm như hsp70
cũng sẽ hứa hẹn mang lại hiệu quả đáp ứng miễn dịch cao.
1.3 Các loại văcxin phòng bệnh VNNB
Từ những năm 1935 cho đến nay đã có rất nhiều công trình nghiên cứu
sản xuất văcxin VNNB. Theo thời gian thì công nghệ sản xuất văcxin cũng
dần nâng cao và đảm bảo sản xuất ra những loại văcxin tốt nhất. Tuy nhiên
không thể nói rằng những văcxin đó không có những nhược điểm. Với mỗi
loại văcxin khác nhau thì có những ưu nhược điểm khác nhau.
Hiện tại có 3 loại văcxin đang được lưu hành là: Văcxin bất hoạt sản xuất từ
não chuột, văcxin bất hoạt trên nuôi cấy tế bào, văcxin sống giảm độc lực trên
nuôi cấy tế bào
1.3.1 Văcxin bất hoạt sản xuất từ não chuột
Những năm 1940 khi bắt đầu nghiên cứu sản xuất văcxin này ở dạng thô,
văcxin này chứa toàn bộ protein não chuột và hàm lượng Myelin rất cao do đó
tỷ lệ gây viêm não dị ứng cũng cao. Ngày nay công nghệ tinh chế hiện đại
hơn đã làm giảm tối đa protein Myelin (<2ng/ml) và 2 chủng virut VNNB
dùng để sử dụng sản xuất văcxin này là Nakayama và Beijing-1. Loại văcxin
bất hoạt này được sản xuất ở một số nước Châu Á và được lưu hành rộng dãi
trên thế giới [11].
1.3.2 Văcxin VNNB bất hoạt sản xuất từ tế bào
Chủng virut VNNB P3 có khả năng đáp ứng kháng thể với nhiều chủng
virut viêm não khác trên chuột và nhân lên rất tốt trên tế bào thận tiên phát ở
chuột. Văcxin được bất hoạt bằng formalin và hiệu quả gây miễn dịch cho trẻ
em đạt 80% đáp ứng kháng thể.
1.3.3 Văcxin sống giảm độc lực
Chủng SA14-14-2 là chủng giảm độc lực và không gây ảnh hưởng thần
kinh. Qua thử nghiệm tại 1 vùng không lưu hành dịch ở Trung Quốc cho thấy