Tải bản đầy đủ (.doc) (50 trang)

Tuyen tap 100 bai toan Hinh on thi vao 10

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (439.63 KB, 50 trang )

Tuyển tập 100 bài TON HèNH ôn thi vo 10
Bài 1 .Cho hình vuông ABCD. Trên cạnh BC, CD lần lợt lấy điểm E, F sao cho
ã
0
45EAF
=
. Biết BD cắt AE, AF theo thứ tự tại G, H. Chứng minh:
a) ADFG, GHFE là các tứ giác nội tiếp
b) CGH và tứ giác GHFE có diện tích bằng nhau n
Bài 2. Cho ABC không cân, đờng cao AH, nội tiếp trong đờng tròn tâm O. Gọi E, F thứ
tự là hình chiếu của B, C lên đờng kính AD của đờng tròn (O) và M, N thứ tự là trung
điểm của BC, AB. Chứng minh:
a) Bốn điểm A,B, H, E cùng nằm trên đờng tròn tâm N và HE// CD.
b) M là tâm đờng tròn ngoại tiếp HEF.
Bài 3. Cho nửa đờng tròn đờng kính AB. Gọi H là điểm chính giữa cung AB, gọi M là
một điểm nằm trên cung AH; N là một điểm nằm trên dây cung BM sao cho BN = AM.
Chứng minh:
1. AMH = BNH.
2. MHN là tam giác vuông cân.
3. Khi M chuyển động trên cung AH thì đờng vuông góc với BM kẻ từ N luôn đi qua một
điểm cố định ở trên tiếp tuyến của nửa đờng tròn tại điểm B.
Gợi ý : 3)
Gọi đthẳng qua N vuông góc với MB cắt ttuyến
tại B ở Q
Chứng minh AMB = BNQ
BQ = BA = const
1
I
BT 3 : Hai pt đồng dạng với nhau khi và chỉ khi
Hoặc
1



2
nhỏ hơn 0
Hoặc
a
a
,
=
b
b'
=
c
c'
a) Chứng minh góc EHM = góc HCD
b) MN// AC, AC

CD, CD // HE

MN

HE
mà MN là đường kính của vòng tròng ngoại tiếp ABHE


MH = ME
Từ M kẻ đường thẳng // BE như hình vẽ
+ PJ là đường TB của hthang BECF

PJ


FE
+ Từ đó dễ thấy MF = ME
P
K
J
N
M
F
E
H
D
C
A
B
N
Q
H
O
A
B
M
Tuyển tập 100 bài TON HèNH ôn thi vo 10
Bài 4.Cho (O) đờng kính AC. Trên đoạn OC lấy điểm B và vẽ đờng tròn (O
/
) đờng kính BC.
Gọi M là trung điểm đoạn AB. Từ M kẻ dây cung DEAB. Gọi I là giao của DC với (O
/
)
a) Chứng minh ADBE là hình thoi.
b) BI// AD.

c) I,B,E thẳng hàng .
Gọi ý : c:
Chứng minh qua B có 2 đờng thẳng: BE và BI
Cùng song song với AD
Bài 5. Trên đờng thẳng d lấy ba điểm A,B,C theo thứ tự đó. Trên nửa mặt phẳng bờ d kẻ hai
tia Ax, By cùng vuông góc với dt. Trên tia Ax lấy I. Tia vuông góc với CI tại C cắt By tại K.
Đờng tròn đờng kính IC cắt IK tại P.
1)Chứng minh tứ giác CBPK nội tiếp đợc đờng tròn
2)Chứng minh AI.BK = AC.CB
3)Giả sử A,B,I cố định hãy xác định vị trí điểm C sao cho diện tích hình thang
vuông ABKI max.
2
I
D
E
M
O'
A
C
B
x
y
a/ Chứng minh

KPC = KBC = 90

b/ Chứng minh

AIC




BCK
P
K
A
C
B
I
Tuyển tập 100 bài TON HèNH ôn thi vo 10
Bài 6. Từ một điểm S ở ngoài đờng tròn (O) vẽ hai tiếp tuyến SA, SB và cát tuyến SCD của
đờng tròn đó.
a) Gọi E là trung điểm của dây CD. Chứng minh 5 điểm S,A,E,O,B cùng thuộc một đờng
tròn
b) Nếu SA = AO thì SAOB là hình gì? tại sao?
c) Chứmg minh rằng:
.
. .
2
AB CD
AC BD BC DA
= =
b/ SAOB là hình vuông
c/ Lấy E thuộc CD Sao cho
ã
ã
CAE BAD=

chứng minh CAE BAD AB.CE = AC. AD (1)
CM AB.DE = AC. CB (2)

Từ (1) và (2) AB.CD = AC .BD + AD.BC (3)
Cminh SAC SDA
SA SC
SD SB
=
(4) ,
AC SA
AD SD
=
(5)
SCB SBD
BC SC
BD SD
=
(6)
Từ 4, 5, 6 AC.BD = AD. BC (7)
Từ 3, 7 Đfải CM
Bài 7. Cho ABC vuông ở A. Nửa đờng tròn đờng kính AB cắt BC tại D. Trên cung AD lấy
một điểm E. Nối BE và kéo dài cắt AC tại F.
a) Chứng minh: CDEF là một tứ giác nội tiếp.
b) Kéo dài DE cắt AC ở K. Tia phân giác của góc CKD cắt EF và CD tại M và N. Tia
phân giác của góc CBF cắt DE và CF tại P và Q. Tứ giác MNPQ là hình gì? Tại sao?
c) Gọi r, r
1
,

r
2
là theo thứ tự là bán kính của đờng tròn nội tiếp các tam giác ABC, ADB,
ADC. Chứng minh rằng

2 2
1 2
r r r
= +
.
3
E
C
B
A
O
S
D
O
D
A
C
B
E
Tuyển tập 100 bài TON HèNH ôn thi vo 10
Bài 8. Cho ABC có ba góc nhọn nội tiếp trong đờng tròn tâm O, bán kính R. Hạ các đờng
cao AD, BE của tam giác. Các tia AD, BE lần lợt cắt (O) tại các điểm thứ hai là M, N. Chứng
minh rằng:
1. Bốn điểm A,E,D,B nằm trên một đờng tròn. Tìm tâm I của đờng tròn đó.
2. MN// DE
3. Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh rằng
độ dài bán kính đờng tròn ngoại tiếp CDE không đổi.
Y 3 / Dễ chứng minh đợc
HC =
2 2 2 2

AK AB 4R AB const = =
4
r
r
2
r
1
a/ CM góc C = góc DEB
b/ Chứng minh

AQB =

QPK( cùng bằng 1/2 sđBD )
+ Từ đó suy ra KN là đường trung trực của PQ, QPlà đường trung trực
của MN
+ KL MNPQ là hình thoi
c/ CM COB

AO
2
B


BO
BO
2
=
r
r
2



r
2
r
=
AB
BC
; tương tự tacó
r
1
r
=
AB
BC



r
2
1
r
2
+
r
2
2
r
2
=

AB
2
+ AC
2
CB
2
= 1

Đpcm
O1
O2
D
O
P
L
M
Q
N
K
F
D
A
B
A
B
C
E
C
D
E

M
H
A
K
B
C
Tuyển tập 100 bài TON HèNH ôn thi vo 10
Bài 9. Cho nửa đờng tròn tâm O đờng kính AB. Lấy D trên cung AB (D khác A,B), lấy điểm
C nằm giữa O và B. Trên nửa mặt phẳng bờ AB có chứa D kẻ các tia Ax và By vuông góc với
AB. Đờng thẳng qua D vuông góc với DC cắt Ax và By lần lợt tại E và F .
1) CMR : Góc DFC bằng góc DBC
2) CMR :

ECF vuông
3) Giả sử EC cắt AD tại M, BD cắt CF tại N. CMR : MN//AB
4)CMR: Đờng tròn ngoại tiếp

EMD và đờng tròn ngoại tiếp

DNF tiếp xúc nhau tại
4 a/ Sử dụng tc góc nội tiếp
b/ Chng minh tổng 2 góc của

ECF bằng 1 vuông
c/
ã
ã
ã
ã
MCA MDE NDC NMC= = =

(cùng phụ với góc MDC)
Bài 10. Cho nửa đờng tròn (O) đờng kính AB = 2R. Trên nửa mặt phẳng bờ AB chứa nửa đ-
òng tròn kẻ hai tia tiếp tuyến Ax và By. Qua điểm M thuộc nửa đờng tròn(M khác A và B) kẻ
tiếp tuyến thứ ba cắt Ax và By ở C, D.
1. Chứng minh: a) CD = AC+BD b) AC.BD = R
2
5
N
d/ Lấy Q là trung điểm của MN khi đó
DQ=QM=QN

DEM =

DAB =

DMQ =

MDQ

DQ là
tiếp tuyến của (O')

O'DQ = 90


Tương tự

O''DQ = 90

Từ đó suy ra điều cần chứng minh

Chú ý: MN là tiếp tuyến chung của (O') và (O'')
Q
O''
O'
M
F
E
A
B
D
C
Tuyển tập 100 bài TON HèNH ôn thi vo 10
2. Xác định vị trí điểm M để tứ giác ABDC có diện tích nhỏ nhất.
3. Cho R = 2 cm, diện tích tứ giác ABDC bằng 32cm
2
. Tính diện tích ABM
2 SABM nhỏ nhất khi CD nhỏ nhất
CD nhỏ nhất khi CD song song với AB
Khi đó M là điểm chính giữa cung AB
3
Bài 11. Cho đờng tròn tâm O, đờng kính AB = 2R. Gọi I là trung điểm của AO. Qua I kẻ dây
CD vuông góc với AB.
1) Chứng minh: a) Tứ giác ACOD là hình thoi. b)
ã ã
1
2
CBD CAD=
2) Chứng minh rằng O là trực tâm của BCD.
3) Xác định vị trí điểm M trên cung nhỏ BC để tổng (MB+MC+MD) đạt giá trị lớn nhất.
Bài 12. Cho ABC có 3 góc nhọn AC > BC nội tiếp (O) . Vẽ các tiếp tuyến với (O) tại A và

B, các tiếp tuyến này cắt nhau tại M . Gọi H là hình chiếu vuông góc của O trên MC
CMR
a/MAOH là tứ giác nội tiếp
b/ Tia HM là phân giác của góc AHB
c/ Qua C kẻ đờng thẳng song song với AB cắt MA, MB lần lợt tại E, F. Nối EH cắt AC tại P,
HF cắt BC tại Q. Chứng minh rằng QP // EF.
Bài 13. Cho (O) đờng kính AB = 2R, C là trung điểm của OA và dây MN vuông góc với OA
tại C. Gọi K là điểm tuỳ ý trên cung nhỏ BM, H là giao điểm của AK và MM .
a) CMR: BCHK là tứ giác nội tiếp.
b) Tính AH.AK theo R.
c) Xác định vị trí của điểm K để (KM+KN+KB) đạt giá trị lớn nhất và tính giá trị lớn
nhất đó .

6
2
Dễ thấy CD = 16; S
COD
= 16
COD

AMB( theo tỉ số CD/ AB = 4)
Từ đó rút ra diện tích AMB
D
C
O
A
B
M
Khai thác:
1/ CM AMON là hình thoi

2/ CM MNB đều
3/ CM KM+KB= KN
Dễ thấy MNB đều
Lấy E trên NK sao cho KM=KE
+Dễ chứng minh được MK+KB = KN
(do MEN= MKB)
+KN

AB;

MK+KN+KB

2AB =4R
"Dấu = khi K là điểm chính giữa cung
MB"
E
H
N
M
C O
A B
K
Tuyển tập 100 bài TON HèNH ôn thi vo 10
Bài 14. Từ một điểm A ở ngoài đờng tròn (O) vẽ hai tiếp tuyến AB, AC và cát tuyến AMN
của đờng tròn đó. Gọi I là trung điểm của dây MN, H là giao điểm của AO và BC. Chứng
minh:
a) Năm điểm A, B, I, O, C cùng nằm trên một đờng tròn.
b)
2
AB AM AN= ì


ã
ã
AHM ANO=
.
Bài 15. Cho tam giác ABC không cân có ba góc nhọn nội tiếp trong đờng tròn tâm O. Hai
đờng cao AI và BE cắt nhau tại H.
1/. Chứng minh CHI = CBA .
2/. Chứng minh EI

CO.
3/. Cho góc ACB = 60
0
. Chứng minh CH = CO.
Bài 16. Cho tứ giác ABCD có hai đỉnh B và C ở trên nửa đờng tròn đờng kính AD, tâm O.
Hai đờng chéo AC và BD cắt nhau tại E. Gọi H là hình chiếu vuông góc của E xuống AD và
I là trung điểm của DE. Chứng minh rằng:
a) Các tứ giác ABEH, DCEH nội tiếp đợc;
b) E là tâm đờng tròn nội tiếp tam giác BCH;
c) Năm điểm B, C, I, O, H ở trên một đờng tròn.
Bài 17.Cho nửa đờng tròn tâm O có đờng kính AB = 2R. Kẻ hai tia tiếp tuyến Ax và By của
nửa đờng tròn (Ax, By và nửa đờng tròn cùng thuộc một nửa mặt phẳng bờ AB). Gọi M là
điểm tùy ý thuộc nửa đờng tròn (khác A và B). Tiếp tuyến tại M của nửa đờng tròn cắt Ax tại
D và cắt By tại E.
a) Chứng minh rằng:

DOE là tam giác vuông.
b) Chứng minh rằng:
2
AD BE = Rì

.
c) Xác định vị trí của điểm M trên nửa đờng tròn (O) sao cho diện tích của tứ giác
ADEB nhỏ nhất.
Bài 18. Cho hai đờng tròn (O
1
) và (O
2
)có bán kính bằng nhau và cắt nhau ở A và B . Vẽ cát
tuyến qua B không vuông góc với AB, nó cắt hai đờng tròn ở E và F . (E (O
1
);
F(O
2
)).
1. Chứng minh AE = AF
2. Vẽ cát tuyến CBD vuông góc với AB (C (O
1
); D(O
2
)).Gọi P là giao điểm của CE
và FD . Chứng minh rằng:
a. Các tứ giác AEPF và ACPD nội tiếp đợc đờng tròn .
7
Tuyển tập 100 bài TON HèNH ôn thi vo 10
b. Gọi I là trung điểm của EF . Chứng minh ba điểm A, I, P thẳng hàng.
3. Khi EF quay quanh B thì I di chuyển trên đờng nào ?
Bài 19. Cho nửa đờng tròn tâm O đờng kính AB bằng 2R. M là một điểm tuỳ ý trên nửa đờng
tròn (M khác A và B). Kẻ hai tiếp tuyến Ax và By với nửa đờng tròn. Qua M kẻ tiếp tuyến
thứ ba cắt hai tiếp tuyến Ax và By tại C và D.
a) Chứng minh rằng: COD vuông .

b) Chứng minh rằng: AC.BD = R
2
.
c) Gọi E là giao của OC và AM; F là giao của OD và BM. Chứng minh rằng: EF = R
d) Tìm vị trí M để S
ABCD
đạt giá trị bé nhất.
Bài 20. Cho M là một điểm tuỳ ý trên nửa đờng tròn tâm O, đờng kính AB = 2R(M không
trùng với A và B). Vẽ các tiếp tuyến Ax, By, Mz của nửa đờng tròn đó. Đờng Mz cắt Ax và
By tại N và P. Đờng thẳng AM cắt By tại C và đờng thẳng BM cắt cắt Ax tại D. CMR:
a) Tứ giác AOMN nội tiếp và NP = AN+BP
b) N, P là trung điểm của AD và BC
c) AD.BC = 4 R
2
d) Xác định vị trí điểm M để S
ABCD
có giá trị nhỏ nhất
Bài 21. Cho (O;R) và dây cung CD cố định có trung điểm là H. Trên tia đối của tia DC lấy
điểm S và qua S kẻ các tiếp tuyến SA, SB với (O) .Đờng thẳng AB cắt các đờng SO; OH lần l-
ợt tại E, F.Chứng minh rằng:
a) SEHF là tứ giác nội tiếp.
b) OE.OF = R
2.
c) OH.OF = OE.OS.
d) AB luôn đi qua một điểm cố định khi S chạy trên tia đối của tia DC
Bài 22. Cho (O;R) có hai đờng kính AB và CD vuông góc với nhau. M là điểm bất kỳ
thuộc đờng kính AB (M khác O,A,B). CM cắt (O) tại N (N khác C). Dựng đờng thẳng d
vuông góc với AM tại M. Tiếp tuyến với (O) tại N cắt d ở E
a) CMR: OMEN nội tiếp
b) OCME là hình gì? tại sao?

c) CMR: CM.CN không đổi
d) CMR: E chạy trên đờng thẳng cố định khi M chuyển động trên đờng kính AB (M khác
A,B)
Bài 23. Cho tam giác ABC có ba góc nhọn nội tiếp đờng tròn (O). Các đờng cao AD, BE, CF
cắt nhau tại
H và cắt đờng tròn (O) lần lợt tại M,N,P.
Chứng minh rằng:
1. Tứ giác CEHD, nội tiếp .
2. Bốn điểm B,C,E,F cùng nằm trên một đờng tròn.
3. AE.AC = AH.AD; AD.BC =
BE.AC.
4. H và M đối xứng nhau qua
BC.
8
Tuyển tập 100 bài TON HèNH ôn thi vo 10
5. Xác định tâm đờng tròn nội tiếp tam giác DEF.
Lời giải:
1. Xét tứ giác CEHD ta có:
CEH = 90
0
( Vì BE là đờng cao)
CDH = 90
0
( Vì AD là đờng cao)
=> CEH + CDH = 180
0

Mà CEH và CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đờng cao => BE AC => BEC = 90
0

.
CF là đờng cao => CF AB => BFC = 90
0
.
Nh vậy E và F cùng nhìn BC dới một góc 90
0
=> E và F cùng nằm trên đờng tròn đờng
kính BC.
Vậy bốn điểm B,C,E,F cùng nằm trên một đờng tròn.
3. Xét hai tam giác AEH và ADC ta có: AEH = ADC = 90
0
; Â là góc chung
=> AEH ADC =>
AC
AH
AD
AE
=
=> AE.AC = AH.AD.
* Xét hai tam giác BEC và ADC ta có: BEC = ADC = 90
0
; C là góc chung
=> BEC ADC =>
AC
BC
AD
BE
=
=> AD.BC = BE.AC.
4. Ta có C

1
= A
1
( vì cùng phụ với góc ABC)
C
2
= A
1
( vì là hai góc nội tiếp cùng chắn cung BM)
=> C
1
= C
2
=> CB là tia phân giác của góc HCM; lại có CB HM => CHM cân tại
C
=> CB cũng là đơng trung trực của HM vậy H và M đối xứng nhau qua BC.
5. Theo chứng minh trên bốn điểm B,C,E,F cùng nằm trên một đờng tròn
=> C
1
= E
1
( vì là hai góc nội tiếp cùng chắn cung BF)
Cũng theo chứng minh trên CEHD là tứ giác nội tiếp
C
1
= E
2
( vì là hai góc nội tiếp cùng chắn cung HD)
E
1

= E
2
=> EB là tia phân giác của góc FED.
Chứng minh tơng tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H
do đó H là tâm đờng tròn nội tiếp tam giác DEF.
Bài 24. Cho tam giác cân ABC (AB = AC), các đờng cao AD, BE, cắt nhau tại H. Gọi O là
tâm đờng tròn
ngoại tiếp tam giác AHE.
1. Chứng minh tứ giác CEHD nội tiếp .
2. Bốn điểm A, E, D, B cùng nằm trên một đờng
tròn.
3. Chứng minh ED =
2
1
BC.
4. Chứng minh DE là tiếp tuyến
của đờng tròn (O).
5. Tính độ dài DE biết DH = 2 Cm,
AH = 6 Cm.
Lời giải:
1. Xét tứ giác CEHD ta có:
CEH = 90
0
( Vì BE là đờng cao)
9
Tuyển tập 100 bài TON HèNH ôn thi vo 10

CDH = 90
0
( Vì AD là đờng cao)

=> CEH + CDH = 180
0
Mà CEH và CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đờng cao => BE AC => BEA = 90
0
.
AD là đờng cao => AD BC => BDA = 90
0
.
Nh vậy E và D cùng nhìn AB dới một góc 90
0
=> E và D cùng nằm trên đờng tròn đờng kính
AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đờng tròn.
3. Theo giả thiết tam giác ABC cân tại A có AD là đờng cao nên cũng là đờng trung tuyến
=> D là trung điểm của BC. Theo trên ta có BEC = 90
0
.
Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE =
2
1
BC.
4. Vì O là tâm đờng tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA
= OE => tam giác AOE cân tại O => E
1
= A
1
(1).
Theo trên DE =
2

1
BC => tam giác DBE cân tại D => E
3
= B
1
(2)
Mà B
1
= A
1
( vì cùng phụ với góc ACB) => E
1
= E
3
=> E
1
+ E
2
= E
2
+ E
3

Mà E
1
+ E
2
= BEA = 90
0
=> E

2
+ E
3
= 90
0
= OED => DE OE tại E.
Vậy DE là tiếp tuyến của đờng tròn (O) tại E.
5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. áp dụng
định lí Pitago cho tam giác OED vuông tại E ta có ED
2
= OD
2
OE
2
ED
2
= 5
2
3
2

ED = 4cm
Bài 25 Cho nửa đờng tròn đờng kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua
điểm M thuộc nửa đờng tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lợt ở C và D.
Các đờng thẳng AD và BC cắt nhau tại N.
1. Chứng minh AC + BD = CD.
2. Chứng minh COD = 90
0
.
3.Chứng minh AC. BD =

4
2
AB
.
4.Chứng minh OC // BM
5.Chứng minh AB là tiếp tuyến của đờng tròn đờng kính
CD.
5.Chứng minh MN AB.
6.Xác định vị trí của M để
chu vi tứ giác ACDB đạt giá
trị nhỏ nhất.
Lời giải:
10
Tuyển tập 100 bài TON HèNH ôn thi vo 10
1. Theo tính chất hai tiếp tuyến cắt nhau ta có: CA = CM; DB = DM => AC + BD =
CM + DM.
Mà CM + DM = CD => AC + BD = CD
2. Theo tính chất hai tiếp tuyến cắt nhau ta có: OC là tia phân giác của góc AOM; OD
là tia phân giác của góc BOM, mà AOM và BOM là hai góc kề bù => COD = 90
0
.
3. Theo trên COD = 90
0
nên tam giác COD vuông tại O có OM CD ( OM là tiếp
tuyến ).
áp dụng hệ thức giữa cạnh và đờng cao trong tam giác vuông ta có OM
2
= CM. DM,
Mà OM = R; CA = CM; DB = DM => AC. BD =R
2

=> AC. BD =
4
2
AB
.
4. Theo trên COD = 90
0
nên OC OD .(1)
Theo tính chất hai tiếp tuyến cắt nhau ta có: DB = DM; lại có OM = OB =R => OD là
trung trực của BM => BM OD .(2). Từ (1) Và (2) => OC // BM ( Vì cùng vuông góc
với OD).
5. Gọi I là trung điểm của CD ta có I là tâm đờng tròn ngoại tiếp tam giác COD đờng
kính CD có IO là bán kính.
Theo tính chất tiếp tuyến ta có AC AB; BD AB => AC // BD => tứ giác ACDB là
hình thang. Lại có I là trung điểm của CD; O là trung điểm của AB => IO là đờng trung
bình của hình thang ACDB

IO // AC , mà AC AB => IO AB tại O => AB là tiếp tuyến tại O của đờng tròn đờng
kính CD
6. Theo trên AC // BD =>
BD
AC
BN
CN
=
, mà CA = CM; DB = DM nên suy ra
DM
CM
BN
CN

=
=> MN // BD mà BD AB => MN AB.
7. ( HD): Ta có chu vi tứ giác ACDB = AB + AC + CD + BD mà AC + BD = CD nên
suy ra chu vi tứ giác ACDB = AB + 2CD mà AB không đổi nên chu vi tứ giác ACDB nhỏ nhất
khi CD nhỏ nhất , mà CD nhỏ nhất khi CD là khoảng cách giữ Ax và By tức là CD vuông góc
với Ax và By. Khi đó CD // AB => M phải là trung điểm của cung AB.
Bài 26 Cho tam giác cân ABC (AB = AC), I là tâm đờng tròn nội tiếp, K là tâm đờng tròn
bàng tiếp góc
A , O là trung điểm của IK.
1. Chứng minh B, C, I, K cùng nằm trên một đờng tròn.
2. Chứng minh AC là tiếp tuyến của đờng tròn (O).
3. Tính bán kính đờng tròn (O) Biết AB = AC = 20 Cm, BC =
24 Cm.
Lời giải: (HD)
1. Vì I là tâm đ-
ờng tròn nội tiếp, K là
tâm đờng tròn bàng tiếp
góc A nên BI và BK là
hai tia phân giác của hai
góc kề bù đỉnh B
11
Tuyển tập 100 bài TON HèNH ôn thi vo 10
Do đó BI BK hayIBK = 90
0
.
Tơng tự ta cũng có ICK = 90
0
nh vậy B và C cùng nằm
trên đờng tròn đờng kính IK do đó B, C, I, K cùng nằm trên một
đờng tròn.

2. Ta có C
1
= C
2
(1) ( vì CI là phân giác của góc ACH.
C
2
+ I
1
= 90
0
(2) ( vì IHC = 90
0
).

I
1
= ICO (3) ( vì tam giác OIC cân tại O)
Từ (1), (2) , (3) => C
1
+ ICO = 90
0
hay AC OC. Vậy AC là tiếp tuyến của đờng tròn
(O).
3. Từ giả thiết AB = AC = 20 Cm, BC = 24 Cm => CH = 12 cm.
AH
2
= AC
2
HC

2
=> AH =
22
1220

= 16 ( cm)
CH
2
= AH.OH => OH =
16
12
22
=
AH
CH
= 9 (cm)
OC =
225129
2222
=+=+
HCOH
= 15 (cm)
Bài 28 Cho đờng tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đờng
thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ
tiếp tuyến MB (B là tiếp điểm). Kẻ AC MB, BD MA, gọi H là giao điểm của AC và BD,
I là giao điểm của OM và AB.
1. Chứng minh tứ giác AMBO nội tiếp.
2. Chứng minh năm điểm O, K, A, M, B cùng nằm trên
một đờng tròn .
3. Chứng minh OI.OM = R

2
; OI. IM = IA
2
.
4. Chứng minh OAHB là hình thoi.
5. Chứng minh ba điểm O, H, M thẳng hàng.
6. Tìm quỹ tích của điểm H khi M di chuyển trên đờng
thẳng d
Lời giải:
1. (HS tự làm).
2. Vì K là trung điểm NP
nên OK NP ( quan hệ
đờng kính
Và dây cung) => OKM = 90
0
. Theo tính chất tiếp tuyến ta có OAM = 90
0
; OBM = 90
0
.
nh vậy K, A, B cùng nhìn OM dới một góc 90
0
nên cùng nằm trên đờng tròn đờng kính OM.
Vậy năm điểm O, K, A, M, B cùng nằm trên một đờng tròn.
3. Ta có MA = MB ( t/c hai tiếp tuyến cắt nhau); OA = OB = R
=> OM là trung trực của AB => OM AB tại I .
Theo tính chất tiếp tuyến ta có OAM = 90
0
nên tam giác OAM vuông tại A có AI là
đờng cao.

áp dụng hệ thức giữa cạnh và đờng cao => OI.OM = OA
2
hay OI.OM = R
2
; và OI. IM =
IA
2
.
12
Tuyển tập 100 bài TON HèNH ôn thi vo 10
4. Ta có OB MB (tính chất tiếp tuyến) ; AC MB (gt) => OB // AC hay OB // AH.
OA MA (tính chất tiếp tuyến) ; BD MA (gt) => OA // BD hay OA // BH.
=> Tứ giác OAHB là hình bình hành; lại có OA = OB (=R) => OAHB là hình thoi.
5. Theo trên OAHB là hình thoi. => OH AB; cũng theo trên OM AB => O, H, M thẳng
hàng( Vì qua O chỉ có một đờng thẳng vuông góc với AB).
6. (HD) Theo trên OAHB là hình thoi. => AH = AO = R. Vậy khi M di động trên d thì H cũng
di động nhng luôn cách A cố định một khoảng bằng R. Do đó quỹ tích của điểm H khi M di
chuyển trên đờng thẳng d là nửa đờng tròn tâm A bán kính AH = R
Bài 29 Cho tam giác ABC vuông ở A, đờng cao AH. Vẽ đờng tròn tâm A bán kính AH. Gọi
HD là đờng kính của đờng tròn (A; AH). Tiếp tuyến của đờng tròn tại D cắt CA ở E.
1. Chứng minh tam giác BEC cân.
2. Gọi I là hình chiếu của A trên BE, Chứng minh rằng AI =
AH.
3. Chứng minh rằng BE là tiếp tuyến của đờng tròn (A;
AH).
4. Chứng minh BE = BH + DE.
Lời giải: (HD)
1. AHC = ADE (g.c.g) => ED = HC (1) và AE = AC (2).
Vì AB CE (gt), do đó AB vừa là đờng cao vừa là đờng trung tuyến
của BEC => BEC là tam giác cân. => B

1
= B
2

2. Hai tam giác vuông ABI và ABH có cạnh huyền AB chung, B
1
= B
2
=> AHB = AIB
=> AI = AH.
3. AI = AH và BE AI tại I => BE là tiếp tuyến của (A; AH) tại I.
4. DE = IE và BI = BH => BE = BI+IE = BH + ED
Bài 30 Cho đờng tròn (O; R) đờng kính AB. Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một
điểm P sao
cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) tại M.
1. Chứng minh rằng tứ giác APMO nội tiếp đợc một
đờng tròn.
2. Chứng minh BM // OP.
3. Đờng thẳng vuông góc với AB ở O cắt tia BM tại N.
Chứng minh tứ giác OBNP là hình bình hành.
4. Biết AN cắt OP tại K, PM cắt ON tại I; PN và OM kéo dài
cắt nhau tại J. Chứng minh I, J, K thẳng hàng.
Lời giải:
1. (HS tự làm).
2.Ta có ABM nội tiếp chắn cung AM; AOM là góc ở
tâm
chắn cung AM => ABM =
2
AOM
(1) OP là tia phân giác

AOM ( t/c hai tiếp tuyến cắt nhau ) => AOP =
2
AOM

(2)
Từ (1) và (2) => ABM =
AOP (3)
13
Tuyển tập 100 bài TON HèNH ôn thi vo 10
Mà ABM và AOP là hai góc đồng vị nên suy ra BM // OP. (4)
3.Xét hai tam giác AOP và OBN ta có : PAO=90
0
(vì PA là tiếp tuyến ); NOB = 90
0
(gt
NOAB).
=> PAO = NOB = 90
0
; OA = OB = R; AOP = OBN (theo (3)) => AOP = OBN => OP
= BN (5)
Từ (4) và (5) => OBNP là hình bình hành ( vì có hai cạnh đối song song và bằng nhau).
4. Tứ giác OBNP là hình bình hành => PN // OB hay PJ // AB, mà ON AB => ON PJ
Ta cũng có PM OJ ( PM là tiếp tuyến ), mà ON và PM cắt nhau tại I nên I là trực tâm tam
giác POJ. (6)
Dễ thấy tứ giác AONP là hình chữ nhật vì có PAO = AON = ONP = 90
0
=> K là trung
điểm của PO ( t/c đờng chéo hình chữ nhật). (6)
AONP là hình chữ nhật => APO = NOP ( so le) (7)
Theo t/c hai tiếp tuyến cắt nhau Ta có PO là tia phân giác APM => APO = MPO (8).

Từ (7) và (8) => IPO cân tại I có IK là trung tuyến đông thời là đờng cao => IK PO. (9)
Từ (6) và (9) => I, J, K thẳng hàng.
Bài31 Cho nửa đờng tròn tâm O đờng kính AB và điểm M bất kì trên nửa đờng tròn ( M
khác A,B). Trên nửa mặt phẳng bờ AB chứa nửa đờng tròn kẻ tiếp tuyến Ax. Tia BM cắt Ax
tại I; tia phân giác của góc IAM cắt nửa đờng tròn tại E; cắt tia BM tại F tia BE cắt Ax tại H,
cắt AM tại K.
1) Chứng minh rằng: EFMK là tứ giác nội tiếp.
2) Chứng minh rằng: AI
2
= IM . IB.
3) Chứng minh BAF là tam giác cân.
4) Chứng minh rằng : Tứ giác AKFH là hình thoi.
5) Xác định vị trí M để tứ giác AKFI nội tiếp đợc một đờng
tròn.
Lời giải:
1. Ta có : AMB = 90
0
( nội tiếp chắn nửa đờng tròn )
=> KMF = 90
0
(vì là hai góc kề bù).
AEB = 90
0
( nội tiếp chắn nửa đờng tròn )
=> KEF = 90
0
(vì là hai góc kề bù).
=> KMF + KEF = 180
0
. Mà KMF và KEF là hai

góc đối của tứ giác EFMK do đó EFMK là tứ giác nội tiếp.
2. Ta có IAB = 90
0
( vì AI là tiếp tuyến ) => AIB vuông tại A có AM IB ( theo
trên).
áp dụng hệ thức giữa cạnh và đờng cao => AI
2
= IM . IB.
3. Theo giả thiết AE là tia phân giác góc IAM => IAE = MAE => AE = ME (lí
do )
=> ABE =MBE ( hai góc nội tiếp chắn hai cung bằng nhau) => BE là tia phân giác góc
ABF. (1)
Theo trên ta có AEB = 90
0
=> BE AF hay BE là đờng cao của tam giác ABF (2).
Từ (1) và (2) => BAF là tam giác cân. tại B .
14
Tuyển tập 100 bài TON HèNH ôn thi vo 10
4. BAF là tam giác cân. tại B có BE là đờng cao nên đồng thời là đơng trung tuyến => E
là trung điểm của AF. (3)
Từ BE AF => AF HK (4), theo trên AE là tia phân giác góc IAM hay AE là tia phân
giác HAK (5)
Từ (4) và (5) => HAK là tam giác cân. tại A có AE là đờng cao nên đồng thời là đơng trung
tuyến => E là trung điểm của HK. (6).
Từ (3) , (4) và (6) => AKFH là hình thoi ( vì có hai đờng chéo vuông góc với nhau tại trung
điểm của mỗi đờng).
5. (HD). Theo trên AKFH là hình thoi => HA // FK hay IA // FK => tứ giác AKFI là
hình thang.
Để tứ giác AKFI nội tiếp đợc một đờng tròn thì AKFI phải là hình thang cân.
AKFI là hình thang cân khi M là trung điểm của cung AB.

Thật vậy: M là trung điểm của cung AB => ABM = MAI = 45
0
(t/c góc nội tiếp ). (7)
Tam giác ABI vuông tại A có ABI = 45
0
=> AIB = 45
0
.(8)
Từ (7) và (8) => IAK = AIF = 45
0
=> AKFI là hình thang cân (hình thang có hai góc
đáy bằng nhau).
Vậy khi M là trung điểm của cung AB thì tứ giác AKFI nội tiếp đợc một đờng tròn.
Bài 32 Cho nửa đờng tròn (O; R) đờng kính AB. Kẻ tiếp tuyến Bx và lấy hai điểm C và D
thuộc nửa đờng tròn. Các tia AC và AD cắt Bx lần lợt ở E, F (F ở giữa B và E).
1. Chứng minh AC. AE không đổi.
2. Chứng minh ABD = DFB.
3. Chứng minh rằng CEFD là tứ giác nội tiếp.
Lời giải:
1. C thuộc nửa đờng tròn nên ACB = 90
0
( nội tiếp chắn
nửa đờng tròn ) => BC AE.
ABE = 90
0
( Bx là tiếp tuyến ) => tam giác ABE vuông tại B có
BC là đờng cao => AC. AE = AB
2
(hệ thức giữa cạnh và đờng
cao ), mà AB là đờng kính nên AB = 2R không đổi do đó AC. AE

không đổi.
2. ADB có ADB = 90
0
( nội tiếp chắn nửa đờng tròn ).
=> ABD + BAD = 90
0
(vì tổng ba góc của một tam giác bằng
180
0
)(1)
ABF có ABF = 90
0
( BF là tiếp tuyến ).
=> AFB + BAF = 90
0
(vì
tổng ba góc của một tam
giác bằng 180
0
) (2)
Từ (1) và (2) => ABD =
DFB ( cùng phụ với
BAD)
3. Tứ giác ACDB nội tiếp (O) => ABD + ACD = 180
0
.
ECD + ACD = 180
0
( Vì là hai góc kề bù) => ECD = ABD ( cùng bù với ACD).
Theo trên ABD = DFB => ECD = DFB. Mà EFD + DFB = 180

0
( Vì là hai góc
kề bù) nên suy ra ECD + EFD = 180
0
, mặt khác ECD và EFD là hai góc đối của tứ
giác CDFE do đó tứ giác CEFD là tứ giác nội tiếp.
15
Tuyển tập 100 bài TON HèNH ôn thi vo 10
Bài 33 Cho đờng tròn tâm O đờng kính AB và điểm M bất kì trên nửa đờng tròn sao cho AM
< MB. Gọi M là điểm đối xứng của M qua AB và S là giao điểm của hai tia BM, MA. Gọi P là
chân đờng
vuông góc từ S đến AB.
1.Gọi S là giao điểm của MA và SP. Chứng minh rằng PSM
cân. 2.Chứng minh PM là tiếp tuyến của đờng tròn .
Lời giải:
1. Ta có SP AB (gt) => SPA = 90
0
; AMB = 90
0
( nội tiếp
chắn nửa đờng tròn ) => AMS = 90
0
. Nh vậy P và M cùng
nhìn AS dới một góc bằng 90
0
nên cùng nằm trên đờng tròn đ-
ờng kính AS.
Vậy bốn điểm A, M, S, P cùng nằm trên một đờng tròn.
2. Vì Mđối xứng M qua AB mà M nằm trên đờng tròn nên M
cũng nằm trên đờng tròn => hai cung AM và AM có số đo

bằng nhau
=> AMM = AMM ( Hai góc nội tiếp chắn hai cung bằng nhau) (1)
Cũng vì Mđối xứng M qua AB nên MM AB tại H => MM// SS ( cùng vuông góc với
AB)
=> AMM = ASS; AMM = ASS (vì so le trong) (2).
=> Từ (1) và (2) => ASS = ASS.
Theo trên bốn điểm A, M, S, P cùng nằm trên một đ/ tròn => ASP=AMP (nội tiếp cùng
chắn AP )
=> ASP = AMP => tam giác PMS cân tại P.
3. Tam giác SPB vuông tại P; tam giác SMS vuông tại M => B
1
= S
1
(cùng phụ với
S). (3)
Tam giác PMS cân tại P => S
1
= M
1
(4)
Tam giác OBM cân tại O ( vì có OM = OB =R) => B
1
= M
3
(5).
Từ (3), (4) và (5) => M
1
= M
3
=> M

1
+ M
2
= M
3
+ M
2
mà M
3
+ M
2
= AMB
= 90
0
nên suy ra M
1
+ M
2
= PMO = 90
0
=> PM OM tại M => PM là tiếp tuyến của
đờng tròn tại M
Bài 34. Cho tam giác ABC (AB = AC). Cạnh AB, BC, CA tiếp xúc với đờng tròn (O) tại các
điểm D, E, F . BF cắt (O) tại I , DI cắt BC tại M. Chứng minh :
1. Tam giác DEF có ba góc nhọn.
2. DF // BC. 3. Tứ giác BDFC nội tiếp. 4.
CF
BM
CB
BD

=

Lời giải:
1. (HD) Theo t/c hai tiếp tuyến cắt nhau ta có AD = AF => tam
giác ADF cân tại A => ADF = AFD < 90
0
=> sđ cung DF < 180
0
=> DEF < 90
0
( vì góc DEF nội tiếp chắn cung DE).
Chứng minh tơng tự
ta có DFE < 90
0
;
EDF < 90
0
. Nh vậy
tam giác DEF có ba
góc nhọn.
16
Tuyển tập 100 bài TON HèNH ôn thi vo 10
2. Ta có AB = AC (gt); AD = AF (theo trên) =>
AD AF
AB AC
=
=>
DF // BC.
3. DF // BC => BDFC là hình thang lại có B = C (vì tam giác
ABC cân)

=> BDFC là hình thang cân do đó BDFC nội tiếp đợc một đờng tròn .
4. Xét hai tam giác BDM và CBF Ta có DBM = BCF ( hai góc đáy của tam giác
cân).
BDM = BFD (nội tiếp cùng chắn cung DI); CBF = BFD (vì so le) => BDM =
CBF .
=> BDM CBF =>
CF
BM
CB
BD
=
Bài 35 Cho đờng tròn (O) bán kính R có hai đờng kính AB và CD vuông góc với nhau.
Trên đoạn thẳng AB lấy điểm M (M khác O). CM cắt (O) tại N. Đờng thẳng vuông góc với
AB tại M cắt tiếp tuyến
tại N của đờng tròn ở P. Chứng minh :
1. Tứ giác OMNP nội tiếp.
2. Tứ giác CMPO là hình bình hành.
3. CM. CN không phụ thuộc vào vị trí của điểm M.
4. Khi M di chuyển trên đoạn thẳng AB thì P chạy trên đoạn
thẳng cố định nào.
Lời giải:
1. Ta có OMP = 90
0
( vì PM AB ); ONP = 90
0
(vì NP là
tiếp tuyến ).
Nh vậy M và N cùng nhìn OP dới một góc bằng 90
0
=> M và N

cùng nằm trên đờng tròn đờng kính OP => Tứ giác OMNP nội
tiếp.
2. Tứ giác OMNP nội tiếp => OPM = ONM (nội tiếp chắn
cung OM)
Tam giác ONC cân tại O
vì có ON = OC = R =>
ONC = OCN
=> OPM = OCM.
Xét hai tam giác OMC và MOP ta có MOC = OMP = 90
0
; OPM = OCM => CMO
= POM lại có MO là cạnh chung => OMC = MOP => OC = MP. (1)
Theo giả thiết Ta có CD AB; PM AB => CO//PM (2).
Từ (1) và (2) => Tứ giác CMPO là hình bình hành.
3. Xét hai tam giác OMC và NDC ta có MOC = 90
0
( gt CD AB); DNC = 90
0
(nội tiếp
chắn nửa đờng tròn ) => MOC =DNC = 90
0
lại có C là góc chung => OMC NDC
=>
CM CO
CD CN
=
=> CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R
2
không đổi =>
CM.CN =2R

2
không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.
4. ( HD) Dễ thấy OMC = DPO (c.g.c) => ODP = 90
0
=> P chạy trên đờng thẳng cố định
vuông góc với CD tại D.
17
Tuyển tập 100 bài TON HèNH ôn thi vo 10
Vì M chỉ chạy trên đoạn thẳng AB nên P chỉ chạy trên doạn thẳng A B song song và bằng
AB.
Bài 36 Cho tam giác ABC vuông ở A (AB > AC), đờng cao AH. Trên nửa mặt phẳng bờ BC
chứa điển A , Vẽ nửa đờng tròn đờng kính BH cắt AB tại E, Nửa đờng tròn đờng kính HC
cắt AC tại F.
1. Chứng minh AFHE là hình chữ nhật.
2. BEFC là tứ giác nội tiếp.
3. AE. AB = AF. AC.
4. Chứng minh EF là tiếp tuyến chung của hai nửa đờng tròn .
Lời giải:
1. Ta có : BEH = 90
0
( nội tiếp chắn nửc đờng tròn )
=> AEH = 90
0
(vì là hai góc kề bù). (1)
CFH = 90
0
( nội tiếp chắn nửc đờng tròn )
=> AFH = 90
0
(vì là hai góc kề bù).(2)

EAF = 90
0
( Vì tam giác ABC vuông tại A) (3)
Từ (1), (2), (3) => tứ giác AFHE là hình chữ nhật ( vì có ba góc vuông).
2. Tứ giác AFHE là hình chữ nhật nên nội tiếp đợc một đờng tròn =>F
1
=H
1
(nội tiếp
chắn cung AE) . Theo giả thiết AH BC nên AH là tiếp tuyến chung của hai nửa đờng
tròn (O
1
) và (O
2
)
=> B
1
= H
1
(hai góc nội tiếp cùng chắn cung HE) => B
1
= F
1
=> EBC+EFC =
AFE + EFC mà AFE + EFC = 180
0
(vì là hai góc kề bù) => EBC+EFC =
180
0
mặt khác EBC và EFC là hai góc đối của tứ giác BEFC do đó BEFC là tứ giác

nội tiếp.
3. Xét hai tam giác AEF và ACB ta có A = 90
0
là góc chung; AFE = ABC ( theo
Chứng minh trên)
=> AEF ACB =>
AE AF
AC AB
=
=> AE. AB = AF. AC.
* HD cách 2: Tam giác AHB vuông tại H có HE

AB => AH
2
= AE.AB (*)
Tam giác AHC vuông tại H có HF

AC => AH
2
= AF.AC (**)
Từ (*) và (**) => AE. AB = AF. AC
4. Tứ giác AFHE là hình chữ nhật => IE = EH => IEH cân tại I => E
1
= H
1
.
O
1
EH cân tại O
1

(vì có O
1
E vàO
1
H cùng là bán kính) => E
2
= H
2
.
=> E
1
+ E
2
= H
1
+ H
2
mà H
1
+ H
2
= AHB = 90
0
=> E
1
+ E
2
= O
1
EF =

90
0

=> O
1
E EF .
Chứng minh tơng tự ta cũng có O
2
F EF. Vậy EF là tiếp tuyến chung của hai nửa đờng
tròn .
Bài37 Cho điểm C thuộc đoạn thẳng AB sao cho AC = 10 Cm, CB = 40 Cm. Vẽ về một phía
của AB các nửa đờng tròn có đờng kính theo thứ tự là AB, AC, CB và có tâm theo thứ tự là O,
I, K.
18
Tuyển tập 100 bài TON HèNH ôn thi vo 10
Đờng vuông góc với AB tại C cắt nửa đờng tròn (O) tại E. Gọi M. N theo thứ tự là giao điểm
của EA,
EB với các nửa đờng tròn (I), (K).
1.Chứng minh EC = MN.
2.Ch/minh MN là tiếp tuyến chung của các nửa đ/tròn
(I), (K).
3.Tính MN.
4.Tính diện tích hình đợc giới hạn bởi ba nửa đờng tròn
Lời giải:
1. Ta có: BNC= 90
0
( nội tiếp chắn
nửa đờng tròn tâm K)
=> ENC = 90
0

(vì là hai góc kề bù). (1)
AMC = 90
0
( nội tiếp chắn nửc đờng tròn tâm I) => EMC = 90
0
(vì là hai góc kề bù).(2)
AEB = 90
0
(nội tiếp chắn nửa đờng tròn tâm O) hay MEN = 90
0
(3)
Từ (1), (2), (3) => tứ giác CMEN là hình chữ nhật => EC = MN (tính chất đờng chéo hình chữ
nhật )
2. Theo giả thiết EC AB tại C nên EC là tiếp tuyến chung của hai nửa đờng tròn (I) và (K)
=> B
1
= C
1
(hai góc nội tiếp cùng chắn cung CN). Tứ giác CMEN là hình chữ nhật nên =>
C
1
= N
3

=> B
1
= N
3
.(4) Lại có KB = KN (cùng là bán kính) => tam giác KBN cân tại K => B
1

=
N
1
(5)
Từ (4) và (5) => N
1
= N
3
mà N
1
+ N
2
= CNB = 90
0
=> N
3
+ N
2
= MNK = 90
0

hay MN KN tại N => MN là tiếp tuyến của (K) tại N.
Chứng minh tơng tự ta cũng có MN là tiếp tuyến của (I) tại M,
Vậy MN là tiếp tuyến chung của các nửa đờng tròn (I), (K).
3. Ta có AEB = 90
0
(nội tiếp chắn nửc đờng tròn tâm O) => AEB vuông tại A có EC AB
(gt)
=> EC
2

= AC. BC EC
2
= 10.40 = 400 => EC = 20 cm. Theo trên EC = MN => MN = 20
cm.
4. Theo giả thiết AC = 10 Cm, CB = 40 Cm => AB = 50cm => OA = 25 cm
Ta có S
(o)
=

.OA
2
=

25
2
= 625

; S
(I)
=

. IA
2
=

.5
2
= 25

; S

(k)
=

.KB
2
=

. 20
2
= 400

.
Ta có diện tích phần hình đợc giới hạn bởi ba nửa đờng tròn là S =
1
2
( S
(o)
- S
(I)
- S
(k)
)
S =
1
2
( 625

- 25

- 400


) =
1
2
.200

= 100



314 (cm
2
)
Bài 38 Cho tam giác ABC vuông ở A. Trên cạnh AC lấy điểm M, dựng đờng tròn (O) có đ-
ờng kính MC. đờng thẳng BM cắt đờng tròn (O) tại D. đờng thẳng AD cắt đờng tròn (O)
tại S.
1. Chứng minh ABCD là tứ giác nội tiếp .
2. Chứng minh CA là tia phân giác của góc SCB.
3. Gọi E là giao điểm của BC với đờng tròn (O). Chứng minh rằng các đờng thẳng BA,
EM, CD đồng quy.
19
Tuyển tập 100 bài TON HèNH ôn thi vo 10
4. Chứng minh DM là tia phân giác của góc ADE.
5. Chứng minh điểm M là tâm đờng tròn nội tiếp tam giác ADE.
Lời giải:

1. Ta có CAB = 90
0
( vì tam giác ABC vuông tại A); MDC = 90
0

( góc nội tiếp chắn nửa
đờng tròn ) => CDB = 90
0
nh vậy D và A cùng nhìn BC dới một góc bằng 90
0
nên A và
D cùng nằm trên đờng tròn đờng kính BC => ABCD là tứ giác nội tiếp.
2. ABCD là tứ giác nội tiếp => D
1
= C
3
( nội tiếp cùng chắn cung AB).
D
1
= C
3
=>


SM EM=
=> C
2
= C
3
(hai góc nội tiếp đờng tròn (O) chắn hai cung
bằng nhau)
=> CA là tia phân giác của góc SCB.
3. Xét CMB Ta có BACM; CD BM; ME BC nh vậy BA, EM, CD là ba đờng cao của
tam giác CMB nên BA, EM, CD đồng quy.
4. Theo trên Ta có



SM EM=
=> D
1
= D
2
=> DM là tia phân giác của góc ADE.(1)
5. Ta có MEC = 90
0
(nội tiếp chắn nửa đờng tròn (O)) => MEB = 90
0
.
Tứ giác AMEB có MAB = 90
0
; MEB = 90
0
=> MAB + MEB = 180
0
mà đây là hai
góc đối nên tứ giác AMEB nội tiếp một đờng tròn => A
2
= B
2
.
Tứ giác ABCD là tứ giác nội tiếp => A
1
= B
2
( nội tiếp cùng chắn cung CD)

=> A
1
= A
2
=> AM là tia phân giác của góc DAE (2)
Từ (1) và (2) Ta có M là tâm đờng tròn nội tiếp tam giác ADE
TH2 (Hình b)
Câu 2 : ABC = CME (cùng phụ ACB); ABC = CDS (cùng bù ADC) => CME
= CDS
=>




CE CS SM EM= => =
=> SCM = ECM => CA là tia phân giác của góc SCB.
Bài 39 Cho tam giác ABC vuông ở A.và một điểm D nằm giữa A và B. Đờng tròn đờng kính
BD cắt BC tại E. Các đờng thng CD, AE lần lợt cắt đờng tròn tại F, G.
Chứng minh :
1. Tam giác ABC đồng dạng với tam giác EBD.
2. Tứ giác ADEC và AFBC nội tiếp .
3. AC // FG.
4. Các đờng thẳng AC, DE, FB đồng quy.
Lời giải:
. Xét hai tam giác ABC và
EDB Ta có BAC = 90
0
( vì
tam giác ABC vuông tại A);
DEB = 90

0
( góc nội tiếp
chắn nửa đờng tròn )
20

×