ĐỀ THI HỌC SINH GIỎI TỈNH HẢI DƯƠNG
Môn Toán lớp 9 (2003 - 2004)
(Thời gian : 150 phút)
Bài 1 : (2,5 điểm)
Giải phương trình :
|xy - x - y + a| + |x
2
y
2
+ x
2
y + xy
2
+ xy - 4b| = 0
Bài 2 : (2,5 điểm)
Hai phương trình :
x
2
+ (a - 1)x + 1 = 0 ; x
2
+ (b + 1)x + c = 0 có nghiệm
chung, đồng thời hai phương trình : x
2
+ x + a - 1 = 0 và x
2
+ cx + b + 1 = 0 cũng có nghiệm chung.
Tính giá trị của biểu thức 2004a/(b + c).
Bài 3 : (3,0 điểm)
Cho hai đường tròn tâm O
1
và tâm O
2
cắt nhau tại A, B.
Đường thẳng O
1
A cắt đường tròn tâm O
2
tại D, đường
thẳng O
2
A cắt đường tròn tâm O
1
tại C.
Qua A kẻ đường thẳng song song với CD cắt đường tròn
tâm O
1
tại M và cắt đường tròn tâm O
2
tại N.
Chứng minh rằng :
1) Năm điểm B ; C ; D ; O1 ; O2 nằm trên một đường
tròn.
2) BC + BD = MN.
Bài 4 : (2,0 điểm) Tìm các số thực x và y thỏa mãn x
2
+ y
2
=
3 và x + y là một số nguyên.
ĐỀ THI HỌC SINH GIỎI TỈNH BÌNH THUẬN
Môn Toán lớp 9 (2003 - 2004)
(Thời gian : 150 phút)
Bài 1 : (6 điểm)
1) Chứng minh rằng :
là số nguyên.
2) Tìm tất cả các số tự nhiên có 3 chữ số sao cho :
với n là số nguyên lớn hơn 2.
Bài 2 : (6 điểm)
1) Giải phương trình :
2) Cho Parabol (P) : y = 1/4 x
2
và đường thẳng (d) : y = 1/2 x + 2.
a) Vẽ (P) và (d) trên cùng hệ trục tọa độ Oxy.
b) Gọi A, B là giao điểm của (P) và (d). Tìm điểm M trên cung AB
của (P) sao cho diện tích tam giác MAB lớn nhất.
c) Tìm điểm N trên trục hoành sao cho NA + NB ngắn nhất.
Bài 3 : (8 điểm)
1) Cho đường tròn tâm O và dây cung BC không qua tâm O. Một
điểm A chuyển động trên đường tròn (A khác B, C). Gọi M là
trung điểm đoạn AC, H là chân đường vuông góc hạ từ M xuống
đường thẳng AB. Chứng tỏ rằng H nằm trên một đường tròn cố
định.
2) Cho 2 đường tròn (O, R) và (O’, R’) với R’ > R, cắt nhau tại 2
điểm A, B. Tia OA cắt đường tròn (O’) tại C và tia O’A cắt đường
tròn (O) tại D. Tia BD cắt đường tròn ngoại tiếp tam giác ACD tại
E. So sánh độ dài các đoạn BC và BE.