Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (381.46 KB, 15 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
<b>TIẾT 23 - đại 9</b>
<b>TIẾT 23 - đại 9</b>
<b>x</b> -4 -3 -2 -1 -0,5 0 0,5 1 2 3 4
<b>y = 2x</b>
<b>y = 2x + 3</b>
-8 -6 -4 -2 -1 0 1 2 4 6 8
-1 1 2
-5 -3 3 4 5 7 9 11
<i><b>?2. Tính giá trị y tương ứng của </b></i>
<i><b>các hàm số y = 2x và </b><b>y = 2x + 3</b></i>
<i><b>theo giá trị của biến x rồi điền </b></i>
<i><b>vào bảng sau:</b></i>
12
10
8
6
4
2
-2
-4
-5 5 10 15
x
y
9
7
5
2
1
A
<b>?1. Biểu diễn các điểm sau trên </b>
<b>cùng một mặt phẳng tọa độ:</b>
<b>A(1 ; 2) B(2 ; 4) C(3 ; 6)</b>
<b>A’(1 ; 2 + 3) B’(2 ; 4 + 3) C’(3 ; 6 + </b>
<b>3)</b>
<b>1. Đồ thị hàm số y = ax + b (a </b><b> 0)</b>
Y=2x
Y=2x
3
3
-1,5
-1,5
Y=2x
+3
Y=2x
+3
<b>1. Đồ thị hàm số y = ax + b (a </b><b> 0)</b>
-5 0 5 10 15
-1,5
3
x
y
7
5
2
1
y =
2x
<b>A(1;2)</b>
<b>y =</b>
<b>2x +</b>
<b>3</b>
Tiết 22:ĐỒ THỊ HAØM SỐ y = ax + b (a 0)
<i><b>Tổng quát:</b></i>
<i><b>Tổng quát:</b></i>
<b>+Đồ thị của hàm số y = ax + b (a 0) </b>
<b>là một đường thẳng:</b>
<b>+Đồ thị của hàm số y = ax + b (a </b><b> 0) </b>
<b>là một đường thẳng:</b>
<b>+ Cắt trục tung tại điểm có tung </b>
<b>độ bằng b</b>
<b>+ Cắt trục tung tại điểm có tung </b>
<b>độ bằng b</b>
<b>Chú ý: Đồ thị hàm số y=ax+ b (a </b><b>0) còn </b>
<b>được gọi là đường thẳng y=ax+b.</b>
<b>B gọi là tung độ gốc của đường thẳng.</b>
<b>Chú ý: Đồ thị hàm số y=ax+ b (a </b><b>0) còn </b>
<b>được gọi là đường thẳng y=ax+b.</b>
<b>*Khi b = 0 thì y = ax. Đồ thị của hàm số y = ax là </b>
<b>đường thẳng đi qua gốc tọa độ O (0 ; 0) </b>
<b>và điểm A(1 ; a).</b>
<b>*Xét trường hợp y = ax + b với a </b><b> 0 và b </b><b> 0.</b>
b
x
a
<sub>Q</sub> b <sub>;0</sub>
a
<i><b>Bước 1: </b></i>
<b>+ Cho x = 0 thì y = b, ta được điểm P(0 ; b) thuộc </b>
<b>trục tung Oy.</b>
<b>+ Cho y = 0 thì , ta được điểm thuộc </b>
<b>trục hoành Ox. </b>
<i><b>Bước 2</b><b>:</b></i><b> Vẽ đường thẳng đi qua hai điểm P và Q ta </b>
<b>được đồ thị hàm số y = ax + b.</b>
<b>*Khi b = 0 thì y = ax. Đồ thị của hàm số y = ax là </b>
<b>đường thẳng đi qua gốc tọa độ O (0 ; 0) </b>
<b>và điểm A(1 ; a).</b>
<b>*Xét trường hợp y = ax + b với a </b><b> 0 và b </b><b> 0.</b>
b
x
a
Q ;0 b<sub>a</sub>
<i><b>Bước 1: </b></i>
<b>+ Cho x = 0 thì y = b, ta được điểm P(0 ; b) thuộc </b>
<b>trục tung Oy.</b>
<b>+ Cho y = 0 thì , ta được điểm </b>
<b>thuộc trục hoành Ox. </b>
<i><b>Bước 2</b><b>:</b></i><b> Vẽ đường thẳng đi qua hai điểm P và Q ta được đồ thị </b>
<b>hàm số y = ax + b.</b>
- Cho y = 0 th× x = 1,5 .
§iĨm B(1,5; 0) thc trơc hoµnh Ox.
O x
y
-3
1,5
<b>B</b>
<b>B</b>
<b>A</b>
<b>A</b>
<b>y = 2x - 3</b>
<b>y = 2x - 3</b>
<i><b>?3. Vẽ đồ thị của các hàm số sau:</b></i>
a) y = 2x – 3
b) y = -2x + 3
- Cho x = 0 thì y = - 3.
§iĨm A(0; -3) thc trơc tung Oy.
-Vẽ đ ờng thẳng đi qua hai điểm
A, B ta đ ợc đồ thị hàm số <b>y = 2x - 3y = 2x - 3</b>
<b>2) Cách vẽ đồ thị hàm số y = ax+ b (a </b><b> 0)</b>
O x
y
3
<b> 1,5</b>
<b>C</b>
<b>C</b>
<b>D</b>
<b>D</b>
<b>y = -2x + 3</b>
<b>y = -2x + 3</b>
<b>1. </b>
<b>1. ĐỒ THỊ HAØM SỐ ĐỒ THỊ HAØM SỐ y = ax + b (a y = ax + b (a </b><sub></sub><b> 0) 0)</b>
<b>2. </b>
<b>2. CÁCH VẼ ĐỒ THỊ CỦA HAØM SỐ CÁCH VẼ ĐỒ THỊ CỦA HAØM SỐ y = ax + b (a y = ax + b (a </b><sub></sub><b> 0) 0)</b>
- Cho x = 0 th× y = 3.
§iĨm C(0; 3) thc trơc tung Oy.
-VÏ ® êng thẳng đi qua hai điểm
C,D ta c thị hàm số <b>y = -2x +3y = -2x +3</b>
- Cho y = 0 th× x = 1,5 .
Điểm D(1,5 ; 0) thuộc trục hoành Ox.
<i><b>?3. Vẽ đồ thị của các hàm số sau:</b></i>
a) y = 2x – 3
b) y = -2x + 3
O x
y
-3
1,5
<b>B</b>
<b>B</b>
<b>A</b>
<b>A</b>
<b>y = 2x - 3</b>
<b>y = 2x - 3</b>
O x
y
3
<b> 1,5</b>
<b>C</b>
<b>C</b>
<b>D</b>
<b>D</b>
<b>y = -2x + 3</b>
<b>y = -2x + 3</b>
<b>1. </b>
<b>1. ĐỒ THỊ HAØM SỐ ĐỒ THỊ HAØM SỐ y = ax + b (a y = ax + b (a </b><sub></sub><b> 0) 0)</b>
<b>2. </b>
<b>2. CÁCH VẼ ĐỒ THỊ CỦA HAØM SỐ CÁCH VẼ ĐỒ THỊ CỦA HAØM SỐ y = ax + b (a y = ax + b (a </b><sub></sub><b> 0) 0)</b>
<i><b>?3. Vẽ đồ thị của các hàm số sau:</b></i>
a) y = 2x – 3
b) y = -2x + 3
<b>3- LuyÖn tËp :</b>
Bài 1 :Trong các mệnh đề về sau mệnh đề nào đúng ;
mệnh đề nào sai ?
1- Đồ thị hàm số y = ax+ b ( a0) luôn cắt trục Oy tại
điểm có tung độ bẳng b
2- Nếu a = 0 thì đồ thị hàm số y = ax + b ( b 0 ) là đ
ờng thẳng song song vi trc honh
3- Đồ thị hàm số y = ax + b ( a0) luôn song song với
đ ờng thẳng y = ax
4- Đồ thị hàm số y = ax + b ( a0) luôn cắt hai trục ox
vµ Oy
-3 -2 -1 1 2 3 x
y
3
2
1
-1
-2
-3
0 <sub>-3 -2 -1 1 2 3 </sub><sub>x</sub>
y
3
2
1
-1
0
y= -<sub>x+2</sub>
-3 -2 -1 1 2 3 x
y
3
2
1
-1
-2
-3
0
-3 -2 -1 1 2 3 x
Y
3
2
1
-1
-2
-3
0
<i><b>Bài 3 Vẽ đồ thị hàm số sau trên cùng hệ trục. Tìm </b></i>
<i><b>giao điểm của chúng</b></i>
a) y = x – 2
b) y = -x + 2
X 0 2
y -2 0
<b>A</b>
<b>A</b>
<b>B</b>
<b>B</b>
<b>Giải</b>
<b>Giải</b>
<b>Y= x - 2</b>
<b>Y= x - 2</b>
<b>A</b>
<b>A</b> <b>BB</b>
X 0 2
y 2 0
<b>Y= - x + 2</b>
<b>Y= - x + 2</b>
<b>C</b>
<b>C</b> <b>DD</b>
<b>C</b>
<b>C</b>
<b>C</b>
<b>C</b>
<b>Y= x </b>
<b>- 2</b>
<b>Y= x </b>
<b>- 2</b>
<b>Y=</b>
<b> - x</b>
<b> + 2</b>
<b>Y=</b>
<b> - x</b>
<b> + 2</b>
<b>X - 2 = -x + 2</b>
<b>X = 2</b>
<b>X - 2 = -x + 2</b>
<b>Ghi nhí :</b>
1- Dạng tổng quát đồ thị hàm số y = ax + b ( a <b>0 ) là một đ ờng thẳng :</b>
-Cắt trục tung tại điểm có tung độ bằng b
-Song song víi ® êng th¼ng y = ax nÕu b 0 ; trùng với đ ờng thẳng y = ax nếu b
= 0
2- Cách vẽ đồ thị hàm số
-Nếu b = 0 đồ thị hàm số là đ ờng thẳng qua gốc toạ độ và qua điểm ( 1;a)
-Nếu b 0 :
B ớc 1 : Xác định giao điểm của đồ thị với 2 trục
B ớc 2 : Nối hai đIểm đó ta đ ợc đồ thị hàm số
( Bµi 15/51 – sgk )
a/ Vẽ đồ thị hàm số y = 2x ; y = 2x + 5 ;
y = x ; y = x + 5
Trên cùng một mặt phẳng tọa độ
-2
3
-2
3
b/ Bốn đ ờng thẳng trên cắt nhau tạo thành tứ giác
OABC ( O l gc to độ ) . Tứ giác OABC có phải là
hình bình hành trên
<b>Học thuộc tính chất (</b><i><b>tổng qt</b></i><b>) của đồ thị </b>
<b> hàm số y = ax + b (a </b><b> 0)</b>
<b>và nắm vững các bước vẽ đồ thị hàm số.</b>
<b>Làm bài tập về nhà 15, 16 (SGK trang 51).</b>
<b>Ch<sub>uẩn bị bài luyện tập</sub></b>