Tải bản đầy đủ (.doc) (25 trang)

Gián án Chuyên đề: Hình học không gian cổ điển

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (634.79 KB, 25 trang )

HĐBM Toán An Giang Tài liệu tham khảo Ôn tập TN THPT



Huỳnh Duy Khánh
Trường THPT Châu Văn Liêm
§1 . CÁC CÔNG THỨC TÍNH THỂ TÍCH
a) DIỆN TÍCH ĐA GIÁC.
• Hình vuông cạnh a có diện tích
• Hình chữ nhật có cạnh a,b có diện tích
• Tam giác vuông có hai cạnh góc vuông a,b có diện tích .
• Tam giác thường biết cạnh đáy và chiều cao
a
a
a
b
a
b a
hA
b
a
a
hA
• Hình thoi biết hai đường chéo a,b
• Hình bình hành biết cạnh a và đường cao h
A
.
• Một số công thức khác tính diện tích tam giác
Định lý Cosin
.
Định lý sin


Hệ thức lượng trong tam giác vuông
Huỳnh Duy Khánh THPT Châu Văn Liêm Trang40
Chuyên đề 6 :
HĐBM Toán An Giang Tài liệu tham khảo Ôn tập TN THPT
b) THỂ TÍCH KHỐI ĐA DIỆN
c) TỶ SỐ THỂ TÍCH.
ĐỊNH LÝ 1
ĐỊNH LÝ 2
d) THỂTÍCH KHỐI TRÒN XOAY.
Huỳnh Duy Khánh THPT Châu Văn Liêm Trang41
Thể tích khối hộp chữ nhật bằng tích ba kích thước

Thể tích khối chóp bằng một phần ba tích số diện tích mặt đáy và chiều cao.

Thể tích khối lăng trụ bằng tích số diện tích đáy và chiều cao của lăng trụ đó.
Cho tam giác ABC và đường thẳng d cắt AB,AC lần lượt tại B’,C’ khi đó
Cho tứ diện S.ABC mặt phẳng (P) cắt các cạnh SA,SB,SC lần lượt tại A’B’C’ khi đó
HĐBM Toán An Giang Tài liệu tham khảo Ôn tập TN THPT
§ 2. THỂ TÍCH KHỐI ĐA DIỆN
Bài 1 Tính thể tích tứ diện đều ABCD có các cạnh đều bằng a.
Lời giải: (Mục đích: HS nắm vững bài tập cơ bản HHKG)
Gọi H là hình chiếu của A lên mp(BCD) ⇒AH là đường cao tứ diện,
do tứ diện đều nên AB=AC=AD suy ra HB=HC=HD hay H là tâm
đường tròn ngoại tiếp tam giác BCD và H là trọng tâm của tam giác
BCD.
Kẻ BH cắt CD tại M ta có .
Tam giác AHB vuông tại H nên ta được:
.
vậy thể tích của tứ diện ABCD là .
Bài 2 Tính thể tích của khối chóp tam giác đều S.ABC có cạnh đáy bằng a góc giữa cạnh bên

và cạnh đáy kề nhau bằng 45o.
Lời giải: (Nội dung câu hỏi thay đổi nhưng giả thiết cho khác đi)
Gọi H là hình chiếu của S lên mp(SBC) ⇒SH là đường cao tứ diện,
do khối chóp đều nên SA=SB=SC suy ra HA=HB=HC hay H là tâm
đường tròn ngoại tiếp tam giác ABC và H là trọng tâm của tam giác
ABC.
Huỳnh Duy Khánh THPT Châu Văn Liêm Trang42
Dạng 1: Tính thể tích của khối chóp đều
Cách giải:
Xác định đường cao của khối chóp và tính độ dài đường cao.
Tính diện tích đáy của khối chóp
Chú ý: Hình chóp đều có chân đường cao trùng với tâm đường tròn ngoại tiếp của đa
giác đáy.
B
C
D
A
M
H
A
B
C
S
H
HĐBM Toán An Giang Tài liệu tham khảo Ôn tập TN THPT
Nối AH cắt BC tại M ta có M là trung điểm của BC và .
Tam giác SBC cân có hai góc 45o nên tam giác vuông
Tam giác SHM vuông tại H
.
Bài 3 Tính thể tích khối chóp tứ giác đều có cạnh bên và cạnh đáy

đều bằng a.
Lời giải:(Mục đích cho học sinh nắm vững bài tập cơ bản)
Giả sử có hình chóp tứ giác đều S.ABCD. Gọi H là hình chiếu của S
lên mặt phẳng ABCD do SA=SB=SC=SD suy ra HA=HB=HC=HD
suy ra H là tâm đường tròn ngoại tiếp hình vuông ABCD hay H là
giao điểm của hai đường chéo.
;
Tam giác SHA vuông tại H nên
Vậy .
(Mở rộng bài toán ta có thể cho độ dài cạnh đáy và góc hợp bởi hai cạnh bên…)
• Để tính thể tích của khối chóp tam giác ta cần chọn đỉnh của khối chóp sao cho tính độ dài
đường cao dể nhất. Dựa vào tính chất của khoảng cách ta có
∗ Hai tam giác có cùng cạnh đáy và chiều cao bằng nhau thì diện tích bằng nhau.
∗ Hai khối chóp có cùng mặt đáy và chiều cao bằng nhau thì thể tích chúng bằng nhau.
∗ Nếu M là trung điểm của AB thì
Huỳnh Duy Khánh THPT Châu Văn Liêm Trang43
M
P
A
B
H
A
B
C
D
S
S
ABC
=S
A'BC

A
B
C
A'
HĐBM Toán An Giang Tài liệu tham khảo Ôn tập TN THPT
Bài tập sau đây minh họa điều trên.
Bài 4 Cho hình chóp tứ giác đều S.ABCD có
. Gọi M, N và P lần lượt là trung điểm
của các cạnh SA, SB và CD .
a) Tính thể tích khối chóp đều S.ABCD theo a.
b) Tính thể tích tứ diện AMNP.
Lời giải:
(Mục đích HS phải chọn đỉnh và đáy khối chóp thích hợp)
a) Do hình chóp tứ giác đều nên đáy ABCD là hình vuông
vậy SAC là tam giác đều cạnh nên chiều cao của khối chóp có độ dài
.
b) Do CD//(SAB) mặt khác M là trung điểm SA nên
sử dụng tỉ số thể tích cho hai khối chóp SMND và SABD ta được
.
Bài 4 Tính thể tích khối chóp tứ giác đều biết
a) Cạnh bên bằng a và góc giữa hai cạnh bên kề nhau bằng 2
α
.
b) Cạnh đáy bằng a góc giữa mặt bên và mặt đáy bằng
α
.
Bài 5 Tính thể tích của khối chóp lục giác đều có cạnh đáy a và cạnh bên 2a.
Huỳnh Duy Khánh THPT Châu Văn Liêm Trang44
P
M

N
H
S
D
C
B
A
HĐBM Toán An Giang Tài liệu tham khảo Ôn tập TN THPT
Bài 1 Cho hình chóp S.ABC có SA

(ABC) đáy ABC là tam giác vuông tại B. Gọi H,K là hình
chiếu của A lên SB,SC cho SA=AB=BC=a
a) Tính thể tích khối chóp S.ABC.
b) Chứng minh rằng SC

AH.
c) Tính thể tích khối chóp S.AHK
Lời giải (Mục đích học sinh hiểu rõ bài tập cơ bản của HHKG)
a)
b) Ta có BC ⊥ AB, BC ⊥ SA suy ra BC ⊥ (SAB)⇒ BC⊥ AH
Mặt khác AH ⊥ SB suy ra AH ⊥ (SBC) ⇒ AH ⊥ SC.
c) Ta tính thể tích khối chóp S.AHK theo trên ta có tam giác AHK vuông tại H
∗ Tam giác SAB vuông cân có AH là đường cao
∗ Tam giác SAK vuông tại A có AK là đường cao
.
Vậy diện tích đáy của khối chóp S.AHK là
Chiều cao khối chóp
Thể tích khối chóp S.AHK là
(Ta có thể giải bài trên bằng tỉ số thể tích)
Huỳnh Duy Khánh THPT Châu Văn Liêm Trang45

Dạng 2 Tính thể tích khối chóp có một cạnh bên vuông góc với mặt đáy.
Cách giải
Đường cao của khối chóp là cạnh bên vuông với đáy
Tìm cách tính được diện tích đáy và chiều cao.
S
A
C
B
K
H
S
A
C
B
K
H
HĐBM Toán An Giang Tài liệu tham khảo Ôn tập TN THPT
Bài 2 Cho tứ diện S.ABC có SA

(ABC) đáy ABC là tam giác cân tại A cho SA=AB=a góc
ABC=
α
. Gọi H, K là hình chiếu của A lên SB và SC
a) Tính thể tích khối chóp S.ABC theo a và
α
.
b) Tính thể tích khối chóp A.BCKH.
Lời giải: (Mục đích mở rộng bài toán 1)
a)


Vì tam giác ABC cân tại A nên
b) Tam giác SAB và SAC vuông cân tại A nên H,K lần lượt là trung điểm của SB,SC sử
dụng tỉ số thể tích ta được
Vậy .
Bài 3 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SC

(ABCD) cho SC=
. Gọi H là hình chiếu của C lên SB, K là trung điểm của SD.
a) Tính thể tích khối chóp S.ABCD.
b) Chứng minh rằng tam giác CHK đều.
c) Tính thể tích khối chóp C.BDKH.
Lời giải:
a) Tam giác SAC vuông tại C ⇒
b) Tam giác SCB vuông cân tại C nên CH là đường cao và là đường trung tuyến, mặt
khác tam giác SCB bằng tam giác SCD nên CH=CK=
Vì H,K là trung điểm của SB,SD nên HK là đường trung bình của tam giác SBD ⇒ HK=
BD= vậy tam giác CHK đều.
c) Ta sử dụng tỉ số thể tích của khối chóp S.CBD và khối chóp S.CHK
Huỳnh Duy Khánh THPT Châu Văn Liêm Trang46
S
D
A
B
C
K
H
HĐBM Toán An Giang Tài liệu tham khảo Ôn tập TN THPT
Vậy .
Bài 4: Cho hình chóp S.ABCD có đáy ABCD là hình thang
, AB=BC=a,AD = 2a, SA vuông góc với đáy và

SA = 2a. Gọi M, N lần lượt là trung điểm của SA, SD.
a) Tính thể tích khối chóp S.ABCD.
b) Chứng minh rằng BCNM là hình chữ nhật và tính thể tích
của khối chóp S.BCNM theo a.
Lời giải:
a)
b) M,N là trung điểm SA,SD ⇒ MN//AD MN=1/2 ADvậy MN//BC và MN=BC hay
BCMN là hình bình hành
Mặt khác BC⊥AB,BC⊥SA ⇒BC⊥(SAB)⇒BC⊥BM
Vậy BCMN là hình chữ nhật.
với SH là chiều cao của khối chóp
Vì M là trung điểm SA nên với AH’ là chiều cao
của tam giác vuông cân ABM
Vậy
Chú ý: có thể giải bài toán trên bằng tỉ số thể tích.
Bài 5 Cho tứ diện OABC có OA;OB;OC vuông góc nhau từng đôi một và
OA=a;OB=b;OC=c.Gọi H là hình chiếu của O lên mp(ABC).
a) CMR H là trực tâm của tam giác ABC.
b) CMR .
c) CMR .
d) Tính diện tích toàn phần và thể tích tứ diện.
Huỳnh Duy Khánh THPT Châu Văn Liêm Trang47
M
A
C
B
O
H
N
M

S
D
C
B
A
HĐBM Toán An Giang Tài liệu tham khảo Ôn tập TN THPT
Lời giải (Mục đích học sinh nắm các tính chất của tứ diện có ba cạnh vuông góc đôi một )
a) Ta chứng minh AH⊥BC thật vậy:
BC⊥OA (do OA⊥(OBC))
BC⊥OH (do H là hình chiếu của O)
⇒BC⊥(AOH) hay BC⊥AH.
Tương tự ta chứng minh được BH⊥AC hay H là trực tâm của tam giác ABC.
b) Do OA,OB,OC vuông góc nhau từng đôi một nên các tam giác OAB;OBC;OAC là các
tam giác vuông.
Theo trên BC⊥(AOH) nên BC⊥OM
Tam giác OBC vuông tại O có OM là đường cao nên
Tam giác AOM vuông tại O có OH là đường cao nên
Vậy
c)
.
.
. Vậy .
d)
.
.
)
.
Huỳnh Duy Khánh THPT Châu Văn Liêm Trang48
HĐBM Toán An Giang Tài liệu tham khảo Ôn tập TN THPT
Bài 1 Cho hình chóp S.ABCD có đáy ABCD là hình thang cân có hai đáy AD và BC. Mặt

phẳng SAD vuông góc với mặt đáy của hình chóp cho AB=BC=CD=a, SA=SD=AD=2a.
a) Tính thể tích khối chóp S.ABCD.
b) Tính thể tích khối chóp S.ABC.
Lời giải
a) Kẻ SH vuông góc AD do (SAD)⊥(ABCD) nên SH⊥(ABCD) vậy
SH là đường cao của khối chóp.
Mặt khác SA=SD=AD nên H là trung điểm của AD và SH=
.
Nối HB,HC tứ giác ABCH là hình bình hành do AH song song và bằng BC ta lại có
AB=BC nên AHBC là hình thoi vậy AB=HC=a hay tam giác HCD đều
Vậy ABCD là nữa lục giác đều.
.
b) Khối chóp S.ABC có chiều cao SH và diện tích tam giác ABC bằng với diện tích tam
giác ABH và bằng
Vậy .
Bài 2 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt phẳng (SAB) vuông
góc với mặt phẳng đáy, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45o ,SA=SB Tính
theo a thể tích của khối chóp S.ABCD.
Lời giải:
Huỳnh Duy Khánh THPT Châu Văn Liêm Trang49
Dạng 3 Tính thể tích khối chóp có một mặt bên vuông góc với mặt đáy.
Cách giải
Đường cao của khối chóp nằm trên giao tuyến của mặt bên và mặt đáy nó
vuông góc
Tìm cách tính được chiều cao và diện tích đáy
A
B
C
D
H

S

×