Tải bản đầy đủ (.docx) (55 trang)

Giao an Hinh 9HKII

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (561.57 KB, 55 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Chng iII : Gúc vi ng trũn</b>



<b>Tiết 37</b>


<b> Góc ở tâm, số đo cung</b>



<b>I. Mục tiêu</b>
Qua bài này HS cần :


- Nhn biết đợc góc ở tâm, chỉ ra hai cung tơng ứng trong đó có cung bị chắn .


- Thành thạo cách đo góc ở tâm bằng thớc đo góc, thấy rõ sự tơng ứng giữa số đo (độ) của cung và
của góc ở tâm chắn cung đó trong trờng hợp cung nhỏ hơn cung của đờng tròn . Học sinh biết suy ra số đo độ
của cung lớn ( có số đo lớn hơn 1800<sub> và bé hơn hoặc bằng 360</sub>0<sub> ).</sub>


- Biết so sánh hai cung trên một đờng tròn căn cứ vào số đo độ của chúng .
- Hiểu và vận dụng đợc định lý cộng hai cung .


- Biết phân chia trờng hợp để tiến hành chứng minh, biết khẳng định tính đúng đắn của một mệnh đề
khái quát bằng một chứng minhvà bác bỏ một mệnh đề khái quát bằng một phản v dụ . - Biết vẽ, đo cẩn
thận và suy luận hợp logíc .


<b>II. Chn bÞ</b>


- GV : Thớc thẳng, com pa, thớc đo góc .
<b>III các hoạt động dạy và học </b>


Hoạt động của giáo viên Hoạt động của học sinh



<i><b>Hoạt động 1</b></i>

: 5’


<b>Giíi thiƯu néi dung ch¬ng III</b>


* GV : giới thiệu khái quát nội dung của chơng và
đặt vấn đề vào bài .


<i><b>Hoạt động 2. </b></i>



<b>Bài mới .35’</b>


Hoạt động 2.1


* GV : Nhận xét về góc AOB và góc COD ( về
đỉnh, cạnh và quan hệ với đờng tròn )?


* GV : Góc AOB và góc COD đợc gọi là góc ở tâm,
vậy góc ở tâm có đặc điểm gì, nêu định nghĩa ?
* GV : Số đó (độ) của góc ở tâm có thể lấy những
giá trị nào?


* GV : Mỗi góc ở tâm ứng với mấy cung ? hÃy chỉ
ra cung bị chắn ở hình 1a, 1b .* GV : Cho HS lµm
nhanh bµi tËp 1/ 68 ( SGK) .


Hoạt động 2.2


* GV : Cho HS lµm bµi tập :


- Đo góc ở tâm ở hình 1a, rồi điền vào chỗ trống :
Góc AOB = ; số đo cung AmB = … ; NhËn xÐt ?


- T×m sè đo cung lớn AnB ở hình 2, nói rõ cách
tìm .


- Nhận xét về hai cung AmB và BnC, so sánh ?
* GV : Giới thiệu định nghĩa trong SGK .
* GV : giới thiệu ví dụ và nội dung chú ý .


Hoạt động 2.3


* GV : Cho HS rót ra nhËn xÐt vỊ so s¸nh hai cung .
* GV : Cho HS làm ?1.


1. Góc ở tâm .
Định nghÜa


H×nh 1 ( SGK/ 67) .


* HS : Quan sát hình 1 trong SGK và trả lời câu hỏi
của GV - Đỉnh O của góc trùng với tâm O của đờng
tròn .


- Cung n»m trong gãc .


HS nêu định nghĩa trong SGK


* HS : Lín h¬n 0 nhá h¬n hoặc bằng 1800<sub>.</sub>
* HS lần lợt trả lời câu hỏi của GV .
2. Số đo cung .


Định nghĩa


Ví dụ
Chú ý .


* HS : lên bảng điền vào chỗ trống và trả lời .


3. So sánh hai cung .
K/n


?1


HS : Nghe GV trình bày .


* HS : c li ni dung định nghĩa trong SGK .


B


m



A D


O



</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

Hoạt động 2.4
* GV : Đặt vấn đề


* GV : cho HS diễn đạt hệ thức sau bằng kí hiệu :
Số đo của cung AB = số đo của cung AC + số đo
của cung CB .


* GV : cho HS thùc hµnh ?2


* GV : VËy cã nhËn xét gì về số đo cung nhỏ AB .



* HS nghe GV trình bày .
* HS : thực hành ?2


4. Khi nào thì sđ AB =sđ AC + sđ CB
?2


s® AB =s® AC + s® CB
Ta có :


AOB=AOC+COB
( Vì C thuộc cung AB )


Mà : s® cung AB =s® gãc AOB, s® cung AC = s®
gãc AOC, s® cung CB= s® gãc COB .


Định lý

<b>Hoạt động 3.</b>



<b> Cñng cè:2’</b>



Nhắc lại nội dung kiến thức đã học trong bài . HS…………..

<b>Hoạt động 4. </b>



<b>Híng dÉn vỊ nhµ 3’.</b>


- Häc theo SGK


- Lµm bµi tËp 2; 3; 9 / 69- SGK .


- HS kh¸ giái làm thêm bài tập trong SBT .



_____________________________________________________________


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 38</b>


<b>luyện tập</b>


<b>I. Mục tiêu:</b>
Qua bài này, HS cần :


- Nhận biết đợc góc ở tâm, chỉ ra hai cung tơng ứng trong đó có cung bị chắn .


- Thành thạo cách đo góc ở tâm bằng thớc đo góc, thấy rõ sự tơng ứng giữa số đo (độ) của cung và
của góc ở tâm chắn cung đó trong trờng hợp cung nhỏ hơn cung của đờng tròn . Học sinh biết suy ra số đo độ
của cung lớn ( có số đo hơn 1800<sub> và bé hơn hoặc bằng 360</sub>0<sub> ).</sub>


- Biết so sánh hai cung trên một đờng tròn căn cứ vào số đo độ của chúng .
- Hiểu và vận dụng đợc định lý cộng hai cung .


- Biết phân chia trờng hợp để tiến hành chứng minh, biết khẳng định tính đúng đắn của một mệnh đề
khái quát bằng một chứng minhvà bác bỏ một mệnh đề khái quát bằng một phản v d


- Biết vẽ, đo cẩn thận và suy luận hợp logíc .


<b>II. </b>


<b> Chuẩn bị </b>



- Phấn màu, bảng phụ, SGK , SGV ,thớc thẳng, thớc đo góc .


- HS : Com pa, thớc thẳng, thớc đo góc .


<b>III. cỏc hot ng dạy và học</b>


Hoạt động của giáo viên Hoạt động của học sinh


<b>Hoạt động 1. </b>
<b>Kiểm tra bài cũ .10</b>’
* GV : Nhắc lại định nghĩa góc ở tâm, số đo cung,


định lý về cộng cung . HS trả lời câu hỏi .HS lên bảng làm bài, HS ở dới cùng làm và nhận
<i><b>Năm học 2011 - 2012</b></i>


t


x



O



o


y



</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

Giáo án hình 9<sub> - </sub>

Chu Văn QuyÒn

- Tr

êng THCS cát linh


* GV : Cho HS làm bài tập 2 / 69 SGK .



xét .



1. Chữa bài 2/ 69


 


  


 


0


0 0


0
xOs = 40 ( GT )
xOs = tOy ( ...)


xOt = 180 - xOs = 140 = sOy .
xOy = sOt = 180 ( ... )


<b>Hoạt động 2. </b>
<b>Luyện tập 30</b>’
* GV : Cho HS chữa bài 4.


* GV : thu một số bài của HS ở dới để chấm .


* GV : Cho HS lµm bài tập 5 / 69 .


HS lên bảng làm bµi 6, HS ë díi cïng lµm vµ nhËn
xÐt .



2. Chữa bài 4/ 69


Tam giỏc AOT vuụng cõn ti A do đó AOB = 45 0
Số đo cung lớn AB = 360 - 45 = 315 . 0 0 0


* HS lên bảng làm bài, HS ở dới cùng làm và NX .
3. Chữa bµi 5/ 69 – SGK .


 0 0 0


AOB = 180 - 35 =145 <sub>VËy sè ®o cung nhá</sub>


 0


AB = 145 <sub>, sè ®o cung lín </sub>


 0 0 0


AB = 360 - 145 = 215


4. Chữa bài 6/69 - SGK .


   0


AOB = BOC = COA = 120


+ Cung nhá :


   0



AB = BC = CA = 120


+ Cung lín AB = BC = CA    = 3600<sub> – 120</sub>0<sub> = 240</sub>0
.




<b>Hoạt động 3. </b>


<b>Củng cố</b>

<b> 2</b>

<b> </b>


* GV : lại khái niệm góc ở tâm, cách tính số đo của


một cung bị chắn bởi một dây AB bất kỳ HS : Trả lời câu hỏi của GV, HS ở dới cùng nghe vàNX.

<b>Hoạt động 4 .</b>



<b> H</b>

<b> íng dÉn vỊ nhµ .3</b>



- Ơn lại các khái niệm, định lý đã học ở tiết trớc .
- hoàn thành VBTvà các BT trong SGK .


- HS khá, giỏi làm bài tập 6; 7; 8 / 74 SBT .
- Đọc trớc bài 2


x



O



o


y



z



A



B C



</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

_____________________________________________________


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 39</b>


<b>liên hệ giữa cung và dây .</b>


<b>I. Mục tiêu</b>


- Qua bài này, HS cần :


- Biết sử dụng các cum từ : " cung căng dây " và " dây căng cung ".
- Phát biểu đợc các định lý 1 và 2 và chứng minh đợc định lý 1 .


- Hiểu đợc vì sao các định lý 1 và 2 chỉ phát biểu đối với các cung nhỏ trong một đờng tròn hay trong hai
đ-ờng trịn bằng nhau .


<b>II. Chn bÞ </b>


- Phấn màu, bảng phụ, SGK , SGV ,thớc thẳng, com pa,


- HS : Com pa, thíc th¼ng .



<b>III. các hoạt động dạy và học</b>


Hoạt động của giáo viên Hoạt động của học sinh


<b>Hoạt động 1. </b>
<b>Kiểm tra bài cũ :8</b>’
. Đề bài trên bảng phụ - bài 8 / SGK .


Mỗi khẳng định sau đúng hay sai ? Vì sao ?
a) Hai cung bằng nhau thì số đo bằng nhau .
b) Hai cung có số đo bằng nhau thì bằng nhau .
c) Trong hai cung, cung nào có số đo lớn hơn là
cung lớn hơn .


d) Trong hai cung trên một đờng trịn, cung nào có
số đo nhỏ hn thỡ nh hn .


* GV : Đánh giá, NX cho điiểm HS .


* GV : ĐVĐ : Qua bài trên ta thấy : Hai cung có
số đo bằng nhau thì bằng nhau , Vậy cung và dây
có mối quan hệ với nhau nh thế nào ?


HS trả lời câu hỏi .


HS ở dới NX trả lời của bạn .




<b>Hoạt động 2. </b>


<b>Bài mới :30</b>’
Hoạt động 2.1 Phát biểu và chứng minh định lý 1 .


* GV : Với 2 điểm A và B phân biệt trên đờng tròn,
ta vẽ đợc mấy cung ? Đó là những cung nào? * GV
: Giới thiệu : Để chỉ mối liên hệ giữa cung và dây
có chung hai mút . ta dùng cụm từ : " cung căng
dây " hoặc " dây căng cung "


* HS : Tr¶ lêi ?1
XÐt  AOO' cã :


OA-O'A <OO' <OA + O'A
Hay : R-r<OO'<R+r
1. Định lý 1.


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

* Dây AB căng những cung nào ?


* GV : Nhấn mạnh , từ nay trở về sau khi xét liên
hệ giữa cung và dây trong một đờng tròn, ta chỉ xét
những cung nhỏ


* GV : VÏ d©y CD trên (O) cho HS quan sát và dự
đoán dộ dµi cđa AB vµ CD, cung AB vµ cung CD .
* GV cho HS lên bảng đo và rút ra nhËn xÐt .


* GV : Đó là nội dung định lý 1 .


* GV : Cho HS đọc nội dung định lý, vẽ hình và
ghi GT, KL .



* GV : Cho HS thùc hµnh ?1


* GV : Tại sao trong định lý trên chỉ xét đến cung
nhỏ trong đờng trịn .


* GV : Với hai dây khơng bằng nhau trong một
đ-ờng trịn thì hai dây căng hai cung đó có bằng nhau


khơng, đó là nội dung định lý 2
* GV : Cho HS làm bài tập 10 trong SGK


Hoạt động 2.2
2. Định lý 2




* HS đọc nội dung định lý, HS vẽ hình, ghi GT, KL
.


GV .


* HS thực hiện theo yêu cầu của GV .
HS : đọc định lý .


HS lên bảng vẽ hình , ghi GT, KL .
HS : Thực hành ?1 theo nhóm .


Đại diện nhóm lên trình bày .




GT Cho (O)
KL a)AB = CD  AB=CD
b)AB = CDAB=CD 
Chøng minh


a). Ta cã


cung AB = cung CD ( GT)
nªn gãc AOB = gãc COD .
XÐt  AOB vµ  COD ta cã :
OA = OC = R ; OD = OB = R
Gãc AOB = gãc COD ( cmt)
 AOB =  COD ( cgc)
 AB = DC .


b) XÐt  AOB vµ  COD ta cã :
OA = OC = R ; OD = OB = R


AB = DC ( GT)
 AOB =  COD ( ccc)
 Gãc AOB = gãc COD
 cung AB = cung CD


<b>Hoạt động 3. </b>
<b>Củng cố:3</b>’


Nhắc lại nội dung định lý 1 và 2 .
Làm bài tập 13/ 72 SGK .



* GV : Hớng dẫn HS chữa bài 13 trong hai trêng
hỵp :


1. Tâm đờng trịn nằm ngồi hai dây // .


2. Tâm đờng tròn nằm trong hai dây song song .


HS vẽ hình trờng hợp 1 .
HS: vẽ hình trờng hợp 2
HS: CM trờng hợp 2 .
<b>Hoạt động 4. </b>


<b>H</b>


<b> íng dÉn vỊ nhµ :2</b>’


- Nội dung hai nh lý .


- Làm các bài tập 11; 12; 14; / SGK .
- Hoµn thµnh VBT .


- HS khá giỏi làm thêm các bài tập : 10;11;12/SBT.
- Đọc trớc bài 3


_______________________________________________________________________


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 40</b>


<b>góc nội tiếp</b>


A



D


B



C



A D


B



</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

A.Mơc tiªu :


- HS nhận biết đợc những góc nội tiếp trên một đờng trịn và phát biểu đợc định nghĩa về góc nội tiếp .
- HS phát biểu đợc và chứng minh đợc định lý về số đo góc nội tiếp .


- HS nhận biết và chứng minh đợc hệ quả của định lý trên .
- HS biết cách phân chia các trờng hợp .


B. ChuÈn bÞ :


Dụng cụ com pa thớc thẳng , thớc đo độ
C.hoạt động dạy học :


Hoạt động của giáo viên Hoạt động của học sinh


<b>Hoạt động 1. </b>


<b>KiÓm tra bµi cị :8</b>’



Phát biểu hai định lý về liên hệ giữa cung và dây.


Lµm BT11/72 HS:...


<b>Hoạt động 2. </b>


<b>Hình thành định nghĩa góc nội tiếp</b>
2.1 HS xem hình 13 sgk và trả lời câu hỏi :




. Góc nội tiếp là gì


. Nhận biết cung bị chắn trong mỗi hình
13a , 13b .


2.2 HS thùc hiÖn ?1
. 1HS tr¶ lêi H14 .
. 1 HS tr¶ lêi H15 .
. C¸c HS nhËn xÐt .
. GV kết luận .


1.Định nghĩa : ( sgk/72 )
C


B
C
B



O
A


O
A





BAC<sub>lµ gãc néi tiếp </sub>


BC<sub>là cung bị chắn </sub>


? 1 .Các góc ở hình 14 khơng phải là góc nội tiếp vì
đỉnh của chúng khơng nằm trên đờng trịn .


.Các góc ở hình 15 khơng phải là góc nội tiếp vì hai
cạnh của góc khơng cắt đờng trịn .


<b>Hoạt động 3.</b>


<b> Hình thành định lý .</b>
3.1 HS thực hiện ?2 .


. HS1 ®o H16
.HS2 ®o H17
.HS3 ®o H18



3.2 GV sư dơng dụng cụ hoặc dùng vi tính phân
chia các trờng hỵp .


3.3HS xem sgk và trình bày cách chứng minh
trong hai trờng hợp đầu, sau đó trình bầy lời gii
ca mỡnh .


2.Định lý : ( sgk/73 )


?2





  


  


H 16: s® BAC =... ; s® BOC = ... s® BC =...
H17 : s® BAC = ... ; s® BOC =... s® BC =. ....
H18 : s® BAC = ... ; s® BOC = ... s® BC = ...
:


Định lý : ( sgk/73 )


( O ) , BAC lµ gãc néi tiÕp
GT BC lµ cung bị chắn
KL


 1 



s® BAC = s® BC
2


Chứng minh : (sgk/74)


<i><b>Năm học 2011 - 2012</b></i>


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

<b>Hoạt động 4.</b>


<b> Xây dựng hệ quả của định lý</b>
HS dới sự hớng dẫn của GV vẽ hình minh hoạ


các hệ quả của định lý .


phần c/ m là bài tập về nhà ,GV gọi HS nêu cách
c/m trên lớp ,rồi HD cho c¶ líp.


3.HƯ qu¶ : ( sgk/74-75)


?3





D
O


A
E



C
B


O
A


D E


B
C


     


 


0


BEC = BAC = CAD DAE = DBE = DCE = 90
BC = CD


<b>Hoạt động 5.</b>


<b>Củng cố</b>
1. HS phát biểu định lý và cỏch chng minh nh


lý ( 3 vị trí )


2. Làm tại lớp BT 15/82 SGK.


D. H ớng dẫnvề nhà :



- Học thuộc các định lí và hệ quả của bài học nắm vững cáh c/ minh.
- Về nhà : HS chứng minh ( trờng hợp 3 ) định lý , các hệ quả
- Làm BT16 , 17 , 18/75 sgk .


- ChuÈn bị bài sau luyện tập.


_______________________________________________________


<i>Ngày soạn: 25/1/2008</i> <i> </i> <i> Ngày </i>
<i>giảng:14/2/2008</i>


<i><b>Ngày so¹n: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 41</b>


<b>Luyện tập</b>

<b> </b>


A.Mục tiêu :


- Ôn tập các kiến thức về góc nội tiÕp .


- Vận dụng các kiến thức về góc nội tiếp để giải những bài toán chứng minh .


B. ChuÈn bÞ :


Dụng cụ com pa thớc thẳng , thớc đo độ


C.hoạt động dạy học :



Hoạt động của giáo viên Hoạt động của học sinh


<b>Hoạt động 1. </b>


<b>Kiểm tra bài cũ :8</b>’
Phát biểu các định lý và hệ quả về góc nội tiếp .


<b>Hoạt động 2. </b>


<b> LuyÖn tËp</b>
BT 19/75sgk


2.1 HS đọc đề bài , vẽ hình và ghi GT , KL
của bài toỏn .


2.2 HS thảo luận nêu hớng chứng minh .


1.Bài 19/75

Bµi làm
<i><b>Năm học 2011 - 2012</b></i>


O B


S


A
N


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

2.3 Một số HS trình bày chứng minh , các HS kh¸c


nhËn xÐt .


2.4 GV kÕt ln sưa sai .
2.5 GV lu ý kiÕn thøc :


- Góc nội tiếp chắn nửa đờng trịn .


-Trực tâm : Giao điểm ba đờng cao của
tam giác .


BT 22/76sgk


3.1 HS đọc đề bài , vẽ hình và ghi GT , KL
của bài tốn .


3.2 HS th¶o ln nªu híng chøng minh :
MA2<sub> = MB.MC </sub>


3.3 HS trình bày các bớc chứng minh
3.4 Các HS nhËn xÐt , GV kÕt luËn , söa sai
BT23/76sgk


4.1 HS đọc đề bài , vẽ hình và ghi GT , KL cả hai
trờng hợp của bài toán .


4.2 HS thảo luận chứng minh trờng hợp M ở bờn
trong ng trũn .


4.3 1 HS trình bày chứng minh .



4.4 Các HS nhận xét , GV kết luận , sửa sai.
4.5 1 HS trình bày chứng minh trờng hợp điểm M
nằm ngồi đờng trịn .


4.6 C¸c HS nhËn xÐt , GV kÕt luËn , söa sai.
XÐt MBC vµ MDA cã :


BMC = DMA ( gãc chung )


MBC = MDA ( hai góc nội tiếp cùng chắn cung AC )
Do đó MBC ↜ MDA (g.g)


Suy ra MA


MC =


MD


MB <i>⇒</i>MA . MB=MC .MD




AMB<sub>= 1v ( gãc néi tiÕp ch¾n nưa (O) )</sub>
 AM  MB hay SM  BH




ANB<sub>= 1v ( gãc néi tiÕp ch¾n nưa (O) )</sub>
 AN  NB hay SB  NH



Suy ra SM và HN là hai đờng cao của BSH . SM cắt
HN tại A  A là trực tâm của BSH .


 BA là đờng cao của BSH
 BA  SH


2. Bµi 22/76




M


O B


C


A


Bµi lµm


MC lµ tiÕp tun cđa (O) t¹i A (GT)
 BAC· = 1v ABC vuông tại A


Ã


AMB<sub>= 1v ( gúc ni tiếp chắn nửa (O) )</sub>
AM  BC AM là đờng cao của ABC
Do đó AM2<sub> = MB.MC </sub>


( hÖ thøc lợng trong tam giác vuông )


3. Bài tập 23/76


a) M nằm trong đờng tròn :




M


O
A


B
C


D


Xét MBC và MDA có :
BMC = DMA ( đối đỉnh )


MBC = MDA ( hai góc nội tiếp cùng chắn cung AC )
Do đó MBC ↜ MDA (g.g)


Suy ra MA


MC =


MD


MB <i>⇒</i>MA . MB=MC .MD
b) M nằm ngồi đờng trịn :





A


C


O
M


B


D


D. Cđng cè –H íng dÉn :


1. HS nhắc lại định nghĩa , định lý , các hệ quả về góc nội tiếp .


2. GV híng dÉn HS c¸c bµi tËp 20 , 21 , 24 , 25 , 26 /76 .HS về nhà làm các BT.


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 42</b>


<b>Góc tạo bởi tia tiếp tuyến và dây cung</b>



A.Mục tiêu :


- HS nhận biết góc tạo bởi tia tiếp tuyến và dây cung .



- HS phát biểu và chứng minh đợc định lý về số đo của góc tạo bởi tia tiếp tuyến và dây cung .- HS biết
phân chia các trờng hợp để tiến hành chứng minh .


- HS phát biểu đợc định lý đảo và biết cách chứng minh định lý đảo .
B. Chuẩn bị :


Dụng cụ com pa thớc thẳng , thớc đo độ
C.hoạt động dạy học :


Hoạt động của giáo viên Hoạt động của học sinh


<b>Hoạt động 1. </b>


<b>Kiểm tra bài cũ :8</b>’
Phát biểu và nêu cách chứng minh định lý về số


®o gãc néi tiÕp . HS lên bảng....


<b>Hot ng 2. </b>


<b>Hình thành khái niệm góc tạo bởi tia tiếp tuyến và dây cung</b>
2.1 HS quan sát H22 sgk và trả lời câu hỏi :


Gúc to bởi tia tiếp tuyến và dây cung là gì?
2.2 GV khẳng định đặc điểm góc tạo bởi tia tiếp
tuyến v dõy cung .


2.3 HS thảo luận làmm ?1


1.Khái niệm góc tạo bởi tia tiếp tuyến và dây


cung:


?1: Hình 23 : không thoả mÃn 1 cạnh là t2
H24 : không thoả mÃn điều kiện 2 cạnh .
H25 : kh«ng thoả mÃn 1 cạnh là t2


H26 : không thoả mãn điều kiện đỉnh
nằm trên đờng tròn .


<b>Hoạt động3. </b>


<b>Phát hiện định lý về số đo của góc tạo bởi tia tiếp tuyến và dây cung </b>
3.1 HS thảo lun lm ?2 :




. 3HS lên bảng , mỗi HS làm 1 trờng hợp
. Các HS nhËn xÐt .


. GV kÕt luËn .


3.2 GV lu ý HS vận dụng định lý góc nội tiếp để
tính


?2:




+)



  




0 0 0


0 0 0


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>




0


0
+) BAx = 90 ==> BA Ax mµ OA Ax
==> AB AO ==> AB là đuờng kính (O)
==> AB nửa đ ờng tròn ==>AB = 180


 




  


  


0 0


0 0 0



0 0 0


+)BAx = 120 ==> BAO =120 - xAO
= 120 - 90 = 30
==> AB = AC + CB = 180 + 60 =240


<b>Hoạt động 4. </b>


<b>Hình thành định lý và chứng minh định lý .</b>
4.1 HS căn cứ ?2 so sánh số đo góc giữa tiếp


tuyến và dây cung với số đo cung bị chắn .
4.2 GV nêu định lý sgk .


4.3 HS đọc định lý trong sgk và nêu cách chứng
minh từng trờng hợp tng t ?2.


Vậy qua đây em có nhận xét gì về số đo của góc
tạo bởi tia tiếp tuyến và dây với số đo góc nội tiếp
cùng chắn mét cung?


Đây chính là nội dung của hệ quả, háy phỏt biu
h qu ú.


2.Định lý ( sgk/78)


Chứng minh :( Xét 3 trờng hợp )
. Tâm đờng tròn nằm trên cạnh
góc chứa dây cung .



. Tâm đờng trịn nằm bên ngồi góc .
. Tâm đờng trịn nằm bên trong góc .
?3 HS đứng tại chỗ cm:


 


 


 


1


ACB sdAmB
2


ACB xAB
1


xAB sdAmB
2




 <sub></sub>




 









3. HƯ qu¶


HS:...


D. Cđng cè – híng dÉnVN :


1. HS nhắc lại định nghĩa góc tạo bởi tia tiếp tuyến và dây cung , định lý và cách chứng minh .


2. GV híng dÉn HS làm BT27 tại lớp


- Lu ý tam giác AOP cân tại O => APOPAO
-


1


PAO sdPB
2


( gãc néi tiÕp )
- L¹i cã


 1 


PBT sdPB


2


( Góc tạo bởi tia tiếp tuyến và dây)
-Tờ đó suy ra điều cần chứng minh.


3. VỊ nhµ lµm BT 28 , 29 , 30 /79sgk .


____________________________________________________________


<i><b>Ngµy so¹n: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 43</b>


<i><b>Năm học 2011 - 2012</b></i>


y A x


m



O B


C



</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

<b>luyÖn tập</b>



A.Mục tiêu :


- Ôn tập các kiến thức về góc tạo bởi tia tiếp tuyến và dây cung .


- Rèn kĩ năng vận dụng các kiến thức vào giải các bài toán tính toán và chứng minh .
B. ChuÈn bÞ :



- Dụng cụ com pa thớc thẳng , thớc đo độ
C.hoạt động dạy học :


Hoạt động của giáo viên Hoạt động của học sinh


<b>Hoạt động 1. </b>


<b>Kiểm tra bài cũ :8</b>’
Phát biểu định lý về sđ của góc tạo bởi tia tiếp


tuyến và dây cung . Nêu các bớc chứng minh định
lý .


<b>Hoạt động 2. </b>


<b>VËn dụng giải các bài toán về tính góc </b>


2.2 GV yêu cầu HS thảo luận nêu cách tính góc
ABC .


2.3 HS thảo luận nêu cách tính góc BAC theo
nhóm bà rồ đại diện trình bày lời gíải


GV chốt toàn bài rồi dặn dò HS cách phân tích bài
toán


1. Bài 31/79


2.1 HS c ố bi , v hỡnh và ghi GT , KL của


BT.




A


O
C
B




ABC<sub> là góc tạo bởi tia tiếp tuyến BA và dây cung</sub>
BC của (O) . Dây BC = R , vậy sđ BC = 600<sub> vµ</sub>




BOC<sub>= 30</sub>0


 0  0 0 0


BAC = 180 - BOC = 180 - 60 = 120
<b>Hot ng3. </b>


<b>Vận dụng giải bài toán chứng minh </b>


3.2 GV phân tích sơ đồ .
AB.AM = AC.AN




AM


AC =


AN
AB

AMN ~ ACB





A<sub>: gãc chung ; </sub>AMN = ACB  


AMN = MAT = ACB 
 


 1 


MAt = sđ AB
2


2. Bài 33/80


3.1 HS c bi , vẽ hình và ghi GT , KL .
3.3: 1HS trình bày chứng minh


t
N



M
O


A


C


B


Chøng minh : AB.AM = AC.AN


 


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

MN// At


 1 


ACB = sđ AB
2


GV yêu cầu HS vẽ hình, suy nghÜ c¸ch cm


3.4 C¸c HS kh¸c nhËn xÐt , GV kÕt luËn søa sai .


 


BAt = ACB <sub>( </sub>ACB <sub>là góc nội tuếp chắn </sub>AB



MAt<sub> là góc tạo bởi tia tiếp tuyến và dây cung </sub>
chắnAB )


Từ (1) và (2) ta có AMN = ACB  
*XÐt AMN vµ ACB cã :


 


 


MAN = CAB ( gãc chung )
AMN = ACB ( cmt )


Do đó : AMN ↜ ACB (g.g )


 AM


AC =


AN


AB ( đ/n tam giác đồng dạng )
 AB.AM = AC.AN


<b>Hoạt động 4. </b>


<b>cđng cè</b>
- Gãc t¹o bëi tia tiếp tuyến và dây có liên hệ nh


thế nào với cung bị chắn?



- Góc tạo bởi tia tiếp tuyến và dây có quan hệ nh
thếnào với góc néi tiÕp cïng ch¾n b»ng mét cung?


HS:...


D. h ớng dẫn về nhà :


1. Định lý về số đo góc nội tiếp và hệ quả .


2. Định lý về số đo góc giữa tiếp tuyến và dây cung .


3. GV híng dÉn HS BT32,34,35/86 sgk . HS vỊ nhµ làm BT .


____________________________________________________


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 44</b>


<b>gúc cú nh bên trong đờng trịn</b>
<b>Góc có đỉnh ở bên ngồi đờng trịn </b>


A.Mơc tiªu :


- HS nhận biết đợc góc có đỉnh ở bên trong hay bên ngồi đờng tròn .


- Phát biểu và chứng minh dợc định lý về số đo góc có đỉnh ở bên trong hay bên ngồi đờng trịn .- Chứng
minh đúng , chặt chẽ , trình bày chứng minh rõ ràng .



B. ChuÈn bÞ :


Dụng cụ com pa thớc thẳng , thớc đo độ . Vẽ sẵn các trờng hợp .
C.hoạt động dạy học :


Hoạt động của giáo viên Hoạt động của học sinh


<b>Hoạt động 1. </b>


<b>Kiểm tra bài cũ :8</b>’
Phát biểu định nghĩa các góc liên quan đến đờng


trịn đã đợc học?


Mối quan hệ của góc đó với số đo cung bị chắn .


HS2:....
HS2:....


<b>Hoạt động 2. </b>


<b>Hình thành định lý về góc có đỉnh nằm bên trong đ ờng trịn</b>
2.1 HS quan sát nhận xét vị trí đỉnh của gúc i


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

2.2 HS thảo luận làm ?1


? Góc ở tâm có phải là góc có đỉnh ở bên trong
đ-ờng trịn khơng


? Sè ®o cđa gãc ở tâm với tổng số


đo của hai cung bị chắn


? Dự đốn số đo góc có đỉnh ở


trong đờng tròn với tổng số đo của hai cung bị
chắn


* Định lý : sgk/80


GT E n»m trong (O)
KL


1

<sub>(</sub>

<sub>)</sub>



2



<i>BEC</i>

<i>Sd BnC sd AmD</i>



Chứng minh : Theo định lý về góc nội tiếp ta có :





1
1 1
1

1


1




2

<sub>(</sub>

<sub>)</sub>



1

2



2



<i>D</i>

<i>sd BnC</i>



<i>D B</i>

<i>sd BnC sd AmD</i>



<i>B</i>

<i>sd AmD</i>














<sub>(1)</sub>


mµ BEC B 1D 1 <sub> (gãc ngoµi cđa tam giác) (2) </sub>


Từ (1) và (2)


sđBnC sđDmA
BEC


2




<b>Hot động 2. </b>


<b>Hình thành định lý về góc có đỉnh nằm bên ngồi đ ờng trịn</b>
3.1 HS nêu đặc điểm chung của 3 góc ở


H32,33,34 .


Giáo viên vẽ hình trong 3 trờng hợp và giới thiệu
đó là góc cố đỉnh ở bên ngồi đờng trịn .


? Em hiểu thế nào là góc có đỉnh ở ngồi đờng
trịn


3.2 GV giới thiệu 3 loại góc có đỉnh nằm ngồi
đ-ờng trịn .


Giáo viên giới thiệu định lý :


? Chứng minh định lý trong mỗi trờng hợp
? Vẽ thêm AC


? Số đo cung BC , AD có quan hệ với góc nào
trong đờng trịn


? Trình bày cách chứng minh


Học sinh trình bày miệng .Giáo viên nhận xét và
sửa lỗi nếu có rồi cho học sinh trình bày lên bảng


trờng hợp 1


3.4.Trờng hợp 2 ; 3 GV yêu cầu học sinh tự trình
bày vào vở


2) Gúc cú nh bên ngồi đờng trịn
* Khái niệm : sgk/81 .


- Đỉnh nằm ngồi đờng trịn


- Các cạnh của góc đều có điểm chung với đờng
trịn ( Một hoặc 2 im chung )


* Định lý : sgk/81




m
A


E


C


3.3 HS căn cứ vào hình vẽ và gợi ý sgk chứng minh
trờng hợp 1


Nèi AC. Ta cã : BAC lµ gãc ngoµi AEC
BAC ACD BEC







1
Có BAC sđBC


2
1


và ACD s®AD
2

 <sub></sub>






 <sub>(định lí góc nội tiếp)</sub>


  


BEC BAC ACD


    
1 1
s®BC s®AD
2 2


 
hay


 s®BC s®AD


BEC


2



<b>Hoạt động 4. </b>


<b>cđng cè</b>
m
E
O
A
B
D
C

n
D
O


A E A


E


B



</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

<b>Bµi tËp 38 T 82 SGK</b>


HS vẽ hình vào vở và làm phần a
a) Chøng minh <i>AEB BTC</i> :


 1<sub>(</sub>   <sub>)</sub> 1<sub>(180</sub>0 <sub>60 ) 60</sub>0 0


2 2


<i>AEB</i> <i>sd AB sdCD</i>   


( Theo định lý góc có đỉnh ở ngồi đờng tròn )
* Tơng tự :


 1<sub>(</sub>   <sub>)</sub>


2


<i>BTC</i> <i>sd BAC sdCDB</i>
 <sub>(180</sub>0 <sub>60</sub>0 <sub>(60</sub>0 <sub>60 )) 60</sub>0 0


<i>BTC</i>    


VËy <i>AEB BTC</i> 600
D. Cđng cè – híng dÉn :


1.HS phát biểu định lý về số đo góc có đỉnh ở trong , góc có đỉnh ở ngồi đờng trịn .
2.GV hớng dẫn BTVN : 36 ; 37 ; 39 ; 40 SGK Tiết : 44



38b) Chøng minh CD lµ tia phân giác của <i>BCT</i> :Theo tính chất góc tạo bởi tia tiếp tuyến và dây cung:


1 <sub>... 60</sub>0


2


  


<i>BCT</i> <i>sdCDB</i> C <sub>2</sub> 1 s®CD ...


2


   <sub>2</sub> 1 <sub>1</sub>


2


<i>C</i> <i>BCT C</i>


  


(1)


L¹i có tia CD nằm giữa 2 tia CT và CB (2). Từ (1) và (2) có CD là tia phân giác của <i>BCT</i>


________________________________________________________

<b> </b>



<i>Ngày so¹n: 21/2/2008</i> <i> </i> <i> Ngày </i>
<i>giảng:28/2/2008</i>


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>




<b>Tiết 45</b>
<b>luyện tËp. </b>


A.Mơc tiªu :


- Ơn tập các kiến thức về góc ở tâm , góc nội tiếp , góc giữa tiếp tuyến và dây cung , góc có đỉnh ở trong hay
ở ngồi đờng trịn .


- Vận dụng các kiến thức đã học vào giải bài tập .
B. Chuẩn bị :


Dụng cụ com pa thớc thẳng , thớc đo độ . Vẽ sẵn các trờng hợp .
C.hoạt động dạy học :


Hoạt động của giáo viên Hoạt động của học sinh


<b>Hoạt động 1. </b>


<b>Kiểm tra bài cũ :8’ </b>
Chứng minh định lý “ Góc có đỉnh nm trong


đ-ờng tròn có số đo bằng nửa tổng số đo hai cung bị
chắn .


Chng minh nh lý Góc có đỉnh nằm ngồi
đ-ờng trịn có số đo bằng nửa hiệu số đo hai cung bị
chắn” .


HS1 :...



HS2 :...


<b>Hot ng 2. </b>


<b>Vận dụng làm BT39/83</b>


<i><b>Năm học 2011 - 2012</b></i>


<b>12</b>


O
C


T
E


A


</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

2.3 HS cïng GV ph©n tích cách giải bài toán : 1. Bài 39/83sgk:


2.1HS c đề bài , vẽ hình ghi GT,KL của bài tốn
2.2. GV yêu cầu HS thảo luận nêu cách chứng
minh bài toán .




 Chøng minh ES = EM


AB và CD là hai đờng kính vng góc


 AC = BC = BD = DA = 90    0


  


EMS = sđ(AC + BM) <sub>(góc có đỉnh nằm trong </sub>
đ-ờng tròn )


  


EMS = sđ(BC + BM) <sub>(góc tạo bởi tia tiếp tuyến </sub>
và dây cung )




==> ESM = EMS<sub></sub><sub></sub><sub>EMS cân tại E ( t/c tam giác</sub>
cân )


ES = EM ( đ/n tam giác cân )


<b>Hot ng 2. </b>


<b>Vận dụng làm BT42/83</b>
3.2 HS thảo luận làm phần a)


3.3 GV cïng HS ph©n tÝch



   
  
     


0
0
0
AP QR



AKQ = 90


AKQ = s®(AQ +RB +BP) = 180


AQ +RB +BP = 180


1 1 1


AQ = AC ; BR = AB ; BP = BC


2 2 2












HS2 trình bày lời giải phần b.
b)Chứng minh CPI là tam giác cân .
Xét CPI có :


1  


CIP = s®(AR + PC)


2 <sub>( góc có đỉnh nằm trong </sub>
đ-ờng tròn )


 1  


PCI = s®(BR + PB)


2 <sub> ( gãc néi tiÕp )</sub>
Mµ AR = BR ;PC=PQ    


 


==> CIP = PCI<sub></sub><sub> </sub><sub></sub><sub>CPI là tam giác cân tại P</sub>
3.5 C¸c HS nhËn xÐt , GV kÕt luËn , sưa sai


2. Bµi 42/83sgk :


3.1 HS đọc đề bài , vẽ hình ghi GT,KL của bài tốn



I
K


O
A
B
C
P
R
Q


3.4. HS1 trình bày lời giải phần a.
Chứng minh AP QR


R là điểm chính giữa AB (GT)


  1


=> AR = RB = AB
2


Q là điểm chính giữa AC (GT)


1


=> AQ = QC = AC
2
P là điểm chính giữa CB (GT)


1


=> PC = PB = CB
2



   1

<sub></sub>

  

<sub></sub>



=>AQ + BR + BP = AB + AC + CB
2


=


  


1


(AB + AC + CB)


2 <sub> =</sub>


1


2 <sub>360</sub>0<sub> =180</sub>0


   


=>AKQ = s®(AQ +RB +BP) <sub>=</sub> 1


2 1800=900
VËy AP  QR t¹i K .


<b>Hoạt động 4. </b>


<b>cñng cè</b>


S
E
O
C
D
A B
M
 
     
 


ES = EM


EMS cân tại E


ESM = EMS


ESM = s®(AC + BM); EMS = s®(BC + BM)
AC = BC







</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

<b>Bµi tËp 40 T 83 SGK</b>



GV gợi ý để HS nắm đợc cách cm:


 1<sub>(... ...)</sub>


2


 


<i>ADS</i>


( Theo định lý góc có đỉnh
nằm trong đờng trịn )


 1<sub>....</sub>


2




<i>SAD</i>


( Góc tạo bởi 1 tia tiếp tuyến và dây
cung )


Cã <i>A</i>1 <i>A</i>2 <i>sd BE sd EC</i>   <sub>. </sub>


VËy s® <i>AB</i> + s® <i>EC</i> = s® <i>AB</i> + s® <i>BE</i> = ...
=>



  1 


2
<i>ADS SAD</i> <i>sd AE</i>


nên <i>EDA</i> ... tại S
=> SA = SD


GT Đờng tròn (O) ; SA  OA t¹i A


Cát tuyến SBC ; AE là phân giác cña <i>BAC</i>
AE  BC t¹i D


KL SA = AD


HS căn cứ hớng
dẫn tập trình bày
vào vở


D.


h íng dÉn :


1. VN : 42 ; 43 SGK . 31 ; 32 SBT .GV hớng dẫn vẽ hình bài 41
2. HS về nhà làm các bài tập và xem trớc bài Cung chứa góc.


____________________________________________________



<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>




<b>Tiết 46</b>


Đ6 CUNG CHứA GóC.


A.Mục tiªu :


- HS hiểu quĩ tích cung chứa góc , biết vận dụng cặp mệnh đề thuận đảo của quĩ tích này để giải tốn .
- HS biết sử dụng thuật ngữ cung chứa góc dựng tên một đoạn thẳng .


- HS biết dựng cung chứa góc và biết áp dụng cung chứa góc vào bài tốn dựng hình .
- HS biết trình bày lời giải bài tốn quĩ tích bao gồm phần thuận , phần đảo và kết luận .
B. Chuẩn bị :


-GV và HS chuẩn bị : thớc , com pa , thớc đo góc , bìa cứng , kéo , đinh .
C.hoạt động dạy học

:



Hoạt động của giáo viên Hoạt động của học sinh


<b>Hoạt động 1. </b>


<b>Dự đốn quĩ tích </b>
1.1 HS đọc bài toán sgk/83


1.2 GV khẳng định yêu cầu của bài tốn


1.3 GV cïng HS lµm ?1 . GV lµm mÉu ,HS lµm
tiÕp


HS thảo luận : chứng minh các điểm N1, N2 , N3
nằm trên đờng trịn đờng kính CD .



1. Bài toán quỹ tích cung chứa góc
1) Bài toán (sgk/83)


a)


b) O D
C


Gäi O lµ trung điểm của CD


CN1D ; CN2D ; CN3D là các tam giác vuông tại
N1 ; N2 ; N3 nên ta có :


ON1= ON2 = ON1=OC =OD = CD
2


 N1 ; N2 ; N3 thuộc đờng trịn đờng kính CD
<b>Hoạt động 2. </b>


<i><b>Năm học 2011 - 2012</b></i>


?1



</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

<b>Quĩ tích cung chøa gãc </b>
2.1 GV lµm mÉu ?2


2.2 HS tù lµm ?2


2.3 HS dự đốn quĩ đạo chuyển động của điểm


M .


2.4 GV nêu mục đích chứng minh phần thuận : M
thuộc cung tròn AmB cố định


2.5 GV trình bày các bớc chứng minh :
- Vẽ cung AmB


- Chứng minh tâm O của đờng tròn chứa
AmB là một điểm cố định .


- Kết luận : M thuộc cung tròn AmB cố
định


2.6 GV nêu mục đích chứng minh phần đảo : mọi
điểm M!<sub> thuộc cung AmB đều có AM</sub>!<sub>B = </sub><sub></sub>
2.7 GV nêu các bớc chứng minh


2.8 GV nêu khẳng định tơng tự với nửa mp cịn lại
.


2.9 GV cïng HS nªu kÕt luận của bài toán
2.10 GV nêu và vẽ hình minh ho¹ chó ý .


M2


M3
B
A



M4
M1


M8


M10


AM1B = AM2B = AM3B = ...= AM10B =750
Dự đoán :Quĩ tích các điểm M thoả mãn AMB = 
là hai cung tròn đối xứng nhau qua AB .


Chøng minh :


a) <i>Phần thuận</i> : ( sgk/84 )
Giả sử M thoả mÃn AMB = 


 M thuộc cung AmB đi qua ba điểm A,M,B cố
định ( không phụ thuộc vào M )


b) <i>Phần đảo</i> : ( sgk/85)


M là điểm bất kỳ thuộc cung AmB
 AM’B = 


c) <i>KÕt luËn</i> : (sgk/85)
*Chó ý : ( sgk/85-86 )


<b>Hoạt động 2. </b>


<b>c¸ch vẽ cung chứa góc </b><b> , Cách giải bài toán quĩ tích .</b>


3.1 HS nêu cách vẽ cung chøa gãc 


3.2 GVkhẳng định cách vẽ cung chứa góc
3.3 GV giải thích vì sao giải bài tốn quĩ tích phải
chứng minh hai phần thuận , đảo


3.4 HS đọc cách giải bài tốn quĩ tích sgk


2) C¸ch vÏ cung chøa gãc  : (sgk/86 )
3). Cách giải bài toán quỹ tích : ( sgk/86 )


<b>Hot ng 4. </b>


<b>củng cố</b> :áp dụng làm BT 44/86sgk


5.1 HS nhắc lại các bớc làm bài toán quĩ tích


5.2 HS thảo luận nêu nội dung làm phần thuận
. Điểm I có t/c gì đặc biệt


. Dù đoán quĩ tích điểm I
. Thảo luận chứng minh


5.3 HS nêu nội dung phần đảo : mọi điểm thuộc
hình H đều có t/c T


hình H ? t/c T của bài toán ?
5.4 GV gợi ý , HS thực hiện .
b) Chứng minh đảo :



Xác định I’ bất kì thuộc cung 1350<sub> dựng trên đoạn</sub>
BC .Vẽ A’BC sao cho BI’,CI’ là phân giác của
A’BC . Ta phải chng minh


ABC vuông tại A .


c) Kết luận : Vậy quỹ tích các điểm I sao cho BIC
= 1350<sub> là cung chứa góc 135</sub>0<sub> dựng trên đoạn BC .</sub>
5.5 HS kết luận bài toán .


*Bài 44/86sgk
Chứng minh thuận :


ABC vuông ở A nên ABC + ACB = 900
BI là phân giác gãc B (GT)


IBC = IBA = ABC
2


CI là ph/giác góc C (GT) ICB = ICA =
ACB


2


Do đó : IBC + ICB = ABC+ACB


2 =


900



2 =45


0


</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

A


B C


O
I


IBC cã BIC + ICB + CBI =1800


 BIC = 1800<sub> – ( IBC + CBI ) = 135</sub>0


Khi A thay đổi , quỹ tích các điểm I sao cho BIC =
1350<sub> là cung chứa góc 135</sub>0<sub> dựng trên đoạn BC .</sub>
D.


h íng dÉn vỊ nhµ :


1. Cách vẽ cung chứa góc . Các bớc làm bài toán quỹ tích .
2. GV hớng dẫn HS về nhà làm BT 45-47/86sgk .


____________________________________________________________


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 47</b>
<b>luyện tập.</b>



A.Mục tiêu :


- ôn tập các kién thức về cung chøa gãc .


- Rèn kỹ năng giải bài toán quĩ tích qua 3 bớc : Chứng minh thuận , chứng minh đảo , kết luận . Ôn tập bài
toỏn dng hỡnh .


- Rèn trí óc suy đoán , tởng tợng .
B. Chuẩn bị :


GV v HS chun b : thớc , com pa , thớc đo góc
C.hoạt động dạy học :


Hoạt động của giáo viên Hoạt động ca hc sinh


<b>Hot ng 1. </b>


<b>Kiểm tra bài cũ </b>
Phát biểu quỹ tích cung chứa góc . nêu các bớc


giải bài toán quỹ tích và nội dung từng bớc .


<b>Hoạt động 2. </b>


<b>Vận dụng giải BT 48/87</b>
2.1 HS đọc đề bài , vẽ hình , ghi GT-KL


2.2 GV lu ý HS các trờng hợp xảy ra
2.3 HS vẽ 2 trờng hợp



2.4 HS thảo luận trình bày bài làm trờng hợp 1
2.5 HS thảo luận trình bày bài làm trêng hỵp 2
2.6 GV kÕt ln lu ý HS khi giải bài toán lu ý các
trờng hợp xảy ra .


1.BT 48/87 .


a) Trờng hợp (B) có bán kính nhỏ h¬n BA




T'
T


O


B
A


</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

TiÕp tuyÕn AT  BT t¹i T


Quỹ tích các điêmt T sao cho ATB = 1v
Là ng trũn ng kớnh AB .


b)Trờng hợp (B) có bán kính BA quỹ tích là điểm A
.


<b>Hot ng 2. </b>



<b>Vn dụng làm bài tập 49/87 </b>
3.1 HS đọc đề bài , vẽ hình giả sử , ghi GT-KL


3.2 Đề bài cho biết gì ? đoạn nào cố định cho
tr-c ? gúc A = ?


Vị trí điểm A ?


(quÜ tÝch cung chøa gãc)
3.3 §êng cao AH = ?


 Vị trí của điểm A ?


3.4 1HS nêu cách dựng , các HS khác bổ xung .
3.5 1HS lên bảng dựng hình, các HS tự làm
3.6 HS chứng minh ABC thoả mÃn yêu cầu của
bài toán .


3.7 GV lu ý HS các bớc giải bài toán dựng hình ,
chú ý bớc phân tích làm nháp


2.


b ài tập 49/87


H'


4cm


6cm



)

0
40 H


O


C
A


B


A'


Cách dựng :


- Dựng đoạn thẳng BC = 6cm


- Dng cung chứa góc 400<sub> trên đoạn BC</sub>
- Dựng đờng thẳng xy song song vi on BC


và cách BC 4cm .


- ng thẳng xy cắt cung chứa góc tại A và
A’ . ABC và A’BC đều thoả mãn yêu cầu
của bài toán .


Chøng minh : ( h/s tù chøng minh )


<b>Hoạt động 4. </b>



<b>H</b>


<b> ớng dẫn giải BT 50/87</b>
4.1 HS đọc đề bài , vẽ hình , ghi GT-KL


4.2 HS thảo luận làm phần a )
Chứng minh AIB khụng i



Tính AIB




Liờn h n MB,MI


MBI vuông tại M


M ( O ; AB


2 )


4.3 HS trình bày phần a) c¸c HS nhËn xÐt , GV kÕt
luËn .


4.4 HS thảo luận cách làm phần b)
.1 HS nêu chứng minh thuận
.1 HS nêu chứng minh đảo
 Kết luận .



3. Bµi 50/87




I'


M'
O B


I


A


</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

H§5. Cđng cè – híng dÉn :


1. Nêu các bớc giải bài toán quỹ tích , các bớc giải bài toán dựng hình ?
2. GV hớng dÉn HS vỊ nhµ lµm BT 51 , 52 /87.


___________________________________________________________________


<i><b>Ngµy so¹n: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 48</b>


<b>Đ7 Tứ giác nội tiếp</b>


A.Mục tiªu :


- HS định nghĩa đợc thế nào là một tứ giác nội tiếp đờng tròn .



- HS nắm đợc có những tứ giác nội tiếp đợc và có những tứ giác khơng nội tiếp đợc bất kỳ đờng tròn nào .
- HS nắm đợc điều kiện để một tứ giác nội tiếp .


- HS sử dụng đợc tính chất của tứ giác nội tiếp trong làm tốn và thực hành
B. Chuẩn bị :


- GV và HS chuẩn bị : thớc , com pa , thớc đo góc . Bảng phụ H43,44/88; BT53/89
C.hoạt động dạy học :


H§1 KTBC : Phát biểu kết luận bài toán quỹ tích cung chứa góc . Các bớc giải bài toán dựng hình ; Các bớc
giải bài toán quỹ tích .


H2. Hình thành định nghĩa tứ giác nội tiếp
2.1 HS thảo luận làm ?1


2.2 GV nêu định nghĩa tứ giác nội tiếp sgk
3.3 HS hình 43,44/88


3.4 GV kết luận .GV kết luận khơng có đờng trịn
nào đi qua bn nh ca t giỏc MNPQ .


HĐ3. Hình thành chøng minh ®inh lý


3.1 HS nhận xét , tính tổng số đo hai góc đối trong
H43


3.2 GN nêu định lý


3.3 HS thảo luận làm ?2/88



H4 Phỏt biu v chứng minh định lý đảo
4.1 HS thành lập mệnh đề đảo của định lý và
chứng minh .


4.2 GV phát biểu định lý sgk/88


4.3 GV cùng HS phân tích chứng minh định lý :
- Các bớc chứng minh .


- Sử dụng định lý ?


1.Kh¸i niƯm tø gi¸c néi tiÕp
a)


O


C


D
A


B


b)




I
Q



I Q


N


P


M


N


P


M


*Định nghĩa : (sgk/88)
* Ví dụ :


2. Định lý : (sgk/88)


GT ABCD là tứ giác nội tiếp (O)
KL A + C = B + D = 1800


Chøng minh :
A = 1


2 s® BCD ; C =
1


2 s® BAD  A


+ C = 1


2 s® (BCD + BAD ) =
1


2 3600= 1800
T¬ng tù : B + D = 1800


3. Định lý đảo


GT Tứ giác ABCD : A + C = 1800
KL ABCD nội tip ng trũn tõm (O)


Chứng minh:(sgk/88)
<i><b>Năm học 2011 - 2012</b></i>


?1



</div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>

H§5. Cđng cè – híng dÉn :
1. HS làm BT 53 tại lớp .
2. GV hớng dẫn HS BT54/89


3. Về nhà HS học Định nghĩa , đ/l và cách chứng minh , làm BT54,55,56/89
_______________________________________________________


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 49</b>
<b>luyện tập.</b>



A.Mục tiêu :


- Ôn tập định nghĩa tứ giác nội tiếp
- Rèn kĩ năng chứng minh tứ giác nội tiếp


- Vận dụng định lý về tứ giác nội tiếp để giải các bài tốn liên quan .
B. Chuẩn bị :


B¶ng phơ vÏ h×nh 47,48sgk


C.hoạt động dạy học


</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>

tÝnh gãc


2.1 HS đọc đè bài và thảo luận hình vẽ cho biết
những gì .


2.2 Phat hiƯn gãc b»ng nhau trong hình vẽ
. ABCD là tứ giác nội tiếp  ?


. Liên hệ giữa các góc của tứ giác nội tiếp
với các góc đã biết


 cần phải tính góc nào thì tính đợc B , D
 đặt BCE = DCF = x


2.3 HS thay tæng ABC + ADC b»ng biÓu thøc
chøa x


2.4 HS tính x và tính các góc còn lại



HĐ3. Vận dụng kiến thức về tứ giác nội tiếp giải
bài toán chứng minh


3.1 HS tho lun : kt luận QR//ST cần có điều
gì ?  QRS = IST


3.2 HS th¶o luËn tìm cách chứng minh :
QRS = IST



QRS = QNI


QNI = IMP
IMP = IST


3.3 HS lần lợt chứng minh từng đẳng thức


3.4 HS vận dụng các kết luận để trình bày chứng
minh QS//ST


U
40


20 (
C


B


O



E


F


A <sub>D</sub>


Ta có : BCE = DCF ( hai góc đối đỉnh )
Đặt x = BCE = DCF


ABC = x + 400<sub> ; ADC = x + 20</sub>0<sub>(góc ngoài)</sub>
Lại có ABC +ADC =1800<sub>( tø gi¸c néi tiÕp )</sub>
 x+400<sub>+x+20</sub>0<sub> =180</sub>0<sub></sub><sub> 2x+60</sub>0<sub> =180</sub>0
2x = 1200<sub></sub><sub> x = 60</sub>0


Do đó : ABC = 600<sub> + 40</sub>0<sub> = 100</sub>0
ADC = 600<sub> + 20</sub>0<sub> = 80</sub>0




BCD = 1800<sub> – 60</sub>0<sub> = 120</sub>0
BAD = 1800<sub> – BCD = 180</sub>0<sub>-120</sub>0<sub> =60</sub>0
2. Bµi 60/90sgk


) <sub>D</sub>


I


P



Q


T
R


S


* QRS + QRI = 1800<sub> (hai gãc kÒ bï )</sub>
QNI + QRI = 1800<sub> ( ®/l tø gi¸c néi tiÕp )</sub>
 QRS = QNI (1)


* IST + IMT = 1800<sub> ( đ/l tứ giác nội tiếp )</sub>
IMP + IMT = 1800<sub> ( hai gãc kÒ bï )</sub>
 IST = IMP (2)


* QNI + INP = 1800<sub> ( hai gãc kÒ bï)</sub>
IMP + INP = 1800<sub> ( đ/l tứ giác nội tiếp )</sub>
QNI = IMP (3)


 Tõ (1),(2),(3) ta cã :
QRS = IST




QRS và IST là hai góc so le trong của QR và
ST . Do đó QR//ST .


H§5. Cđng cè –híng dÉn :


1. HS nhắc lại định nghĩa và các định lí về tứ giác nơị tiếp .



2. GV hớng dẫn HS làm các bài tập 57,58,59/90 sgk


___________________________________________________________


</div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23>

<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 50</b>


<b>Đ8 Đờng tròn ngoại tiếp . Đờng tròn nội tiếp</b>


A.Mục tiêu :


- HS hiểu đợc định nghĩa , khái niẹm , tính chất của địng trịn ngoại tiếp (nội tiếp) một đgiác .- HS biết bất
cứ đa giác đều nào cũng có một đờng trịn ngoại tiếp và một đqờng tròn nội tiếp .- HS biết vẽ tâm của đa giác
đều ( dó là tâm của đờng tròn ngoại tiếp , đồng thời là tâm của đờng trịn nội tiếp ) , từ đó vẽ đợc đờng tròn
ngoại tiếp và đờng tròn nội tiếp một đa giỏc u cho trc .


B. Chuẩn bị :


GV và HS chuẩn bị thớc thẳng , com pa , ê ke .


C.hoạt động dạy học


* HĐ1: Kiểm tra bài cũ : Phat biểu định nghĩa , các định lý về tứ giác nội tiếp .


HĐ2. Hình thành định nghĩa


2.1 GV giới thiệu đờng trịn ngoại tiếp hình vng
.



2.2 GV giới thiệu đờng trịn nội tiếp hình vng .


2.3 HS định nghĩa đờng tròn ngoại tiếp tứ giác và
đờng tròn nội tiếp tứ giác (sgk/91)


2.4 HS thùc hiÖn ?1 theo nhóm .


1. Định nghĩa




r


R


C
D


B
A


O


(O;R) ngoại tiếp hình vuông ABCD
(O;r) nội tiếp hình vuông ABCD
*Định nghĩa : (sgk/91)


</div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24>

H3. Gii thiu định lý



3.1 GV giới thiệu nội dung định lý sgk/91
3.2 GV giới thiệu tâm của đa giác đều .


H§ 4 Cđng cè


4.1 HS lµm theo nhãm BT61/91


b)


R


r


O D


C
B


A


F E


c) Tâm O cách đều các cạnh của lục giác đều vì O
cũng là tâm lục giác u


2. Định lý : ( sgk/91)


* Tõm a giỏc u trùng với tâm đờng trịn nội ngoại
tiếp đa giác



*Bµi 61/91sgk


2


C
D


B
A


O


H§5. Cđng cè –híng dÉn :


1. HS học thuộc định nghĩa đa giác nội tiếp , đa giác ngoại tiếp đờng tròn , định lý về đờng tròn nội
tiếp , đờng tròn ngoại tiếp đa giác .


2. HS tập vẽ tâm đờng tròn nội , ngoại tiếp đa giác .
3. Lm BT 62,63,64/91sgk .


_____________________________________________________________


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



</div>
<span class='text_page_counter'>(25)</span><div class='page_container' data-page=25>

<b>TiÕt 51</b>


<b>Đ9 độ dài đờng tròn , cung tròn</b>


<b> </b>
A.Mơc tiªu :



- HS nhớ cơng thức tính độ dài đờng trịn C = 2 <i>π</i> R ( hoặc C = <i>π</i> d )
- HS biết cách tính độ dài cung trịn .


-BiÕt sè <i></i> là gì .


- HS bit gii mt s bài toán thực tế ( dây cua-roa , đờng xoắn , kinh tuyến ,...)
B. Chuẩn bị :


GV vµ HS chuÈn bị thớc thẳng , com pa , ê ke , tấm bìa , sợi chỉ , kéo.
Bảng phụ phần d)/?1 ; ?2; BT 65 ; BT 67/65-66


C.hoạt động dạy học


* HĐ1: Kiểm tra bài cũ : Định nghĩa đờng tròn nội tiếp , đờng tròn ngoại tiếp đa giác. Tâm của đờng tròn nội
, ngoại tiếp đa giác .


HĐ2. Cách tính độ dài đ ờn trịn


2.1 GV cho S nhắc lại cách tính chu vi đờn trịn 
giới thiệu cơng thức tính C = 2 <i>π</i> R


hc C = <i></i> d .
2.2 HS thảo luận làm ?1
.Một HS lên bảng đièn
.Các HS nhận xét .
.GV kết luận sửa sai .


2.3 HS nªu nhËn xÐt vỊ sè tØ sè <i>C</i>



<i>d</i> và số <i>π</i>
HĐ3. Cách tính độ di cung trũn


3.1 HS thảo luận làm ?2


3.2 Các HS lần lợt lên bảng điền
3.3 Các HS nhận xét


3.4 GV kết luận nêu cơng thức tính độ dài cung trịn
.


1.Cơng thức tính độ dài đ ờng trịn
C = 2 <i>π</i> R


C = <i>π</i> d


<i>π</i>  3,14


Đờng tròn (o1) (o1) (o1) (o1) (o1)
Đờng kính (d)


di đờng tròn (C
)


<i>C</i>
<i>d</i>
* NhËn xÐt : <i>C</i>


<i>d</i> = <i>π</i>



2. Cơng thức tính độ dài cung trịn .


Đờng trịn bán kính R ( ứng vơí cung
3600<sub> ) có độ dài là C = 2</sub> <i><sub>π</sub></i> <sub>R</sub>


Vậy cung 10<sub> , bán kính R có độ dài là </sub>
2<i>πR</i>


360 =
<i>πR</i>
180


Suy ra cung n0<sub> , bán kính R có độ di l </sub>
<i>l</i>=<i></i>.<i>R</i>.n


180
Bài 65/94sgk


Bán kính R 10 40,8 21 6,2 21
Cung tròn n0 <sub>90</sub>0 <sub>50</sub>0 <sub>57</sub>0 <sub>41</sub>0 <sub>25</sub>0
Độ dài cung trßn l 15,7 35,6 20,8 4,4 9,2

?1



</div>
<span class='text_page_counter'>(26)</span><div class='page_container' data-page=26>

H§5. Cđng cè –híng dÉn :


- Nắm vững cơng thức tính độ dài đờng trịn, độ dài cung trịn.
- Lm BT 66, 67, 68, 69/ sgk .


<i><b>Ngày soạn: </b></i>

<i><b> Ngµy giảng:</b></i>




<b>Tiết 52</b>
<b>luyện tập </b>


A.Mục tiêu :


- Rèn kĩ năng vẽ hình .


- ễn tp cỏch tớnh chu vi đờng tròn và độ dài cung tròn .
- Vận dụng giải các bài toán liên quan đến độ dài cung tròn
B. Chuẩn bị :


GV và HS chuẩn bị thớc thẳng , com pa , ê ke độ .


C.hoạt động dạy học


* HĐ1: Kiểm tra bài cũ : Viết cơng thức tính độ dài đờng trịn bán kính R , độ dài cung trịn n0<sub> .Làm BT </sub>
70/95 hình 52 .


HĐ2. Hình thành kỹ năng vẽ hình và tính
chu vi đ ờng tròn .


2.1 HS nhận xét bài làm của bạn .
2.2 HS lên bảng làm với H53
2.3 HS lên bảng làm với H54


. Các HS nhận xét
.GV kết luận sửa sai
HĐ3. HS thảo luận làm BT71/96
3.1 HS thảo luận nêu cách vẽ



.2 HS nờu cỏch tính độ dài đờng xoắn ốc
. 1HS trình bày cách tính


. C¸c HS nhËn xÐt
. GV kÕt ln , bæ sung .


HĐ4. HS thảo luận làm BT72/96
4.1 HS đọc đề bài 72


4.2 GV : để tính góc AOB ta có thể
tính yếu tố nào tơng ứng .


4.3 HS tÝnh b¸n kÝnh OA


1. Bµi 70/95


Mỗi hình đều có chu vi bằng chu vi đờng trịn đờng kính 4
cm là :


C = <i>π</i>.<i>d</i> = 4 <i>π</i> ( cm )
2. Bµi 71/96


* Cách vẽ đờng xoắn :
- Vẽ hình vng ABCD


- Vẽ cung 900<sub> AE tâm B bán kính BA .</sub>
- Vẽ cung 900<sub> FE tâm C bán kính CE .</sub>
- Vẽ cung 900<sub> FG tâm D bán kính DF .</sub>
- Vẽ cung 900<sub> GH tâm A bán kính AG .</sub>
Độ dài đờng xoắn ốc là :



2<i>π</i>. 12


4 +


2<i>π</i>. 22


4 +


2<i></i>. 32


4 +


2<i></i>. 42
4
0,5<i></i>+<i></i>+1,5<i></i>+2<i></i>=5<i></i>
3. Bài72/96


Cách 1 :


Bỏn kớnh ng tròn bánh xe là


</div>
<span class='text_page_counter'>(27)</span><div class='page_container' data-page=27>

4.4 HS tÝnh sè ®o cña cung AB


4.5 HS tÝnh gãc AOB C = 2 <i>RR</i>=
<i>C</i>
2<i></i>=


540
2<i></i> =



270
<i></i>
Số đo góc AOB là :


<i>l</i>=<i>π</i>.<i>R</i>.n


180 <i>⇒n</i>=


<i>l</i>.180
<i>πR</i> =


200 . 180
<i>π</i>.270


<i>π</i>


=1330


C¸ch 2 :


3600<sub> øng víi 540 mm</sub>
x0<sub> øng víi 200 mm</sub>
 x = 360


0


.200


540 =133



0


VËy AB = 1330<sub> suy ra AOB = 133</sub>0
HĐ5. Củng cố hớng dẫn :


1. Nhắc lại cách tÝnh c , l , n.


2. GV híng dÉn HS làm BT73,74,75,76/96


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 53 </b>


<b>Đ10. diện tích hình tròn , hình quạt tròn</b>


A.Mục tiêu :


- HS nhớ công thức tính diện tích hình tròn S = <i><sub>πR</sub></i>2
- HS biÕt c¸ch tÝnh diƯn tÝch hình quạt tròn <i><sub>S</sub></i>=<i>R</i>


2<i><sub>n</sub></i>


360 hayS=
lR


2
- HS cú k nng vận dụng cơng thức đã học vào giải tốn .
B. Chun b :



GV và HS chuẩn bị thớc thẳng , com pa , ê ke
Bảng phụ ?;BT 82/99sgk


C.hot ng dạy học


* HĐ1: Kiểm tra bài cũ : Viết công thức tính chu vi đờng trịn , độ dài cung trịn n0
HĐ2. Cách tính diện tích hình trịn


2.1 HS nêu cơng thức tính diện tích hình trịn .
2.2 GV khẳng nh cụng thc tớnh din tớc hỡnh
trũn .


HĐ3. Cách tính diện tích hình quạt tròn
3.1 GV giới thiệu khái niệm hình quạt tròn
3.2 HS thực hiện ? sgk cách tính diện tích
hình quạt tròn .


.Các HS lần lợt lên bảng điền
. Các HS nhận xét .


1. c ông thức tính diện tích hình tròn .


2. C«ng thøc tÝnh diƯn tích hình quạt tròn
*Hình quạt tròn : (sgk/97)


_
R
_O



</div>
<span class='text_page_counter'>(28)</span><div class='page_container' data-page=28>

. GV kết luận công thức tính diện tích
hình quạt tròn .


HĐ4. Củng cố kiến thức
4.1 HS thảo luận làm BT82/99
. Các HS lần lợt lên điền bảng .
. HS khác nhận xét .


. GV kết luận .


4.2 HS hảo luận làm BT0/98


.HS nêu cách tính diện tích cỏ hai con dê ăn
theo cách buộc thứ nhất .


.HS nêu cách tính diện tích cỏ hai con dê ăn
theo cách buộc thứ hai .


. HS thực hiện tính diện tích cỏ hai con dê ăn
theo cả hai cách buộc .


. HS so sánh và kết luận bài toán .
. GV nhận xết sửa sai .




R
O


A



B


Hình tròn bán kính R ( øng víi cung 3600<sub>) cã </sub>
diƯn tÝch lµ : <i><sub>R</sub></i>2


Hình quạt tròn bán kính R , cung 10<sub> có diện tích là : </sub>
<i>R</i>2


360


Hình quạt tròn bán kÝnh R , cung n0<sub> cã diƯn tÝch lµ : </sub>
<i>πR</i>2<i>n</i>


360 =
<i>π</i>Rn
180 .
<i>R</i>
2=
lR


2 VËy Squ¹t = lR
2
* Bµi 82/990


Bán
kính
đ-ờng
trịn (R)
Độ dài


đờng
trịn (C)
Diện
tích
hình
trịn (S)
Số đo
của
cung
trịn
(n0<sub>)</sub>


DiƯn
tÝch
hình
quạt
tròn
cung
(n0<sub>)</sub>
2,1 cm 13,2 cm 13,8


cm2


47,50 <sub>1,83 </sub>
cm2
2,5 cm 15,7 cm 19,6


cm2 229,6


0 <sub>12,50 </sub>


cm2
3,5 cm 22 cm 37,80


cm2


1010 <sub>10,60 </sub>
cm2
* Bµi 80/98


. Theo cách buộc thứ nhất thì diện tích co dàn cho mỗi
con dê bằng nhau , mỗi diện tích là 1


4 hình tròn bán
kính 20 cm


1


4 <i></i> .202 = 100 <i></i> (m2)
Cả hai diện tích là : 200 <i>π</i> (m2<sub>) (1)</sub>


. Theo c¸ch buéc thø hai thì diện tích cỏ dành cho con
dê buộc ë A lµ :


1


4 <i>π</i> .302 =
1


4 900 <i>π</i> (m2)
Diện tích cỏ dành cho con dê buộc ở B lµ :



1


4 <i>π</i> .102 =
1


4 100 <i>π</i> (m2)
DiƯn tÝch cỏ dành cho cả hai con là :


1


4 900 <i></i> +
1


4 100 <i>π</i> = 250 <i>π</i> (m2) (2)
So sánh (1) và (2) ta thấy : Cách buộc thứ hai thì diện
tích cỏ hai con dê có thể ăn lớn hơn 1


4 100 <i></i> .


HĐ5. Củng cố hớng dẫn :


1. HS nhắc lại công thức tính diện tích hình tròn , diện tích hình quạt tròn n0<sub> .</sub>
2. GV hớng dẫn HS về nhà làm BT 77,78,79,81/98-99sgk


<i><b>Năm học 2011 - 2012</b></i>


</div>
<span class='text_page_counter'>(29)</span><div class='page_container' data-page=29>

<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 54</b>



<b>Luyyện tập </b>


A.Mục tiêu :


- HS ôn tập công thức tính diện tích hình tròn S = <i><sub>R</sub></i>2 <sub>, diện tích hình quạt trßn </sub> <i><sub>S</sub></i><sub>=</sub><i>πR</i>2<i>n</i>


360 hayS=
lR


2
- HS rèn kĩ năng vận dụng cơng thức đã học vào giải tốn .


B. Chn bÞ :


GV và HS chuẩn bị thớc thẳng , com pa , ê ke
Bảng phụ vẽ các hình 62,63,64,65/99-100


C.hot ng dy hc


* HĐ1: Kiểm tra bài cũ : Viết công thức tính diện tích hình tròn , diện tích hình quạt tròn . Làm BT 83/99
HĐ2. Vận dụng công tức tính diện tích hình tròn


2.1HS nhn xột hỡnh v v nêu cách vẽ .
GV khẳng định các bớc vẽ .


2.2 HS thảo luận nêu cách tính diện tích hình
HOABINH. GV cùng HS trình bày .


2.3 HS thảo luận nêu cách làm phần c)



*HS trỡnh by cỏc tớnh din tớch hỡnh trũn ng kớnh
NA


HĐ3Vận dụng công thức tính diện tích hình quạt
tròn .


1. Bài tập 83/99


a)


Vẽ đoạn thẳng HI = 10 cm . Xác định OB thuộc HI
:HO = BI = 2 cm .


Trên nửa mp (I ) bờ HI vẽ các nửa đờng trịn dờng
kính HO , BI , HI .


Trên nửa mp (II ) bờ HI vẽ các nửa đờng trịn dờng
kính OB .


b) DiƯn tích hình HOABINH là :
<i></i>52


2 +
<i></i>32


2 <i></i>


<i></i>22



2 <i></i>


<i></i>22


2 = 16 <i>π</i> ( cm
2<sub>)</sub>
c) Diện tích hình trịn đờng kính NA bằng :


<i>π</i> .42<sub> = 16 </sub> <i>π</i> <sub> ( cm</sub>2<sub>)</sub>


So sánh (1) và (2) ta thấy hình trịn đờng kính NA
có cùng diện tích với hình HOABINH .


</div>
<span class='text_page_counter'>(30)</span><div class='page_container' data-page=30>

3.1 GV giới thiệu hình viên phân .


3.2 HS thảo luận nêu cách tính S hình viên phân .


3.3 HS trình bày cách tính S hình viên phân


3.4Các HS nhận xét ,GV sửa sai .




. AOB là tam giác đều có cạnh R = 5,1 cm .Ta có :
SOAB = <i>R</i>


2


3



4


.Diện tích hình quạt tròn AOB là :
<i>R</i>2<sub>. 60</sub>0


3600 =


<i>R</i>2


6
Diện tích hình viên phân là :


<i></i>.<i>R</i>2


6 <i></i>


<i>R</i>2


3


4 =<i>R</i>


2


(<i></i>
6<i></i>


3


4 )<i>≈</i>2,4 (cm


2<sub>)</sub>
H§5. Cđng cè –híng dÉn :


1. HS nhắc lại công thức tính diện tích hình tròn , diện tích hình quạt tròn n0<sub> .</sub>
2. GV giới thiệu hình vành khăn và hớng dẫn HS về nhà làm BT 84,86,87/100
3. HS học và làm phần ôn tập chơng ( lí thuyết ) sgk/ 100-103


Vận dụng làm các BT88-99/103-105sgk .


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 55</b>
<b>ôn tập chơng III</b>


A.Mục tiêu :


- Ôn tập hệ thống hoá kiến thức của chơng
- Vận dụng kiến thức vào giải toán .


<i><b>Năm học 2011 - 2012</b></i>


_m
_B
_O


</div>
<span class='text_page_counter'>(31)</span><div class='page_container' data-page=31>

B. Chuẩn bị :


1. Bảng phụ vẽ hình 66-71/104 sgk .


2. HS chuẩn bị đề cơng ôn tập , giải các bài tập .



C.hoạt động dạy học


* HĐ1: Kiểm tra bài cũ : GV kiểm tra việc chẩn bị đè cơng ôn tập của HS
* HĐ2: Rèn kỹ năng đọc và vẽ hỡnh


2.1 Một HS làm bài 88/103 , các HS nhận xét , GV kết luận
2.2 5HS lần lựot làm các phần BT89/104


. Các HS nhận xét , bổ xung tõng phÇn .
. GV nhËn xÐt , sưa sai .


2.3 . HS1 vẽ hình vuông , nêu cách vẽ BT 90/104


. HS2 Vẽ đờng trịn ngoại tiếp hình vng đó và nêu cách vẽ
. HS3 Vẽ đờng trịn nội tiếp hình vng và nêui cách vẽ
* HĐ3 : Rèn kĩ năng tính các đại l ợng


3.1. HS1. Nêu và thực hiện cách tính số đo cung ApB bài tập91/104
. HS2 Nêu và thực hiện tính độ dài cung AqB và ApB .
. HS3. Nêu và thực hiện tính diện tích hình quạt trũn OAqB


3.2. 3 HS , mỗi HS nêu cách tính và thực hiện cách tính với mỗi hình69, 70, 71 BT92
. C¸c HS nhËn xÐt , GV kÕt luËn .


3.3 . HS th¶o luËn và trả lơì từng phần BT94/105
. C¸c HS kh¸c nhËn xÐt , bæ xung
. GV kÕt ln , sưa sai .


*H§4 . VËn dơng , rèn kĩ năng chứng minh :


4.1 HS1 vẽ hình ghi GT vµ KL bµi tËp 95/105sgk


B'
A'
H


O E


A


B C


D


4.2 HS thảo luận , trình bày chứng minh từng phần , GV kÕt luËn , söa sai .


a. Chøng minh CE = CD


s® AA'B = sdAB+sdCD


2 ( góc có đỉnh nằm trong đờng trịn )
sđ AB'B = sdAB+sdCE


2 ( góc có đỉnh nằm trong đờng tròn )
Mà AA'B = AB'B = 1v ( ADBC tại A' ; BE AC tại B' )
Suy ra : CD = CE  CD = CE ( liên hệ giữa cung và dây )
b. Chứng minh  BHD cân .


EBC = 1



2 s® CE (gãc néi tiÕp )
DBC = 1


2 s® CD (gãc néi tiÕp )  EBC = DBC BC là phân giác DBH (1)
CE = CD (cmt)


AD  BC tại A'  BC là đờng cao (2)


Từ (1) và (2) ta có :  BDH cân tại đỉnh B ( T/c tam giác cân )
c. Chứng minh CH = CD


BHD cân tại đỉnh B (cmt)


</div>
<span class='text_page_counter'>(32)</span><div class='page_container' data-page=32>

4.4 GV híng dÉn HS lµm BT 99/105 . Chú các bớc trình bày bài toán dựng hình .
H§5. Cđng cè –híng dÉn :


1. GV hớng dẫn HS làm các BT còn lại 97,98/105sgk .
2. HS về nhà học lại các bài đã chữa , làm các BT cũn li .


3. HS ôn kỹ lý thuyết và các dạng BT chuẩn bị kiểm tra chơng III .


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 56</b>
<b>ôn tập chơng III</b>


A.Mục tiêu

:



- Ôn tập hệ thống hoá kiến thức của chơng


- Vận dụng kiến thức vào giải toán .




B.

Chuẩn bị

:



1. Bảng phụ vẽ hình 66-71/104 sgk .



2. HS chuẩn bị đề cơng ôn tập , giải các bài tập .



C.

hoạt động dạy học



* HĐ1: Kiểm tra bài cũ : GV kiểm tra việc chẩn bị đè cơng ôn tập của HS


* HĐ2: Rèn kỹ năng đọc và v hỡnh



2.1 Một HS làm bài 88/103 , các HS nhËn xÐt , GV kÕt luËn


2.2 5HS lÇn lùot làm các phần BT89/104



. Các HS nhận xét , bổ xung tõng phÇn .


. GV nhËn xÐt , sưa sai .



2.3 . HS1 vẽ hình vuông , nêu cách vẽ BT 90/104



. HS2 Vẽ đờng trịn ngoại tiếp hình vng đó và nêu cách vẽ


. HS3 Vẽ đờng trịn nội tiếp hình vng và nêui cách vẽ


* HĐ3 : Rèn kĩ năng tính các đại l

ng



3.1. HS1. Nêu và thực hiện cách tính số đo cung ApB bµi tËp91/104



</div>
<span class='text_page_counter'>(33)</span><div class='page_container' data-page=33>

. HS2 Nêu và thực hiện tính độ dài cung AqB và ApB .


. HS3. Nêu và thực hiện tính din tớch hỡnh qut trũn OAqB



3.2. 3 HS , mỗi HS nêu cách tính và thực hiện cách tính với mỗi hình69, 70, 71 BT92



. C¸c HS nhËn xÐt , GV kÕt luËn .



3.3 . HS thảo luận và trả lơì từng phần BT94/105


. C¸c HS kh¸c nhËn xÐt , bỉ xung


. GV kÕt luËn , söa sai .



*HĐ4 . Vận dụng , rèn kĩ năng chứng minh :


4.1 HS1 vẽ hình ghi GT và KL bài tập 95/105sgk



B'
A'
H


O E


A


B C


D


4.2 HS thảo luận , trình bày chứng minh tõng phÇn , GV kÕt ln , sưa sai .


a. Chøng minh CE = CD



s® AA'B =

sdAB+sdCD


2

( góc có đỉnh nằm trong đờng trịn )



s® AB'B =

sdAB+sdCE



2

( góc có đỉnh nằm trong đờng trịn )



Mµ AA'B = AB'B = 1v ( AD

BC t¹i A' ; BE

AC t¹i B' )


Suy ra : CD = CE

CD = CE ( liªn hƯ giữa cung và dây )


b. Chứng minh

BHD cân

.



EBC =

1


2

sđ CE (gãc néi tiÕp )



DBC =

1


2

s® CD (gãc néi tiÕp )

EBC = DBC

BC là phân giác DBH



(1)



CE = CD (cmt)



AD

BC tại A'

BC là đờng cao (2)



Từ (1) và (2) ta có :

BDH cân tại đỉnh B ( T/c tam giác cân )


c. Chứng minh CH = CD



BHD cân tại đỉnh B (cmt)



BC là đờng cao , phân giác

BC là trung trực của DH


Do đó CH = CD ( T/c đờng trung trực )



4.3 T¬ng tù GV cïng HS lµm BT96/105




4.4 GV híng dÉn HS lµm BT 99/105 . Chú các bớc trình bày bài toán dựng hình .



HĐ5

. Củng cố h

ớng dẫn :



1. GV hng dn HS làm các BT còn lại 97,98/105sgk .


2. HS về nhà học lại các bài đã chữa , làm các BT cũn li .



</div>
<span class='text_page_counter'>(34)</span><div class='page_container' data-page=34>

<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 57 </b>


<b>kiểm tra chơng</b>

<b> III </b>



A.Trắc nghiệm( 4 điểm )


<i><b>Khoanh trịn chữ cái trớc kết qủa đúng:</b></i>


<b>Câu 1:</b> Cho hình vẽ, biết AD là đờng kính của đờng trịn (O) <i><b>Hình vẽ câu 1</b></i>


 0


ACB50 <sub>, sè ®o gãc x b»ng:</sub>


A. 500 <sub>B. 45</sub>0 <sub>C. 40</sub>0 <sub>D. 30</sub>0


<b>Câu 2:</b> Cho (O,R), sđ AmB 1200. Diện tích hình quạt tròn OAmB bằng:
2 R
A.
3


B
2
R
.
6


2
R
C.
4


2
R
D.
3


<b>Câu3:</b> Điền vào chỗ chấm (...) để đợc lời giải đúng: <i><b>Hình vẽ câu 2</b></i>
Cho (O), ACB 350. Tính số đo của cung lớn AB.


Ta cã


 1 


ACB s®AmB
2





(góc nội tiếp) do đó sđ AmB =...
Mà sđACB ... sđAmB  3600 700 2900 <i><b>Hình vẽ câu 3</b></i>
Vậy số đo AB lớn 2900


<b>Câu 4:</b> Điền đúng (Đ) hoặc sai (S) vào ô trống:


Tứ giác ABCD nội tiếp đợc trong đờng trịn nếu có một trong các điều kiện:


  0   0   0   0


A. DAB=DCB=90 B. ABC=CDA=180 C. DAC=DBC=60 D. DAB=DCB=60


<b>Câu 5:</b> Cho hình vẽ , biết AOB = 600<sub> , BFC = 40</sub>0<sub> </sub>
a) Sè ®o ACB b»ng :
A. 600 <sub>B. 40</sub>0 <sub>C.30</sub>0 <sub>D. 20</sub>0
b) Sè ®o ABt b»ng :


A. 200 <sub>B. 30</sub>0 <sub>C. 40</sub>0 <sub>D. 60</sub>0
c) Sè ®o AKF b»ng :


A. 200 <sub>B. 30</sub>0 <sub>C. 60</sub>0 <sub>D. 80</sub>0
d) Sè ®o AMB b»ng :


A. 200 <sub>B. 30</sub>0 <sub>C. 60</sub>0 <sub>D. 80</sub>0
B.Tù ln (6 ®iĨm )


<b>Bài 1: </b>Cho 3 điểm A,B,C thẳng hàng ( B thuộc đoạn AC ). Đờng tròn (O) đi qua B và C, đờng kính DE vng
góc với BC tại K, AD cắt (O) tại F, EF cắt AC tại I.



a. Chøng minh tø gi¸c DFIK néi tiÕp.


b. Gọi H là điểm đối xứng với I qua K. Chứng minh góc DHA = góc DEA.
c. Chứng minh AB. AC = AF.AD = AI.AK.


<i><b>Bµi 2: </b></i>TÝnh diƯn tÝch hình gạch sọc trong hình vẽ sau: <i><b>Hình vẽ bài 2</b></i>


C. Đáp án - Biểu điểm



A.Trắc nghiệm ( 4 điểm )


Câu 1 Câu 2 Câu 3 Câu 4


C D 700<sub>; 360</sub>0 <sub>Đ; S; Đ; S</sub>


Mi cõu ỳng c 0,5 im .


<b>Câu5 </b> (2 điểm ):


<i><b>Năm häc 2011 - 2012</b></i>


A
O m

B
A
O
350
B
C



R=2cm

r =1,5cm
C
O


</div>
<span class='text_page_counter'>(35)</span><div class='page_container' data-page=35>

a b c d


C B A D


Mỗi câu đúng đợc 0, 5 điểm
B. Tự luận ( 6 điểm )


Bài 1 : (4 điểm )


- Hình vẽ : 0,5 điểm


a) Chứng minh tứ giác DFIK néi tiÕp: 1 ®iĨm


- Do BC  DE => DKI = 90 . DFE = 90 0  0 ( góc nội tiếp chắn nửa
đờng trịn (O)) => tứ giác DKIF nội tiếp đờng trịn đờng kính DI
b) ( 1 điểm) DI cắt (O) tại M => DM  ME ( do DME là góc nội tiếp
chắn nửa đờng tròn (O)). Mặt khác do I là trực tâm ADE =>


DMAE. VËy M chính là giao điểm của AE và (O). =>


1 


sdDEM = sd MFD



2 <sub>( gãc n«i tiÕp). (1).</sub>


Goi giao điểm của DH và (O) là N => ME = NE ; MB = CN   
( tính chất đối xứng của đờng trịn ).




 <sub></sub>sdDB sdCN sdDB sdBM sdDFM   <sub></sub>    <sub></sub> 

<sub> </sub>



DHA 2


2 2 2 <sub>. Từ (1) và (2) => </sub><sub>DHA = DEA</sub> 
c) C/ minh đợc AFC ~ ABD (g.g) =>


  


AF AC


AB.AC AF.AD


AB AD <sub> </sub>
C/ minh đợc AFI ~ AKD (g.g) =>


 


AF AI <sub>AD.AF AI.AK</sub>


AK AD



Bài 2: ( 2 điểm)


Diện tích hình vành khăn bằng diện tích hình tròn lớn trừ diện tích hình tròn nhỏ.




2 2 2 2 2


S = R  r  2 1, 5 1, 75 cm


<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



Chơng IV :

hình trụ - hình nón - hình cầu


<b>Tiết 58</b>


<b>Hình trụ .diện tích xung quanh hình trụ</b>



A.Mục tiêu

:



- HS nhớ lạ và khắc sâu các khấi niệm về hình trụ ( đáy , trục , mặt xung quanh , đờng sinh ,


độ dài đờng cao , mặt cắt khi nó song song với trục hoặc song song vi ỏy ) .



- Nắm chắc và sử dụng thành thạo công thức tính diện tích xung quanh , diện tích toàn phần


hình trụ .



- Nắm chắc và sử dụng thành thạo công thức tính thể tích hình trụ .


B.

Chuẩn bị

:



GV : Tranh vẽ các hình 73

78/109 ; b¶ng phơ ?3 ,H79/110




K


F


I


M


A C


O


B


D


E
H


N


</div>
<span class='text_page_counter'>(36)</span><div class='page_container' data-page=36>

C.

hoạt động dạy học



HĐ1: Khắc sâu các kái niệm về hình trụ


1.1 GV sử dụng dụng cụ dạy học để giúp HS


nhớ lại các khái niệm : đáy hình trụ , trục ,


mặt xung quanh , đờng sinh , độ dài đờng


cao .



1.2 HS th¶o luËn làm ?1



. Các HS lần lợt trả lời


. GV nhận xét , kết luận



HĐ2 Giới thiệu khái niệm mặt cắt



2.1 GV gii thiu hai trng hp c biệt mặt


cắt .( H75 sgk)



2.2 HS th¶o luËn tr¶ lêi ?2



HĐ3. Hình thành công thức tính diện tích


xung quanh



3.1 GV giíi thiƯu H77



3.2 HS làm ?3 đới sự hớng dẫn của GV


3.3 HS thảo luận điền vào ô trng



3.4 HS nêu cách tính diện tích xung quanh


hình trụ



3.5 HS nêu cách tính diện tích toàn phần


hình trụ



HĐ4. Nhắc lại - Vận dụng công thức tính


thĨ tÝch h×nh trơ



1. H×nh trơ



* Hai đáy hình trụ :



(D:DA) ; (C:CB)


*Trục hình trụ : DC


* AB,EF : đờng sinh


*Độ dài đờng cao :


độ dài AB , EF



*AB quét nên mặt xung


quanh hình trụ



ỏy hỡnh tr : đáy và nắp lọ gốm


Mặt xung quanh : thành lọ gốm


Đờng sinh : đờng kẻ dọc lọ gốm


2. Cắt hình trụ bởi một mặt phẳng :



* Cắt hình trụ bởi một mp song song với đáy


ta đợc một hình trịn bằng đáy .



* Cắt hình trụ bởi một mp song song với trục


ta đợc hình chữ nht .



> Măt nớc trong cốc thuỷ tinh là


hình tròn



> Măt nớc trong ống nghiệm nằm


nghiêng không phải là hình tròn



3. Diện tích xung quanh h×nh trơ



- Chiều dài của hình chữ nhật bằng


chu vi đáy hình trụ và bằng 10

<i>π</i>

(cm)




- DiƯn tÝch h×nh ch÷ nhËt :


10. 10

<i>π</i>

= 100

<i>π</i>

(cm

2

<sub>)</sub>



- Diện tích một đáy hình trụ :



<i>π</i>

.5.5 = 25

<i>π</i>

(cm

2

<sub>)</sub>



- Tổng diện tích hình chữ nhật và diện tích


hai hình trịn đáy ( diện tích tồn phần) của


hình trụ : 100

<i>π</i>

+ 25

<i>π</i>

.2 = 150

<i>π</i>


(cm

2

<sub>)</sub>



S

xq

= 2

<i>π</i>

rh ; S

tp

= 2

<i>π</i>

rh + 2

<i>π</i>


r

2


4. ThĨ tÝch h×nh trơ



V = S.h =

<i></i>

r

2

<sub>.h</sub>



<i><b>Năm học 2011 - 2012</b></i>

?2



?3



</div>
<span class='text_page_counter'>(37)</span><div class='page_container' data-page=37>

4.1 HS nhắc lại công thức tính thể tích hình


trụ .




4.2 GV và HS vận dụng công thức tính làm


VD



S : Din tớch ỏy hình trịn


h : Chiều cao hình trụ


VD : sgk/109



HĐ5

. Củng cố h

ớng dẫn :



1. HS thảo luận làm BT 1

4/110 sgk



2. Thành thạo công thức tính

S

xq

, V , S

tp của

hình trụ và vận dụng .



3. Làm các BT 5,6,7/116 sgk



__________________________________________



<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 59</b>


<b> Luyện tập</b>



A.Mục tiêu

:



- Ôn tập các khái niệm về hình trụ , công thức tính diện tích xung quanh , diện tích toàn


phần , thể tích hình trụ .



- Vận dụng công thức giải các bài toán thực tế .


B.

Chuẩn bị

:




Bảng phụ BT 8,9,12/111-112



C.

hot ng dy hc



*

<b>HĐ1: Kiểm tra bài cũ</b>

<b> </b>

: HS viÕt c«ng thøc tÝnh

<i>S</i><sub>xq</sub>

,

<i>S</i><sub>tp</sub><i><sub>,</sub></i>

, V hình trụ và làm BT8/116



<b>HĐ2 . Vận dụng các công </b>


<b>thức tính </b>

<i>S</i>xq

<b>,</b>

<i>S</i>tp<i>,</i>

, V



hình trụ



2.1 HS nhận xét bài của bạn


GV kết luận , sửa sai



2.2 HS thảo luận làm


BT9/112



. 1 HS lên bảng điền vào


các ô trống .



. C¸c HS nhËn xÐt


. GV kÕt ln , sưa sai .


2.3 HS thảo luận làm BT


12/112



. Các HS lần lợt lên bảng


điền vào ô trống



1. Bài 8/111




V

1

=

<i>π</i>.<i>a</i>2.2<i>a</i>=2<i>π</i>.<i>a</i>3


V

2

=

2<i>a</i>¿


2


.<i>a</i>=4<i>π</i>.<i>a</i>3
<i>π</i>.¿


VËy V

2

= 2V

1

Chän C



2. Bµi 9/112



Diện tích đáy là :

<i>π</i>. 10 .10=100<i>π</i>(cm2)


DiƯn tÝch xung quanh lµ :

(2.

<i>π</i>. 10¿.12=240<i>π</i>(cm2)


DiƯn tích toàn phần là : 100

<i></i>. 2+240<i></i>=440<i></i>


</div>
<span class='text_page_counter'>(38)</span><div class='page_container' data-page=38>

. GV kÕt ln , sưa sai


* H§3VËn dơng giải toán


thực tế



3.1 HS thảo luận làm


BT11/112



3.2 1HS trình bày cách tính


thể tích tợng đá




3.3 GV kết luận


3.4 HS thảo luận làm


BT13/142



.1 HS nêu cách tính


. 1HS thực hiện cách


tính



. GV kÕt ln



Hình


Bán
kính
đáy
Đờng
kính
đáy
Chiều
cao
Chu
vi
đáy
Diện
tích
đáy
Diện
tích
xung
quanh
Thể

tích
25m
m


5cm 7cm 15,


7c
m
19,6
3cm
2
109,9
cm2
137
,38
cm2


3cm 6cm 1cm 18,


84c
m
28,2
6cm
2
1884c
m2
28,
26c
m2



5cm 10cm 12,74


cm
31,
4c
m
78,5
cm2
400c
m2
1lÝt

4.Bµi 11/112



Thể tích tợng đá bằng thể tích nớc dâng lên là :


8,5 mm = 0,85 cm



V = 12,8.0,85 = 10,88 (cm

2

<sub> )</sub>



5.Bài 13/13



Đờng kính mũi khoan là 8 mm

bán kính mũi khoan là 4


mm



Tấm km loại dày 2cm = 20 mm chính là chiều cao hình trụ


lỗ khoan .



Thể tích tấm kim loại là : 50.50.20 = 50000 (mm

3

<sub>) = 50 </sub>



( cm

3

<sub>)</sub>




Thể tích 4 lỗ khoan là : 4.

<i></i>. 42. 20=4<i>,02</i>(cm3)


Thẻ tích phần còn lại là : 50 - 4,02 = 45,98 ( cm

3

<sub>)</sub>



HĐ5

. Củng cố h

ớng dẫn :



1.

Các công thức tính

<i>S</i><sub>xq</sub>

,

<i>S</i><sub>tp</sub><i><sub>,</sub></i>

, V h×nh trơ .


2. Híng dÉn HS làm các BT 10,14/18



___________________________________________



<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 60</b>


</div>
<span class='text_page_counter'>(39)</span><div class='page_container' data-page=39>

<b>Đ</b>

<b>2</b>

<b> Hình nón-hình nón cụt.diện tích và thể</b>


<b>tích của hình nón ,hình nón cụt</b>



A.Mục tiêu

:



- HS nhớ và khắc sâu các khái niệm về hình nón : đáy của hình nón , mặt xungquanh , đờng


sinh, chiều cao , mặt cắt song song với đáy và có khái niệm về hình nón cụt .



- Nắm chắc và sử dụng thành thạo công thức tính diện tích xung quanh và diện tích toàn phần


hình nón , hình nón cụt .



- Nắm chắc và sử dụng thành thạo công thức tính thể tích hình nón , hình nón cụt .


B.

Chuẩn bị

:



Thit b biu diễn hình nón , hình 86, 89,90/113-115sgk




C.

hoạt động dạy học



* HĐ1:

<b>Kiểm tra bài cũ</b>

<b> </b>

: HS viết công thøc tÝnh

<i>S</i><sub>xq</sub>

,

<i>S</i><sub>tp</sub><i><sub>,</sub></i>

, V h×nh trụ


HĐ2 Nhớ lại , khắc sâu

<b>các khái niệm về </b>



<b>h×nh nãn </b>



2.1 GV sử dụng thiết bị dạy học để nmơ tả


cách tạo ra hình nón



2.HS nhớ lại các khái niệm đáy , mặt xung


quanh , đờng sinh , chiều cao hình nón


2.HS thảo luận làm ?1



* HĐ3 Hình thành tính diện tích xung quanh


của hình nón



3.1 GV giới thiệu với HS quá trình hình


thành công thức tính diện tích xung quanh


và diện tích toàn phần hình nón .



3.2 HS cùng GV làm VD



HĐ4 Hình thành thể tích hình nón



GV cùng HS tiến hµnh thùc nghiƯm rót ra


kÕt ln

<i>V</i><sub>no</sub><i><sub>' n</sub></i>=1


3<i>V</i>tr<i>u</i>



.


<i>V</i>=1


3<i></i>.<i>r</i>


2


<i>h</i>


HĐ5 Hình thành khái niệm hình nón cụt


5.1 GV giới thiệu khái niệm hình nón cụt


sgk/116



5.2 HS lấy VD hình nón cụt trong thực tế



HĐ6 Hình thành công thức tính diện tích


xung quanh và thể tích hình nón cụt



1. Hình nón



Đáy hình nón : (0;OC)


Đờng sinh : AD,AC


Đỉnh hình nón : A


Đờng cao : AO



( thực tế )



2. DiƯn tÝch xung quanh h×nh nãn



DiƯn tÝch xung quanh :

<i>S</i><sub>xq</sub>=<i></i>.<i>r</i>.l


Diện tích toàn phần :

<i>S</i>tp=<i></i>.r.l+<i></i>.r
2


*VD : sgk/115



3. ThĨ tÝch h×nh nãn



<i>V</i>no<i>' n</i>=


1
3<i>π</i>.r


2


<i>h</i>


4.H×nh nãn cơt (sgk/116)



5.DiƯn tÝch xung quanh và thể tích hình nón


cụt :

<i>S</i>xq=<i></i>(<i>r</i>1+<i>r</i>2)<i>l</i>


l
r
2


h
r
1



<b>O</b> <b>D</b>


<b>C</b>


<b>A</b>


</div>
<span class='text_page_counter'>(40)</span><div class='page_container' data-page=40>

*HS làm tại lớp BT15,16/117

<i><sub>V</sub></i>


=1


3<i></i>.h.(<i>r</i>1
2


+<i>r</i><sub>2</sub>2+<i>r</i><sub>1</sub><i>r</i><sub>2</sub>)


HĐ5

. Củng cố h

ớng dẫn :



1.

Các yếu tố hình nón, hình nón cụt, vẽ hình nón ,hình nón cụt



2.Công thức tÝnh

<i>S</i>xq<i>;S</i>tp<i>;V</i>

h×nh nãn , h×nh nãn cơt ; làm BT



17-22/117-upload.123doc.net



________________________________________________



<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 61</b>



<b> Luyện tập</b>



A.Mục tiêu

:



- Ôn tập các khái niệm hình nón : đáy của hình nón , mặt xungquanh , đờng sinh, chiều cao ,


mặt cắt , hình nún ct .



- Vận dụng sử dụng thành thạo công thøc tÝnh

<i>S</i><sub>xq</sub><i>;S</i><sub>tp</sub><i>;V</i>

h×nh nãn , h×nh nãn cơt vào giải


các bài toán .



B.

Chuẩn bị

:



Bảng phụ BT 24,26/124



C.

hot ng dy hc



* HĐ1:

<b>Kiểm tra bài cũ</b>

<b> </b>

:



Vẽ hình nón , chỉ rõ đáy , mặt xung quanh, đờng sinh , chiều cao,


Viết cơng thức tính

<i>S</i><sub>xq</sub><i>;S</i><sub>tp</sub><i>;V</i>

hỡnh nún



HĐ2 Vận dụng

<b> giải các bài toán</b>



2.1 HS thảo luận làm BT23/119



1. Bài 23/146



</div>
<span class='text_page_counter'>(41)</span><div class='page_container' data-page=41>

. HS nêu cách tính diện tích hình quạt


.HS nêu cách tính diện tích xung


quanh hình nón




.HS so sánh diện tích hình quạt và


diện tích hình nón

quan hệ giữa r


và l



. HS sử dụng tỉ số lợng giác góc


nhọn tính

<i></i>


2.2 HS tho lun làm BT24/119


. HS nêu cách tính độ dài cung AB



của đờng trịn chứa hình quạt



.HS nêu cách tính chu vi đáy hình

quạt


. HS so sán độ dài cung AB và chu vi đáy


hình quạt

r



.HS thảo luận nêu cách tính tg

<i>α</i>

chọn đáp án ỳng .



2.3 HS thảo luận làm BT25/119



. HS nêu cách tính diện tích xung

quanh


hình nón cụt



2.4HS thảo luận làm BT26/119



.HS lần lợt lên bảng điền vào bảng


phụ




.Các HS nhận xét


. GV kết luận .



S

Quạt

=

<i>l</i>


2


4

; S

xq

=

<i>π</i>.r.l


S

Qu¹t

= S

xq

<i>πl</i>


2


4 =<i>π</i>.<i>r</i>.l

<i>r</i>=
<i>l</i>
4


SAO cã : SAO = 1v



sin

<i>α</i>=<i>r</i>
<i>l</i>=


1


4<i>⇒α</i>=14


0<sub>28</sub><i><sub>'</sub></i>


2.Bµi 24/119




Độ dài cung AB là :


l =

<i></i>.<i>r</i>.n


180 =


<i></i>. 16 .120


180 =


32<i>π</i>
3


Chu vi đáy hình quạt


C = 2

<i>π</i>.<i>r</i>


V× l = C

2

<i>π</i>.<i>r</i>

=

32<i>π</i>


3

r =


16


3


SAO cã : SOA = 1v



SO=

162<i>−</i>

(

16
3

)



2


=32


3

2


tg

<i>α</i>=16
3 :


32
3

2=


2


4


Chän A


3.Bµi 25/124



Diện tích xung quanh hình nón cụt có hai


bán kính đáy là a,b và độ dài đờng sinh l


(a,b,l có cùng đơn vị đo ) là : S

xq

=

<i>π</i>.(<i>a</i>+<i>b</i>)<i>l</i>


(đơn vị dện tích)


4. Bài 26/119



</div>
<span class='text_page_counter'>(42)</span><div class='page_container' data-page=42>

1.

HS nhắc lại công thức tính

<i>S</i><sub>xq</sub><i>;S</i><sub>tp</sub><i>;V</i>

h×nh nãn , h×nh nãn cơt


2. GV híng dÉn HS làm BT27,28,29/120



3. HS về nhà ôn lại công thức tính

<i>S</i><sub>xq</sub><i>;S</i><sub>tp</sub><i>;V</i>

hình trụ ,hình nón , hình nón cụt



<i><b>Ngày so¹n: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 62</b>



<b> Hình cầu.diện tích mặt</b>


<b>cầu và thể tích hình cầu</b>



A.Mục tiêu

:



- HS nhở lại và nắm chắc các khái niệm của hình cầu : tâm , bán kính , đờng kính , đờng tròn


lớn , mặt cầu.



- Vận dụng thành thạo cơng thức tính diện tích mặt cầu và cơng thức tính thể trích hình cầu


- Thấy đợc các ứng dụng của các công thức trên trong đời sốn thực t .



B.

Chuẩn bị

:



GV chuẩn bị thiết bị dạy học là tay quay gắn nửa hình tròn , bảng phụ H103-106/121-123



C.

hot ng dy hc



* HĐ1: Kiểm tra bài cũ : HS viết công thức tính

<i>S</i><sub>xq</sub><i>;S</i><sub>tp</sub><i>;V</i>

hình trụ ,hình nón , hình nón cụt


HĐ2 Các khái niệm về hình cầu



2.1 GV dựng thit b cho HS thc hnh để


hình thành khái niệm về hình cầu .



2.2 Nh¾c lại các khái niệm hình cầu ,


tìm các VD thực tế



HĐ3 Mặt cắt hình cầu


3.1 GV giới thiệu nh sgk


3.2 HS thảo luận làm ?1




3.3 GV gii thiu mt cắt hình cầu là hình


trịn, mặt cắt mặt cầu là đờng tròn



3.4 GV giới thiệu đờng tròn lớn sgk/122



1. Hình cầu


O : Tâm hình cầu



OA = R Bỏn kớnh hình cầu


Mặt cầu : nửa đờng trịn


quay quanh đờng kính .


Hình cầu : nửa hình trịn


quay quanh đờng kớnh



2. Cắt hình cầu bởi một mặt phẳng



Hình
Mặt cắt


Hình trụ Hình cầu


Hình chữ nhật không không


Hình tròn bán kính R có có


Hình tròn bán kính nhỏ hơn R không có


<i><b>Năm học 2011 - 2012</b></i>



R


O
A


R


</div>
<span class='text_page_counter'>(43)</span><div class='page_container' data-page=43>

HĐ4 : công thức tính diện tích mặt cầu


4.1 HS nhắc lại công thức tính diện tích mặt


cầu



4.2 GV cùng HS thực hiện VD sgk/122



*Kết luận : Sgk/122


*VD : Sgk/122


3. Diện tích mặt cầu



S = 4

<i>π</i>

R

2

<sub> hay S = </sub>

<i><sub>π</sub></i>

<sub>d</sub>

2


*VD : sgk/122



7. cđng cè - h

íng dÉn



1.Nắm chắc các khái niệm tâm , bán kính , đờng kính , đờng trịn lớn , mặt cầu.



2.Viết thành thạo cơng thức tính

<i>S</i><sub>xq</sub><i>;S</i><sub>tp</sub><i>;V</i>

hình trụ ,hình nón , hình nón cụt , hình cầu đã


học



3.GV híng dÉn HS về nhà làm các BT




_________________________________________________



<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 63</b>


<b>Hình cầu.diện tích mặt</b>


<b>cầu và thể tích hình cầu </b>



A.Mục tiªu

:



- HS nhớ lại và nắm chắc các khái niệm của hình cầu : tâm , bán kính , đờng kính , đờng trịn


lớn , mặt cầu.



</div>
<span class='text_page_counter'>(44)</span><div class='page_container' data-page=44>

B.

ChuÈn bÞ

:



GV chuÈn bị thiết bị dạy học là tay quay gắn nửa hình tròn , bảng phụ H103-106/121-123



C.

hot ng dy hc



* H1: Kiểm tra bài cũ : HS viết cơng thức tính

<i>S</i><sub>xq</sub><i>;S</i><sub>tp</sub><i>;V</i>

hình trụ ,hình nón , hình nón ct


, hỡnh cu ó hc.



HĐ2 Các khái niệm về hình cầu



HĐ3 Mặt cắt hình cầu



HĐ4 Ôn tập công thức tính diện tích mặt


cầu




HĐ5 Hình thành công thức tính thể tích


hình cầu



5.1 GV cùng HS làm thực nghiệm sgk/123


5.2 HS thảo luận rút ra kết luận so sấnh thể


tích hình cầu và thể tích h×nh trơ



5.3 GV cùng HS lập luận khẳng định cơng


thức tính thể tích hình cầu .



5.4 GV cïng HS vận dụng làm VD sgk/124


HĐ6.

á

p dụng kiến thức giải BT



6.1 HS thảo luận làm BT30/124sgk


6.2 HS thảo luận làm BT 31/124sgk



2. Cắt hình cầu bởi một mặt phẳng



3. Diện tích mặt cầu



S = 4

<i></i>

R

2

<sub> hay S = </sub>

<i><sub>π</sub></i>

<sub>d</sub>

2


*VD : sgk/122



4.ThÓ tích hình cầu

V =

4


3<i></i>.<i>R</i>


3



* VD : sgk/124


Bài 30/124



Sử dụng công thức V =

4


3<i></i>.<i>R</i>


3




<i></i>=22
7


Chọn (B)


Bài 31/124



Bán
kính
hình
cầu


0,3mm 6,21dm 0,283m 100km 6hm 50dam
Diện


tích
mặt
cầu


1,13mm2 <sub>484,37dm</sub>2



Thể
tích
hình
cầu


0,11mm3 <sub>1002,64dm3</sub>


7. củng cố - h

íng dÉn



1.Nắm chắc các khái niệm tâm , bán kính , đờng kính , đờng trịn lớn , mặt cu.



<i><b>Năm học 2011 - 2012</b></i>


O
A


R


R


O
A


</div>
<span class='text_page_counter'>(45)</span><div class='page_container' data-page=45>

2.Viết thành thạo công thức tính

<i>S</i><sub>xq</sub><i>;S</i><sub>tp</sub><i>;V</i>

hình trụ ,hình nón , hình nón cụt , hình


cầu



3.GV hớng dẫn HS về nhà làm các BT còn lại .



___________________________________________________________




<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 64</b>


<b> Luyện tập</b>



A.Mục tiêu

:



-Ôn tập củng cố các kiến thức về hình cầu .



- Vận dụng giải các bài toán tính diện tích mặt cầu và thể tích hình cầu


B.

Chuẩn bị

:



- Bảng phụ phóng to các hình 110,111/126



C.

hot ng dy hc



* HĐ1: Kiểm tra bài cũ : Viết công thức tính S

mặt cầu

, V

hình cầu

; làm BT35/126



HĐ2 Vận dụng tính diện tích mặt cầu và thể


tích hình cầu



2.1 HS nhận xét bài làm của bạn BT35/126


2.2 GV kết luận sửa sai



2.3 HS thảo luận làm BT36/126



2.4 HS trình bày phần a ; c¸c HS nhËn xÐt ;


GV sưa sai




2.5 HS nêu cách làm phần b và trình bày ;


HS kh¸c nhËn xÐt ; GV kÕt ln sưa sai .



HĐ3 Vận dụng giải các bài toán hình học



1.Bài35/126



Th tớch cần tính bằng tổng của thể tích hình


trụ và thể tích một hình cầu đờng kính 1,8m


Thể tích hình trụ là :



V

1

=

<i>πR</i>2.<i>h</i>=3<i>,14 .</i>

(

1,8


2

)



2


. 3<i>,</i>62=¿


Thể tích một hình cầu đờng kính 1,8m:


V

2

=

4


3<i>πR</i>


3


=1
6<i>π</i>.d



3


=1


6.3<i>,14 . 1,8</i>


3


=¿


ThĨ tÝch bån chøa lµ : V = V

1

+ V

2

=12,26



m

3


2. Bµi 36/126



a) Ta cã : h + 2x = 2a


b)



<i>S</i>=2<i>π</i>xh+4<i>πx</i>2=2<i>πx</i>(<i>h</i>+2<i>x</i>)=4<i>π</i>.<i>a</i>.x
<i>V</i>=<i>πx</i>2<i>h</i>+4


3 <i>π</i>.<i>x</i>


3


=2<i>πx</i>2(<i>a− x</i>)+4
3 <i>π</i>.<i>x</i>


3



2<i>πx</i>2<i>a−</i>2
3<i>πx</i>


</div>
<span class='text_page_counter'>(46)</span><div class='page_container' data-page=46>

3.1 HS đọc đề bài , vẽ hình và ghi GT - KL


ca bi toỏn .



3.2 HS thảo luận nêu cách chứng minh :



MON đồn dạng với

APB



3.3 HS th¶o luËn nêu cách chứng minh :


AM.BN = R

2


3.4 HS thảo luận nêu cách tính tỉ số

<i>S</i>MON


<i>S</i>APB


khi AM =

<i>R</i>


2


3.5 HS thảo luận nêu cách tính thể tích hình


cầu đờng kính AB



3.Bµi37/126





P



O B


A
M


N


Bµi lµm



a)

MON đồng dạng với

APB

( g.g )


b) AM = MP ; BN = NP .



VËy AM.BN = MP.PN = R

2


c)

MON đồng dạng với

APB (cmt)



<i>S</i>MON


<i>S</i>APB


=MN


2


AB2


AM =

<i>R</i>


2

vµ AM.BN = R

2

BN = 2R




Suy ra MN =

5<i>R</i>


2

MN

2

=


25


4 <i>R</i>


2


VËy

<i>S</i>MON


<i>S</i>APB


=MN


2


AB2

=



25
16


d) Nửa hình trịn APB quay quanh đờng kính


AB sinh ra một hình cầu bán kính R, có thể


tích là : V

cầu

=

4


3<i>πR</i>


3



H§5

. Cđng cè –h

íng dÉn :



1.

HS về nhà đọc bài đọc thêm/126


2. HS làm câu hỏi ôn tập chơng IV/128


3. HS làm các BT ụn tp chng 129-131sgk



________________________________________________________



<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 65</b>


</div>
<span class='text_page_counter'>(47)</span><div class='page_container' data-page=47>

<b>ôn tập chơng</b>

<b> IV </b>



A.Mục tiêu

:



- Ôn tập các khái niệm cơ bản của hình trụ , hình nón , hình cầu , cách tính S

xq

, S

tp

, V các



hình.



- Rèn kĩ năng vận dụng công thức vào giải các bài toán thực tÕ .


B.

Chn bÞ

:



Bảng phụ tóm tắt lí thuyết /128sgk để trống các công thức để HS điền .



C.

hoạt ng dy hc



HĐ1: Kiểm tra : HS len bảng điền công thức tính S

xq

, V của hình trụ , hình nón , hình cầu




HĐ2: Ôn tập các khái niệm


cơ bản



2.1 HS nhận xét phần điền


bảng



2.2 GV kt luận , sửa sai


2.3 HS thảo luận xác định


các yếu tố cơ bản của từng


hình



H§3: RÌn kỹ năng vận dụng


giải các BT



3.1 HS thảo luận nêu cách


tính V của hình



114-BT38/129



3.2 HS thực hiện tính , HS


kh¸c nhËn xÐt , GV kÕt


luËn .



3.3 HS thảo luận nêu cách


tính diện tích bề mặt


H114-BT38/129



3.4 HS thùc hiƯn tÝnh , HS


kh¸c nhËn xÐt , GV kÕt




A.

<b>L</b>

<b> ý thuyÕt</b>

<b> </b>

( Bảng tóm tắt sgk/128 )


B.

<b>Bài tập</b>



1. Bài 38/129



*ThĨ tÝch cÇn tÝnh gåm :



+Thể tích hình trụ đờng kính đáy

11cm , chiều


cao 2cm là :



V

1

=

<i>π</i>

(

11


2

)



2


. 2

= 60,5

<i>π</i>

(cm

3

<sub>)</sub>



+ Thể tích hình trụ đờng kính đáy

6cm , chiều


cao 7cm là :



V

2

=

<i>π</i>

(

6


2

)



2


.7=63<i>π</i>

( cm

3

)



Thể tích cần tính là :




V = V

1

+ V

2

= 123,5

<i>π</i>

(cm

3

)



2. Bài 43/130



a) Tổng thể tích hình trụ và nửa hình cầu là :



6,33


6,32<i></i>

(

8,4+2


3. 6,3

)

=500<i>,</i>094<i></i>(cm


3


)
6,32.8,4+1


2.
4
3 <i></i>.




<i>V</i>=<i></i>


</div>
<span class='text_page_counter'>(48)</span><div class='page_container' data-page=48>

6,93



6,92<i></i>(20+2. 6,9)=536<i>,</i>406<i></i>(cm3)
6,92.20+1


2.
4
3<i></i>




<i>V</i>=1
3<i></i>


HĐ5

. Củng cố h

ớng dẫn :



1. HS nhắc lại các kiến thức cơ bản , viết thành thạo các công thức tính S

xq

, S

tp

, V các



hình.



2. GV hớng dẫn HS làm các BT còn lại . HS chuẩn bị ôn tập kiểm tra học kỳ II



__________________________________________________________________



<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 66</b>


<b>ôn tập chơng</b>

<b> IV </b>



A.Mục tiêu

:




- Ôn tập các khái niệm cơ bản của hình trụ , hình nón , hình cầu , cách tính S

xq

, S

tp

, V các



hình.



- Rèn kĩ năng vận dụng công thức vào giải các bài toán thực tế .


B.

Chn bÞ

:



Bảng phụ tóm tắt lí thuyết /128sgk để trống các cong thức để HS điền .



C.

hoạt động dy hc



</div>
<span class='text_page_counter'>(49)</span><div class='page_container' data-page=49>

HĐ1: Kiểm tra : HS lên bảng điền công


thức tính S

xq

, V của hình trụ , hình nón ,



hình cầu



HĐ2: Ôn tập các khái niệm cơ bản


HĐ3: Rèn kỹ năng vận dụng giải c¸c BT



HĐ4 : Rèn kĩ năng liên quan đến hình nún ,


hỡnh cu



4.1 HS thảo luận làm Ha-BT43/130 ; 1 HS


trình bày , các HS nhận xét .



4.2 HS thảo luận làm Hb ; 1 HS trình bày ,


các HS nhận xét .



4.3 HS thảo luận làm Hc-BT43/130 ; 1 HS


trình bày , các HS nhận xét , GV kÕt luËn .




B. Bµi tËp


2. Bµi 43/130



a) Tổng thể tích hình trụ và nửa hình cầu là :



6,33


6,32<i></i>

(

8,4+2


3. 6,3

)

=500<i>,</i>094<i></i>(cm


3


)
6,32.8,4+1


2.
4
3<i></i>.




<i>V</i>=<i></i>


b) Tổng các thể tích của một hình nón và


nửa hình cầu là :



6,93




6,92<i></i>(20+2. 6,9)=536<i>,</i>406<i></i>(cm3)
6,92.20+1


2.
4
3<i></i>




<i>V</i>=1
3<i></i>


c)Thể tích cần tính là tổng các thể tích của


hình nón , hình trụ và một nửa hình cầu :



<i>V</i>=1


3<i></i>.2


2


. 4+<i></i>. 22. 4+1


2.
4
3 <i>π</i>. 2


3



<i>π</i>. 22. 4 .

(

1
3+1+


1
3

)

=


80
3 <i>π</i>(cm


3


)


H§5

. Cđng cè –h

íng dÉn :



1. HS nhắc lại các kiến thức cơ bản , viết thành thạo các công thức tính S

xq

, S

tp

, V các



hình.



2. GV hớng dẫn HS làm các BT còn lại .


3. HS chuẩn bị ôn tập kiểm tra học kỳ II



</div>
<span class='text_page_counter'>(50)</span><div class='page_container' data-page=50>

<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 67</b>


<b>ôn tập cuối năm</b>



A.Mục tiêu

:




- Ôn tập các kiến thức cơ bản , trọng tâm của hình học lớp 9 : Hệ thức về cạnh và đờng cao


trong tam giác vuông , tỉ số lợng giác của góc nhọn , hệ thức giữa các cạnh và các góc của


một tam giác vng, đ/n , t/c đối xứng , vị trí tơng đối của đờng thẳng và đờng tròn; tiếp


tuyến của đờng tròn , tính chất về tiếp tuyến, vị trí tơng đối của hai đờng trịn - Khái niệm các


loại góc với đờng trịn , số đo từng loại góc , cung chứa góc , tứ giác nội tiếp , độ dài đờng


trịn diện tích hình trịn . Các khái niệm cơ bản , cơng thức tính diện tích xung quanh , diện


tích tồn phần , thể tích các hình trụ , hình nón , hình cầu .



- Rèn kĩ năng vận dụng các kiến thức đã học để giải các bài tốn chứng minh , tính tốn , suy


luận , quĩ tích , dựng hình ...



B.

Chn bÞ

:



- HS tự ôn tập trớc các kiến thức cơ bản trọng tâm theo các câu hỏi ôn tập các chơng


- HS Giải các bài tập ôn tập cuối năm phần hình học sgk/134,135,136 .



C.

hot ng dy hc



H1: Kim tra đề cơng ôn tập



HĐ3

: Vận dụng kiến thức Hệ thức về cạnh và đờng cao trong tam giác vuông vào giải các


BT 1,2,3/134



HĐ4

: Vận dụng kiến thức tỉ số lợng giác của góc nhọn , hệ thức giữa các cạnh và các góc


của một tam giác vuông giải các BT4,5/134



</div>
<span class='text_page_counter'>(51)</span><div class='page_container' data-page=51>

H§5

. Cđng cè –h

íng dÉn :



Hớng dẫn HS trọng tâm ôn tập và chữa một số đề thi năm 2003-2004 và 2004-2005



Hớng dẫn HS chuẩn bị thi .



________________________________________________________



<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 68</b>


<b>ôn tập chơng</b>

<b>cuối năm</b>



A.Mục tiêu

:



- Ôn tập các kiến thức cơ bản , trọng tâm của hình học lớp 9 : Hệ thức về cạnh và đờng cao


trong tam giác vng , tỉ số lợng giác của góc nhọn , hệ thức giữa các cạnh và các góc của


một tam giác vuông, đ/n , t/c đối xứng , vị trí tơng đối của đờng thẳng và đờng trịn; tiếp


tuyến của đờng trịn , tính chất về tiếp tuyến, vị trí tơng đối của hai đờng trịn - Khái niệm các


loại góc với đờng trịn , số đo từng loại góc , cung chứa góc , tứ giác nội tiếp , độ dài đờng


trịn diện tích hình trịn . Các khái niệm cơ bản , cơng thức tính diện tích xung quanh , diện


tích tồn phần , thể tích các hình trụ , hình nón , hình cầu .



- Rèn kĩ năng vận dụng các kiến thức đã học để giải các bài toán chứng minh , tính tốn , suy


luận , quĩ tích , dựng hỡnh ...



B.

Chuẩn bị

:



- HS tự ôn tập trớc các kiến thức cơ bản trọng tâm theo các câu hỏi ôn tập các chơng


- HS Giải các bài tập ôn tập cuối năm phần hình học sgk/134,135,136 .



C.

hot ng dạy học




HĐ5 : Vận dụng kiến thức đ/n , t/c đối xứng , vị trí tơng đối của đờng thẳng và đờng

trịn;


tiếp tuyến của đờng trịn , tính chất về tiếp tuyến, vị trí tơng đối của hai

đờng tròn vào


giải các BT 6,7/134-135



HĐ6 : Vận dụng kiến thức các loại góc với đờng trịn , số đo từng loại góc , cung chứa góc


, tứ giác nội tiếp , độ dài đờng tròn diện tích hình trịn giải các BT8,9,10,11,12,15/135



H§5

. Cđng cè –h

íng dÉn :



</div>
<span class='text_page_counter'>(52)</span><div class='page_container' data-page=52>

Híng dÉn HS chn bÞ thi học kì II.



________________________________________________________



<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 69</b>


<b>ôn tập chơng</b>

<b> </b>

<b>cuối năm</b>



A.Mục tiêu

:



- ễn tp các kiến thức cơ bản , trọng tâm của hình học lớp 9 : Hệ thức về cạnh và đờng cao


trong tam giác vuông , tỉ số lợng giác của góc nhọn , hệ thức giữa các cạnh và các góc của


một tam giác vng, đ/n , t/c đối xứng , vị trí tơng đối của đờng thẳng và đờng trịn; tiếp


tuyến của đờng trịn , tính chất về tiếp tuyến, vị trí tơng đối của hai đờng trịn - Khái niệm các


loại góc với đờng trịn , số đo từng loại góc , cung chứa góc , tứ giác nội tiếp , độ dài đờng


tròn diện tích hình trịn . Các khái niệm cơ bản , cơng thức tính diện tích xung quanh , diện


tích tồn phần , thể tích các hình trụ , hình nón , hình cầu .



- Rèn kĩ năng vận dụng các kiến thức đã học để giải các bài tốn chứng minh , tính tốn , suy



luận , quĩ tích , dựng hình ...



B.

Chn bÞ

:



- HS tự ôn tập trớc các kiến thức cơ bản trọng tâm theo các câu hỏi ôn tập các chơng


- HS Giải các bài tập ôn tập cuối năm phần hình häc sgk/134,135,136 .



C.

hoạt động dạy học



HĐ5 : Vận dụng kiến thức đ/n , t/c đối xứng , vị trí tơng đối của đờng thẳng và đờng

tròn;


tiếp tuyến của đờng trịn , tính chất về tiếp tuyến, vị trí tơng đối của hai

đờng tròn vào


giải các BT 6,7/134-135



HĐ6 : Vận dụng kiến thức các loại góc với đờng trịn , số đo từng loại góc , cung chứa góc


, tứ giác nội tiếp , độ dài đờng trịn diện tích hình trịn giải các BT8,9,10,11,12,15/135


HĐ7: Ơn tập kĩ năng giải BT quĩ tích , dng hỡnh qua BT 13,14/135



HĐ8 : Vận dụng khái niệm cơ bản , công thức tính diện tích xung quanh , diện tích toàn phần


, thể tích các hình trụ , hình nón , hình cầu vào giải các BT16,17,18/136.



</div>
<span class='text_page_counter'>(53)</span><div class='page_container' data-page=53>

HĐ5

. Củng cố h

ớng dẫn về nhà:



Hng dẫn HS trọng tâm ôn tập và chữa một số đề thi năm 2003-2004 và 2004-2005


Hớng dẫn HS chuẩn bị thi hc kỡ II.



__________________________________________________



<i><b>Ngày soạn: </b></i>

<i><b> Ngày giảng:</b></i>



<b>Tiết 70</b>



<b>Trả bài kiểm tra cuối năm</b>



t


M


K
B


O


A


C
F


a) Sè ®o ACB b»ng :


A. 60

0

<sub>B. 40</sub>

0

<sub>C.30</sub>

0

<sub>D. 20</sub>

0


b) Sè ®o ABt b»ng :



A. 20

0

<sub>B. 30</sub>

0

<sub>C. 40</sub>

0

<sub>D. 60</sub>

0


c) Sè ®o AKF b»ng :



A. 20

0

<sub>B. 30</sub>

0

<sub>C. 60</sub>

0

<sub>D. 80</sub>

0


d) Sè ®o AMB b»ng :




A. 20

0

<sub>B. 30</sub>

0

<sub>C. 60</sub>

0

<sub>D. 80</sub>

0


<b>Câu2 </b>

(1 điểm ):



Điền vào ô trống trong bảng sau :



Bỏn kớnh R

dài đờng trịn C

Diện tích hình

<sub>trịn S</sub>

Độ dài l của

<sub>cung 60</sub>

0

Diện tích hình quạt

<sub>trịn cung 60</sub>

0


2 cm



B

<b>/ Phần tự luận : 7 điểm</b>


<b>Câu 3</b>

(3 điểm) :



Dùng tam gi¸c ABC , biÕt AB =3 cm , C = 60

0

<sub>, AC = 2 cm .</sub>



<b>C©u 4</b>

( 4 ®iĨm ):



Cho tam giác cân ABC ( AB = AC ) và đờng tròn tâm O tiếp xúc với hai cạnh AB và AC lần


l-ợt ở B và C . M là một điẻm trên cung BC ( M khác B và C ) , kẻ MD , ME , MF lần ll-ợt vuông



</div>
<span class='text_page_counter'>(54)</span><div class='page_container' data-page=54>

a) Các tứ giác MDBF và MDCE nội tiếp đờng tròn .



b) Các tam giác FBM và DCM ; DMB và ECM đồng dạng .


c) MD

2

<sub> = ME.MF</sub>



đáp án - biu im



A/

<b>Phần trắc nghiệm khách quan : 3 điểm</b>


<b>Câu1 </b>

(2 ®iĨm ):




a)

b)

c)

d)



C

B

A

D



Mỗi câu đúng đợc 0,5 điểm .


<i><b>Câu2 </b></i>

<i> (1 điểm ):</i>



Bán kính R

Độ dài đờng trịn C

Diện tích hình

<sub>trịn S</sub>

Độ dài l của

<sub>cung 60</sub>

0

Diện tích hình quạt

<sub>trịn cung 60</sub>

0


2 cm

4

<i>π</i>

cm

4

<i>π</i>

cm

2 2<i>π</i>


3

cm



2<i>π</i>


3

cm

2


Mỗi câu đúng đợc 0,25 điểm


B

<b>/ Phần tự luận : 7 điểm</b>


<b>Câu 3</b>

(3 điểm) :



C¸ch dùng nh sau


- Vẽ đoạn thẳng AB = 3 cm .



- VÏ cung chøa gãc 60

0

<sub> trªn đoạn AB .</sub>



- Lấy A làm tâm vẽ cung tròn bán kính 2 cm


cắt ( O ) tại C .



- Tam giác ABC là tam giác cần dựng ,



v× cã AB = 3 cm , C = 60

0

<sub> vµ AC = 2 cm . </sub>



Nêu đúng cách dựng : 4 x 0,25 = 1 (điểm)


Vẽ đúng : 8 x 0,25 = 2 (điểm )



<b>Câu 4</b>

( 4 điểm ):

Vẽ hình đúng đợc 0,5 điểm .



<i>a)*Tø gi¸c MDBF cã :</i>

<i> </i>

<i> </i>



MDB = 1v ( MD

BC )

0,25 ®


MFB = 1v ( MF

AB )

0,25 ®



MDB + MFB = 2v

0,25 ®



Do đó tứ giác MDBF nội tiếp 0,25 đ



<i>* Chứng minh tơng tự</i>



<i> tứ giác MDCE néi tiªp</i>

0,5 đ



b)



MFB và

MDC

cã :


MFB = MDC =1v



FBM = DCM (cùng chắn cung BM)


Do đó:

MFB

MDC (g.g)



T¬ng tù :

MDB

MEC (g.g)0,5 ®


c)




MFB

MDC ( cmt

)



( c/m trªn) 0,25 ®



Cã :

MDB

MEC ( cmt)



ME


MD=


MC


MB

=> =>


MD


MF =


ME


MD

(0,5®)



____________________________________________________



</div>
<span class='text_page_counter'>(55)</span><div class='page_container' data-page=55></div>

<!--links-->

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×