Tải bản đầy đủ (.doc) (31 trang)

Tài liệu Đề và đáp án thi thử ĐH 2010 môn Toán_THPT Long Châu Sa Phú Thọ pptx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (559.59 KB, 31 trang )


Sở GD-ĐT phú thọ
Trờng T.H.p.t long châu sa é THI thử I HC
NM học: 2009-2010
Mụn thi : TON
Thời gian làm bài:150 phút(không kể thời gian giao đề)
PHN CHUNG CHO TT C TH SINH (7,0 im)
Cõu I:(2 im)
Cho hm s :
1x2
1x
y
+
+
=
(C)
1. Kho sỏt v v th hm s.
2. Vit phng trỡnh tip tuyn vi (C), bit tip tuyn ú i qua giao im ca ng tim cn v trc Ox.
Cõu II:(2 im)
1. Gii phng trỡnh:
sin 2 cos2
cot
cos sin
x x
tgx x
x x
+ =
2. Gii phng trỡnh:
( )
1
xlog1


4
3logxlog2
3
x93
=


Cõu III: (2 im)
1.Tính nguyên hàm:
sin 2
( )
3 4sin 2
xdx
F x
x cos x
=
+

2.Giải bất phơng trình:
1 2 3x x x

Cõu IV: (1 im)
Trong mt phng Oxy cho tam giỏc ABC cú trng tõm G(2, 0) bit phng trỡnh cỏc cnh AB, AC theo th t
l 4x + y + 14 = 0;
02y5x2
=+
. Tỡm ta cỏc nh A, B, C.
PHN RIấNG (3 im)
Chú ý:Thí sinh chỉ đợc chọn bài làm ở một phần nếu làm cả hai sẽ không đợc chấm
A. Theo chng trỡnh chun

Cõu Va :
1. Tỡm h s ca x
8
trong khai trin (x
2
+ 2)
n
, bit:
49CC8A
1
n
2
n
3
n
=+
.
2. Cho ng trũn (C): x
2
+ y
2
2x + 4y + 2 = 0.
Vit phng trỡnh ng trũn (C') tõm M(5, 1) bit (C') ct (C) ti cỏc im A, B sao cho
3AB
=
.
B. Theo chng trỡnh Nõng cao
Cõu Vb :
1. Gii phng trỡnh :
( ) ( )

21x2log1xlog
3
2
3
=+
2. Cho hỡnh chúp SABCD cú ỏy ABCD l hỡnh vuụng tõm O, SA vuụng gúc vi đáy hỡnh chúp.
Cho AB = a, SA = a
2
. Gi H v K ln lt l hỡnh chiu vuông góc ca A lờn SB, SD.
Chng minh SC (AHK) v tớnh th tớch khối chúp OAHK.
....Ht.
(Cán bộ coi thi không giải thích gì thêm)

Hớng dẫn chấm môn toán
Câu
ý
Nội Dung
Điểm
I
2
1
Khảo sát hàm số (1 điểm) 1

TXĐ: D = R\ {-1/2}
Sựự Biến thiên:
( )
,
2
3
0

2 1
y x D
x

= <
+
Nên hàm số nghịch biến trên
1 1
( ; ) ( ; )
2 2
va
+
0,25
+ Giới hạn ,tiệm cận:

1
2
lim
x
y
+

=+


1
2
lim
x
y



=


ĐTHS có tiẹm cận đứng : x = -1/2

1
lim
2
x
y

=

1
lim
2
x
y
+
=


đTHS có tiệm cận ngang: y = -1/2
0,25
+ Bảng biến thiên:





0,25
x
y
y

+
-1/2
-
-
-1/2

+
-1/2
• §å ThÞ :



0,25
2
Giao điểm của tiệm cận đứng với trục Ox là







0,
2

1
A
Phương trình tiếp tuyến (∆) qua A có dạng






+=
2
1
xky
(∆) tiếp xúc với (C)
/
x 1 1
k x
2x 1 2
x 1
k co ù nghieäm
2x 1
− +
 
= +
 ÷


+
 



− +
 

=
 ÷

+
 

0,25
y
x
0
I
-1/2
1
1
-1/2
( )







=
+








+=
+
+−

)2( k
1x2
3
)1(
2
1
xk
1x2
1x
2
Thế (2) vào (1) ta có pt hoành độ tiếp điểm là

( )
2
1
3 x
x 1
2
2x 1
2x 1

 
+
 ÷
− +
 
= −
+
+
0,25
1
(x 1)(2x 1) 3(x )
2
⇔ − + = +

1
x
2
≠ −

3
x 1
2
⇔ − =

5
x
2
⇔ =
. Do đó
12

1
k
−=
0,25
 Vậy phương trình tiếp tuyến cần tìm là:
1 1
y x
12 2
 
= − +
 ÷
 
0,25
II

2
1
1. Giải phương trình:
gxcottgx
xsin
x2cos
xcos
x2sin
−=+
(1)
(1)
xsin
xcos
xcos
xsin

xcosxsin
xsinx2sinxcosx2cos
−=
+

( )
xcosxsin
xcosxsin
xcosxsin
xx2cos
22

=


0,25

cosx cos2x sin2x 0⇔ = − ∧ ≠

2
2cos x cosx 1 0 sin2x 0⇔ + − = ∧ ≠
0,25

1
cosx (cos x 1 :loaïi vì sin x 0)
2
⇔ = = − ≠
0,25

π+

π
±=⇔
2k
3
x
0,25
2
2. Phương trình:
( )
1
xlog1
4
3logxlog2
3
x93
=

−−
(1)
(1)
( )
1
xlog1
4
x9log
1
xlog2
33
3
=


−−⇔
0,25


1
xlog1
4
xlog2
xlog2
33
3
=


+



đặt: t = log
3
x

0,25
thành
2
2 t 4
1 t 3t 4 0
2 t 1 t


− = ⇔ − − =
+ −
(vì t = -2, t = 1 không là nghiệm)

t 1 hay t 4⇔ = − =

0,25
Do đó, (1)
3
1
log x 1 hay x 4 x hay x 81
3
⇔ = − = ⇔ = =
0,25
III 2
1 1
Ta cã
2 2
sin 2 2sin cos
( )
3 4sin (1 2sin ) 2sin 4sin 2
xdx x xdx
F x
x x x x
= =
+ − − + +
∫ ∫

0,25
§¨t u = sinx

cosdu xdx⇒ =
O,25
Ta cã:
( )
2
2
( ) ( )
1 ( 1)
1
1
ln 1
1
udu du du
F x G u
u u
u
u c
u
= = = −
+ +
+
= + + +
+
∫ ∫ ∫

0,25
VËy
1
( ) ln 1
sin 1

F x sinx c
x
= + + +
+

0,25
2
1

§k:
3x

Bpt
2
1 2 3
2 5 6 4
x x x
x x x
⇔ + ≥ − + −
⇔ − + ≤ −
0,25
2
4 0
3 12 8 0
3 4
6 2 3 6 2 3
3 3
6 2 3
3
3

x
x x
x
x
x
− ≥



− + ≤

≤ ≤




− +
≤ ≤


+
⇔ ≤ ≤

0,25
0,25
0,25


IV 1
. Tọa độ A là nghiệm của hệ

{ {
4x y 14 0 x 4
2x 5y 2 0 y 2
+ + = = −

+ − = =
⇒ A(–4, 2)
0,25
Vì G(–2, 0) là trọng tâm của ∆ABC nên



−=+
−=+




++=
++=
2yy
2xx
yyyy3
xxxx3
CB
CB
CBAG
CBAG
(1)


0,25
Vì B(x
B
, y
B
) ∈ AB ⇔ y
B
= –4x
B
– 14 (2)
C(x
C
, y
C
) ∈ AC ⇔
5
2
5
x2
y
C
C
+−=
( 3)
0,25
Thế (2) và (3) vào (1) ta có



=⇒=

−=⇒−=






−=+−−−
−=+
0y 1x
2y3x
2
5
2
5
x2
14x4
2xx
CC
BB
C
B
CB
Vậy A(–4, 2), B(–3, –2), C(1, 0)

0,25
V.a 3
1
1
1. Điều kiện n ≥ 4

Ta có:
( )

=

=+
n
0k
knk2k
n
n
2
2xC2x
Hệ số của số hạng chứa x
8

4n4
n
2C


0,25
Hệ số của số hạng chứa x
8

4n4
n
2C

0,25

Ta có:
3 2 1
n n n
A 8C C 49− + =
⇔ (n – 2)(n – 1)n – 4(n – 1)n + n = 49
⇔ n
3
– 7n
2
+ 7n – 49 = 0 ⇔ (n – 7)(n
2
+ 7) = 0 ⇔ n = 7
0,25

Nên hệ số của x
8

2802C
34
7
=

0,25
2
2

Phương trình đường tròn (C): x
2
+ y
2

– 2x + 4y + 2 = 0 có tâm I(1, –2)
3R
=
Đường tròn (C') tâm M cắt đường tròn (C) tại A, B nên AB ⊥ IM tại trung
điểm H của đoạn AB.

0,25
Ta có
2
3
2
AB
BHAH
===
0,25

Có 2 vị trí cho AB đối xứng qua tâm I.
Gọi A'B' là vị trí thứ 2 của AB
Gọi H' là trung điểm của A'B'
0,25
Ta có:
2
2 2
3 3
IH' IH IA AH 3
2 2
 
= = − = − =
 ÷
 ÷

 
Ta có:
( ) ( )
2 2
MI 5 1 1 2 5= − + + =
0,25

2
7
2
3
5HIMIMH
=−=−=
;
3 13
MH' MI H'I 5
2 2
= + = + =
0,25
Ta có:
13
4
52
4
49
4
3
MHAHMAR
2222
1

==+=+==

43
4
172
4
169
4
3
'MH'H'A'MAR
2222
2
==+=+==
0,25
Vậy có 2 đường tròn (C') thỏa ycbt là: (x – 5)
2
+ (y – 1)
2
= 13
hay (x – 5)
2
+ (y – 1)
2
= 43
0,25
V.b 3
1
1
1. Giải phương trình:
( ) ( )

21x2log1xlog
3
2
3
=−+−
§k:
1
1
2
x< ≠
( )
3 3
2log x 1 2log 2x 1 2⇔ − + − =

0,25

( )
3 3
log x 1 log 2x 1 1⇔ − + − =

( )
3 3
log x 1 2x 1 log 3⇔ − − =

0,25
( )
x 1 2x 1 3⇔ − − =


{



>
< <

− − =

− + =

2
2
1
x 1
x 1
hoac
2
2x 3x 2 0
2x 3x 4 0(vn)
0,25
x 2
⇔ =
0,25
2
2

+BC vuông góc với (SAB)

BC vuông góc với AH mà AH vuông với SB

AH vuông góc với (SBC)


AH vuông góc SC (1)
0,25
+ Tương tự AK vuông góc SC (2)
(1) và (2)

SC vuông góc với (AHK )
0,25
2 2 2 2
SB AB SA 3a= + =

SB =
a 3
AH.SB = SA.AB

AH=
a 6
3

SH=
2a 3
3


SK=
2a 3
3
(do 2 tam giác SAB và SAD bằng nhau và cùng vuông tại A)
0,25
Ta có HK song song với BD nên

HK SH 2a 2
HK
BD SB 3
= ⇒ =
.
0,25
kÎ OE// SC
( )( ( ))OE AHK doSC AHK⇒ ⊥ ⊥
suy ra OE lµ ®êng cao cña
h×nh chãp OAHK vµ OE=1/2 IC=1/4SC = a/2
0,5
Gọi AM là đường cao của tam giác cân AHK ta có
2
2 2 2
4a
AM AH HM
9
= − =


AM=
2a
3
0,25
= = =
3
OAHK AHK
1 1 a 1 a 2
V OE.S . HK.AM
3 3 2 2 27

(®vtt)
S
0,25
A
M
I
E
O
H
K
M
C
D
Câu II:
1. Giải phương trình:
gxcottgx
xsin
x2cos
xcos
x2sin
−=+
(1)
(1)
xsin
xcos
xcos
xsin
xcosxsin
xsinx2sinxcosx2cos
−=

+

( )
xcosxsin
xcosxsin
xcosxsin
xx2cos
22

=


cosx cos2x sin2x 0⇔ = − ∧ ≠

2
2cos x cosx 1 0 sin2x 0⇔ + − = ∧ ≠
1
cosx (cos x 1 :loaïi vì sin x 0)
2
⇔ = = − ≠

π+
π
±=⇔
2k
3
x

2. Phương trình:
( )

1
xlog1
4
3logxlog2
3
x93
=

−−
(1)
(1)
( )
1
xlog1
4
x9log
1
xlog2
33
3
=

−−⇔
1
xlog1
4
xlog2
xlog2
33
3

=


+


đặt: t = log
3
x
(1) thành
2
2 t 4
1 t 3t 4 0
2 t 1 t

− = ⇔ − − =
+ −
(vì t = -2, t = 1 không là nghiệm)

t 1 hay t 4⇔ = − =
Do đó, (1)
3
1
log x 1 hay x 4 x hay x 81
3
⇔ = − = ⇔ = =
Câu IV:
. Tọa độ A là nghiệm của hệ
{ {
4x y 14 0 x 4

2x 5y 2 0 y 2
+ + = = −

+ − = =
⇒ A(–4, 2)
Vì G(–2, 0) là trọng tâm của ∆ABC nên



−=+
−=+




++=
++=
2yy
2xx
yyyy3
xxxx3
CB
CB
CBAG
CBAG
(1)
Vì B(x
B
, y
B

) ∈ AB ⇔ y
B
= –4x
B
– 14 (2)
C(x
C
, y
C
) ∈ AC ⇔
5
2
5
x2
y
C
C
+−=
( 3)
Thế (2) và (3) vào (1) ta có



=⇒=
−=⇒−=







−=+−−−
−=+
0y 1x
2y3x
2
5
2
5
x2
14x4
2xx
CC
BB
C
B
CB
Vậy A(–4, 2), B(–3, –2), C(1, 0)
Câu Vb:
2. (Bạn đọc tự vẽ hình)
+BC vuông góc với (SAB)

BC vuông góc với AH mà AH vuông với SB

AH vuông góc với (SBC)

AH vuông góc SC (1)
+ Tương tự AK vuông góc SC (2)
(2) và (2)


SC vuông góc với (AHK )
2 2 2 2
SB AB SA 3a= + =

SB =
a 3
AH.SB = SA.AB

AH=
a 6
3

SH=
2a 3
3


SK=
2a 3
3
(do 2 tam giác SAB và SAD bằng nhau và cùng vuông tại A)
Ta có HK song song với BD nên
HK SH 2a 2
HK
BD SB 3
= ⇒ =
.
Gọi AM là đường cao của tam giác cân AHK ta có
2
2 2 2

4a
AM AH HM
9
= − =


AM=
2a
3
3
OAHK AHK
1 1 a 2 1 2a
V OA.S . HK.AM
3 3 2 2 27
= = =
Cách khác:
Chọn hệ trục tọa độ Oxyz sao cho
A= O (0;0;0), B(a;0;0), C( a;a;0), D(0;a;0), S (0;0;
a 2
)
Câu I:
1. Khảo sát (Bạn đọc tự làm)
2. Giao điểm của tiệm cận đứng với trục Ox là








0,
2
1
A
Phương trình tiếp tuyến (∆) qua A có dạng






+=
2
1
xky

×