Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.56 KB, 4 trang )
<span class='text_page_counter'>(1)</span>PHÒNG GD&ĐT TRIỆU PHONG. ĐỀ KIỂM TRA HỌC KỲ I Năm học 2012-2013 Môn : Toán lớp 9 Thời gian làm bài: 90 phút (không kể thời gian giao đề). ĐỀCHÍNH THỨC. Bài 1: (2 điểm) Thực hiện phép tính a) 3 27 75 2 147 c). 2 5 3. b). 2 5 3. . . 20 45 125 . 5. 2 5a 2 1 4a 4a 2 2 a 1 d) , với. a≻. 1 2. Bài 2: (2 điểm) Cho hàm số y = ax + b (d ) a) Tìm a, b biết rằng đồ thị hàm số (d) song song với đường thẳng y = -2x+3 và đi qua điểm A(-1;3). b) Vẽ đồ thị hàm số với a, b vừa tìm được. Bài 3: (2 điểm) Cho biểu thức A. . x 1 2 2 5 x ; 4 x với x 0; x 4 x 2 x 2. Rút gọn biểu thức A. Bài 4: (1điểm) Cho tam giác ABC vuông tại A có AB = 5, AC = 12. a) Tính độ dài cạnh huyền BC. b) Tính sin B , tan C. Bài 5: (3 điểm ) Cho đường tròn tâm O đường kính AB=2R. Gọi M là một điểm bất kỳ thuộc đường tròn (O) khác A và B. Các tiếp tuyến của (O) tại A và M cắt nhau tại E. Vẽ MP vuông góc với AB (P thuộc AB), vẽ MQ vuông góc với AE (Q thuộc AE). a) Chứng minh rằng APMQ là hình chữ nhật. b) Gọi I là trung điểm của PQ. Chứng minh O, I, E thẳng hàng. c) Gọi K là giao điểm của EB và MP. Chứng minh hai tam giác EAO và MPB đồng dạng. Suy ra K là trung điểm của MP. Hết (Cán bộ coi thi không giải thích gì thêm).
<span class='text_page_counter'>(2)</span> PHÒNG GD&ĐT TRIỆU PHONG. HƯỚNG DẪN CHẤM Môn : Toán lớp 9 Học sinh giải theo cách khác đúng vẫn cho điểm tối đa. Điểm của bài thi được làm tròn đến 0,5đ sao cho có lợi cho học sinh. ĐÁP ÁN. ĐIỂM. Bài 1 : (2 điểm) a) 3 27 75 2 147 9 3 5 3 7 3 11 3. . . . . 20 45 125 . 5 2 5 3 5 5 5 . 5 0. b). c). 2 5 3. 2 2 5 3. . 5 3 2 5 3 5 3 5 3 2. 5 6 2 5 6 3 4. 2 2 2 5a 2 1 4a 4a 2 .a 5 1 2a 2a 1 2a 1 2 .a 2a 1 5 2a 1 1 a 2) d) 2 5a (Vì. Bài 2 : (2 điểm) y = -2x+3 (d’) a) Vì (d) // (d’) a 2 A 1;3 d 3 2. 1 b b 1. y = -2x +1 (d) b) Cho x = 0 y = 1 1 x 2 y=0. Vẽ đồ thi Bài 3 : (2 điểm) ( √ x+ 1 )( √ x +2 ) +2 ( √ x −2 ) − ( 2+5 √ x ) A=. x−4 x +2 √ x + √ x+ 2+ 2 √ x − 4 − 2− 5 √ x ¿ x−4 x−4 ¿ x−4 ¿1. 0,5 đ 0,5 đ 0,5 đ. 0,5đ. 0,5 đ 0,5 đ 0,25 0,75. 0,75 đ 0,75 đ. 0,5 đ. 0,5 đ.
<span class='text_page_counter'>(3)</span> Bài 4 : (1 điểm). a) Áp dụng định lí Pitago cho tam giác vuông ABC có: BC =. 2. 2. 2. 0,5đ. 2. AB AC 5 12 13. AC 12 b) sinB = BC 13. 0,25đ. AB 5 tanC = AC 12. 0,25đ. Bài 5: (3 điểm) Vẽ hình đúng 0,25 đ M. E. K. B. O. Q. I. P. A. a) Tứ giác APMQ có 3 góc vuông : EAO APM PMQ 90 o => Tứ giác APMQ là hình chữ nhật. b) Ta có : I là trung điểm của PQ mà APMQ là hình chữ nhật nên I là trung điểm của AM. Ta có: EM = EA;OM = OA (định lí về tính chất hai tiếp tuyến cắt nhau ) nên OE là trung trực của AM suy ra OE đi qua I vậy O,I,E thẳng hàng. OI AM OI BM BM AM AOE ABM (đồng vị) c)Ta có AO AE AOE ∽ PBM => BP MP (1) KP BP Mặt khác, vì KP//AE, nên ta có tỉ số AE AB (2). Từ (1) và (2) ta có : AO.MP = AE.BP = KP.AB, mà AB = 2.OA => MP = 2.KP Vậy K là trung điểm của MP.. (1 đ). (1 đ). (0,7đ).
<span class='text_page_counter'>(4)</span>
<span class='text_page_counter'>(5)</span>