Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (158.09 KB, 13 trang )
<span class='text_page_counter'>(1)</span>KINH NGHIỆM: “ HƯỚNG DẪN HỌC SINH LỚP 7 GIẢI BÀI TOÁN TÌM X TRONG ĐẲNG THỨC CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI” A. MỞ ĐẦU : 1. Lý do chọn đề tài: Khi dạy học môn toán 7 , tôi nhận thấy học sinh còn nhiều vướng mắc khi giải bài toán tìm x có chứa dấu giá trị tuyệt đối . Đa số học sinh khi giải còn thiếu lô gíc ,chặt chẽ , thiếu trường hợp . Lí do là các vận dụng tính chất , định nghĩa giá trị tuyệt đối chưa chắc .Các em chưa phân biệt được các dạng toán và áp dụng tương tự vào bài toán khác . Mặt khác nội dung kiến thức ở lớp 6 & 7 ở dạng này để áp dụng còn hạn chế nên không thể đưa ra đầy đủ các phương pháp giải một cách có hệ thống và phong phú được . Mặc dù chương trình sách giáo khoa sắp xếp rất hệ thống và lô gíc, có lợi thế về dạy học đặt vấn đề trong dạng toán tìm x này.Chính vì vậy, để khắc phục cho học sinh những sai lầm khi giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối.Tôi đã suy nghĩ , tìm tòi và áp dụng vào trong giảng dạy thấy có hiệu quả cao . Nên tôi mạnh dạn viết sáng kiến kinh nghiệm “ Hướng dẫn học sinh lớp 7 giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối ” với mục đích giúp cho học sinh tự tin hơn trong làm toán. 2. Mục tiêu của đề tài: a/ Mục đích: Nhằm giải đáp những vướng mắc khi giải bài toán tìm x có chứa dấu tuyệt đối cho học sinh một cách lô gíc và có khoa học. b/ Đối tượng nghiên cứu: Học sinh khối 7 của trường thcs Nguyễn Huệ có học lực dưới mức giỏi. c/ Phương pháp nghiên cứu: Thông qua bài kiểm tra khảo sát đầu năm, kiểm tra vấn đáp những kiến thức cơ bản, trọng tâm mà các em đã được học. Qua đó giúp tôi nắm được những ''lỗ hổng” kiến thức của các em. Rồi tìm hiểu nguyên nhân và lập kế hoạch khắc phục. d/ Phạm vi:.
<span class='text_page_counter'>(2)</span> Học sinh khối 7 trường THCS Nguyễn Huệ. e/ Thời gian: Tháng 9 năm 2010 – Tháng 11 năm 2010. B. NỘI DUNG I. CƠ SỞ CHỌN ĐỀ TÀI: 1. Cơ sở lý luận: Lớp 7 là cơ sở hạ tầng của bậc trung học cơ sở. Kiến thức toán học lớp 6 & 7 là những cơ sở bước đầu của bậc trung học cơ sở. Nắm vững kiến thức, kỹ năng toán học ở lớp 7 là điều kiện thuận lợi để học tốt ở các lớp trên. 2. Cơ sở thực tiễn: Bản thân tôi là giáo viên vào ngành được 10 năm. Trong những năm qua tôi được phân công giảng dạy môn toán ở nhiều khối lớp từ 6 đến 9. Tham gia dạy bồi dưỡng học sinh giỏi. Khi dạy học môn toán 7 , tôi nhận thấy học sinh còn nhiều vướng mắc khi giải bài toán tìm x có chứa dấu giá trị tuyệt đối . Đa số học sinh khi giải còn thiếu lô gíc ,thiếu chặt chẽ , thiếu trường hợp. Chất lượng môn toán của học sinh còn hạn chế, học sinh giỏi còn ít. Với học sinh lớp 7 ở trường THCS Nguyễn Huệ đa số các em là con nông dân nên điều kiện dành cho các em học tập là ít ,đặc biệt là vào mùa thu hoạch càfe .Nên gặp bài toán này các em làm được rất ít ,hoặc làm thì thường mắc những sai lầm sau: Ví dụ 1 : tìm x , biết x 3 2. Học sinh chưa nắm được đẳng thức luôn xảy ra vì (2> 0 ) mà vẫn xét hai trường hợp x-3 >0 và x -3 < 0 và giải hai trường hợp tương ứng .Cách làm này chưa gọn Ví dụ 2 : tìm x ,biết :. 2. x 3. -5 = 1. Nhiều học sinh chưa đưa về dạng cơ bản để giải mà nhanh chóng xét hai trường hợp giống như ví dụ 1 Ví dụ 3 : tìm x biết x 1. -x = 2 (1). Học sinh đã làm như sau: Nếu x-1 0 suy ra x-1 -x =2 Nếu x-1<0 suy ra 1-x-x=2.
<span class='text_page_counter'>(3)</span> Với cách giải này các em không xét tới điều kiện của x Có em đã thực hiện (1) suy ra. x 1. =x+ 2 x-1= x+2 hoặc x-1= -x-2. Trong trường hợp này các em mắc sai lầm ở trường hợp không xét điều kiện của x+2 Như vậy trong các cách làm trên các em làm chưa kết hợp chặt chẽ điều kiện hoặc làm bài còn chưa ngắn gọn *Kết quả điều tra khảo sát Khi chưa hướng dẫn, tôi ra đề cho học sinh lớp 7 trường THCS Nguyễn Huệ như sau : Tìm x , biết x 3. a, b,. 2. c, d,. =2. x 5. x 1 x 2. ( 3 điểm). -5 = 1. ( 3 điểm). - x= 2 +. x 1. ( 2 điểm) =3. ( 2 điểm). Tôi thấy học sinh còn lúng túng về cách giải ,chưa nắm vững phương pháp giải đối với từng dạng bài , chưa kết hợp được kết quả với điều kiện xảy ra , chưa lựa chọn được phương pháp giải nhanh gọn và hợp lí . Kết quả đạt được như sau : Giỏi. Khá. Trung bình. Yếu và kém. 3%. 9%. 43%. 45%. Kết quả thấp là do học sinh còn vướng mắc những điều tôi đã nói ở trênvà phần lớn các em chưa làm được câu c,d ..
<span class='text_page_counter'>(4)</span> II. GIẢI QUYẾT VẤN ĐỀ: II.1/ . Các giải pháp thực hiện * Cung cấp kiến thức có liên quan đến bài toán Điều khó khăn khi dạy học sinh lớp 7 là các em chưa được học giải phương trình , bất phương trình, các phép biến đổi tương đương , hằng đẳng thức ….Nên giải bài toán tìm x trong đẳng thức chứa dấu giá trị tuyệt đối có những phương pháp xây dựng thì chưa thể hướng dẫn được học sinh vì thế các em cần nắm vững các kiến Phương pháp giải thứcb.sau : lầncầu lượthọc xétsinh A(x)nắm = Bvững hoặc cách A(x) giải = -Bbài toán tìm x cơ bản dạng A(x) = B(x) 1,Ta Yêu c.Vínày dụ cần nắm vững quy tắc bỏ dấu ngoặc ,chuyển vế dạng dụ lí1 và :( Bài (a) về sách khoađối trang 2,Ví Định tính25 chất giágiáo trị tuyệt . 16 tập 1) Tìm x , biết A. x 1,7. 2,3 0 = A khi= A GV: Đặt câu hỏi bao quát chung cho bài toán : -A khi A<0 Đẳng thức A có xảy A ra không A ? vì sao? = , 0 x 1,7 ( Đẳng có xảy vì nhất. 0 và 2,3 0 ) Cần áp dụng kiến thức nào để 3, Định lí về thức dấu nhị thứcrabậc giải , đểCác bỏ được dấu giá tuyệt đối hiện ( áp dụng tính chất giá trị tuyệt đối của hai số đối II.2/. biện pháp tổtrị chức thực nhau nhautìm ) x mà biểu thức có chứa dấu giá trị tuyệt đối .Tôi đã sử dụng các Để thì giảibằng bài toán giảinhư quy tắc ,tính chất ,định nghĩa về giá trị tuyệt đối hướng dẫn học kiến thứcBài cơ bản x phân 1,7 chia từng sinh dạng 2,3 bài , ;phát từ =dạng = 2,3 x-1,7= hoặctriển x-1,7 -2,3cơ bản sang dạng khác . Từ phương. pháp giải dạng cơ bản vào2,3 định nghĩa x= tính + Xét x-1,7= 2,3, dựa + 1,7 x= 4chất về giá trị tuyệt đối tìm tòi các phương giải các dạng đối +1,7 với mỗi dạng bài ,loại bài . Biện pháp cụ thể khác x=-0,6 + Xétphápx-1,7 = -2,3 x = -2,3 như Vậysau: x=4 hoặc x=-0,6 1/.Một dạng bảntriển đưa ra ví dụ khó dần Từ ví dụsố đơn giảncơ,phát A x trang 16 tập1) Ví1.1 dụDạng 2 : ( cơ bàibản 25b SGK = B với B 0. 3 1 pháp giải a, Cách tìmxphương 0 4 3 Tìm x biết Đẳng thức có xảy ra không ? Vì sao ? Nếu đẳng thức xảy ra cần áp dụng kiến. thức nào để bỏ dấu giá trị tuyệt đối ( áp dụng tính chất giá trị tuyệt đối của hai số đối Với tôinhau đặt câu nhaubài thìnày bằng ) hỏi ‘Làm sao để đưa về dạng cơ bản đã học ‘.
<span class='text_page_counter'>(5)</span> x. Từ đó học sinh biến đổi đưa về dạng. 3 1 4 3. Bài giải. x. 3 1 0 4 3. x. 3 1 4 3. . 3 1 x -4 =3. 3 1 hoặc x - 4 = - 3. 3 1 + Xét x - 4 = 3 . 13 x = 12. 3 1 + Xét x - 4 = - 3 . 5 = 12. 13 Vậy x = 12 hoặc x. Ví dụ 3. x. 5 = 12. Tìm x ,biết 3. 9 2x. -17 =16. Làm thế nào để đưa về dạng cơ bản đã học ? Từ đó học sinh đã biến đổi đưa về dạng cơ bản đã học Bài giải 3. 9 2x. -17 =16. 3 9 2x. = 33. . 9 2x. . 9-2x =11 hoặc 9-2x = -11. = 11. + Xét 9-2x =11 + Xét 9-2x = -11 . . -2x = 2 x= -1 -2x = - 20 x= 10. 9 2x. = 11.
<span class='text_page_counter'>(6)</span> Vậy x = -1 hoặc x = 10 1.2 Dạng cơ bản. A(x ). = B(x) ( trong đó biểu thức B (x) có chưá biến x. a, Cách tìm phương pháp giải Cũng đặt câu hỏi gợi mở như trên , học sinh thấy được đẳng thức không xảy ra khi B(x) <0. Vậy cần áp dụng kiến thức nào để có thể dựa vào dạng cơ bản đế suy luận tìm ra cách giải bài toán trên không ? Có thể tìm ra mấy cách ? b, Phương pháp giải Cách 1 : ( Dựa vào tính chất ) A(x). = B(x). Với điều kiện B(x) 0 ta có A(x) = B(x) hoặc A(x) = - B(x) sau đó giải hai trường hợp với điều kiện B(x) 0 Cách 2 : Dựa vào định nghĩa xét các quá trình của biến của biểu thức chứa dấu giá trị tuyệt đối . A(x). = B(x). +Xét A(x) 0 x? Ta có A(x) = B(x) ( giải tìm x để thoả mãn A(x) 0 ) + Xét A(x) < 0 x? Ta có A(x) = - B(x) ( giải tìm x để thoả mãn A(x) < 0) + Kết luận : x = ? Lưu ý : Qua hai dạng trên tôi cho học sinh phân biệt rõ sự giống nhau ( đều chứa một A(x ). dấu giá trị tuyệt đối ) và khác nhau (. =m 0 dạng đặc biệt của dạng hai). Nhấn mạnh cho học sinh thấy rõ được phương pháp giải loại đẳng thức chứa một dấu giá trị tuyệt đối , đó là đưa về dạng. A. =B (Nếu B 0 đó là dạng đặc biệt,còn B<0 thì. đẳng thức không xảy ra . Nếu B là biểu thức có chứa biến là dạng hai và giải bằng cách 1 ) hoặc ta đi xét các trường hợp xảy ra đối với biểu thức trong giá trị tuyệt đối. c, Ví dụ Ví dụ 1 Tìm x ,biết :. 8 2x. = x- 2. Cách 1 : Với x-2 0 x 2 ta có 8-2x = x-2 hoặc 8-2x = -( x-2 ).
<span class='text_page_counter'>(7)</span> + Nếu 8-2x = x-2. -3x. 10 = -10 x = 3 (Thoả mãn). + Nếu 8 - 2x = -( x-2) 8- 2x = -x +2 x= 6 (Thoả mãn) 10 Vậy x = 3 hoặc x = 6. Cách 2 :+ Xét 8-2x 0 x 4 ta có. 10 8-2x = x-2 x= 3 (Thoả mãn). + Xét 8-2x < 0 x > 4 ta có -(8-2x) = x-2 x= 6(Thoả mãn) 10 Vậy x = 3 hoặc x = 6. Ví dụ 2 Tìm x ,biết Cách 1 :. x 3. x 3. -x = 5. -x = 5. x 3. = x+5. Với x+5 0 x -5 ta có x-3 = x+5 hoặc x-3 =-( x+5) + Nếu x-3 = x+5. 0x = 8. ( loại ). + Nếu x-3 =-( x+5). x-3 = -x-5 2x= -2 x=-1 ( Thoả mãn). Vậy x = -1 Cách 2 :. x 3. -x = 5. + Xét x-3 0 x 3 ta có x-3 -x= 5 0x= 8 ( loại ) + Xét x-3<0 x< 3 ta có -(x-3) -x = 5 -x+3 -x=5 2x= -2 x=-1 ( Thoả mãn) Vậy x= -1 1.3 Dạng. A x . +. B x . =0. a, Cách tìm phương pháp giải Với dạng này tôi yêu cầu học sinh nhắc lại kiến thức về đặc điểm của giá trị tuyệt đối của một số ( giá trị tuyệt đối của một số là một số không âm ) . Vậy tổng của hai số không âm bằng không khi nào ? ( cả hai số đều bằng không ) . Vậy ở bài này tổng trên bằng không khi nào ? ( A(x) =0 và B(x)=0 ) Từ đó ta tìm x thoả mãn hai điều kiện : A(x) =0 và B(x)=0.
<span class='text_page_counter'>(8)</span> b, Phương pháp giải Tìm x thoả mãn hai điều kiện : A(x) =0 và B(x)=0 c, Ví dụ Tìm x , biết x2. 1, 2,. x 2 2x. +. x2 x. =0. x 1 x 2 =0. +. Bài giải x2. 1, . x2. + Xét + Xét. +. x 2 2x. =0 và. x2. x 2 2x. =0 . x 2 2x. =0 =0. x+2=0. x=-2 (1). . =0 x2 +2x=0 . x(x+2) =0 x=0 hoặc x+2 =0 x=-2 (2). Kết hợp (1)và (2) x=-2 x2 x. 2,. +. x 1 x 2 =0. 2 x x =0 và x 1 x 2 =0. + Xét + Xét. x2 x. =0 x2 + x=0 x(x+1) =0 x=0 hoặc x+1 =0 x=-1 (1). x 1 x 2 =0 ( x+1)(x-2) =0 x+1=0 hoặc x-2 =0 x=-1. hoặc x=2. (2). Kết hợp (1) và (2) ta được x= -1 Lưu ý : Ở dạng này tôi lưu ý cho học sinh phải ghi kết luận giá trị tìm được thì giá trị đó phải thoả mãn hai đẳng thức 2.. A x . =0 và. Dạng mở rộng A x . =. B x . hay. A x . -. B x . a, Cách tìm phương pháp giải. =0. B x . =0.
<span class='text_page_counter'>(9)</span> Trước hết tôi đặt vấn đề để học sinh thấy đây là dạng đặc biệt ( vì đẳng thức luôn xảy ra vì cả hai vế đều không âm) , từ đó các em tìm tòi hướng giải . Cần áp dụng kiến thức nào về giá trị tuyệt đối để bỏ được đấu giá trị tuyệt đối và cần tìm ra phương pháp giải ngắn gọn . Có hai cách giải : Xét các trường hợp xảy ra của A(x) và B(x) (dựa vào định nghĩa )và cách giải dựa vào tính chất 2 số đối nhau có giá trị tuyệt đối bằng nhau để suy ra ngay A(x) =B(x) ; A(x) =-B(x) ( vì ở đây cả hai vế đều không âm do. A x B x 0 và 0). Để học sinh lựa chọn cách giải nhanh ,gọn ,hợp lí. để các em có ý thức tìm tòi trong giải toán và ghi nhớ được b, Phương pháp giải Cách 1 : Xét các trường hợp xảy ra của A(x) và B(x) để phá giá tị tuyệt đối Cách 2 : dựa vào tính chất 2 số đối nhau có giá trị tuyệt đối bằng nhau ta tìm x thoả mãn một trong hai điều kiện A(x) =B(x) hoặc A(x) =-B(x) c, Ví dụ Ví dụ 1 : Tìm x ,biết. x4. =. 2x 1. x+4 = 2x-1 hoặc x+4 =-(2x-1). + Xét x+4 = 2x-1 x=5 + Xét x+4 =-(2x-1) x+4 = -2x +1 x=-1 Vậy x=5 hoặc x=-1 Ví dụ 2: Tìm x , biết. x 2. +. x4. =8. Bước 1 : Lập bảng xét dấu : Trước hết cần xác định nghiệm của nhị thức : x-2=0 x=2 và x+4 =0 x=-4 Trên bảng xét dấu xếp theo thứ tự giá trị của x phải từ nhỏ đến lớn . Ta có bảng sau:. x x-2. -4 -. 2 -. X+4. 0 +. -. 0. + +.
<span class='text_page_counter'>(10)</span> Bước 2: Dựa vào bảng xét dấu các trường hợp xảy ra theo các khoảng giá trị của biến .Khi xét các trường hợp xảy ra không được bỏ qua điều kiện để A=0 mà kết hợp với điều kiện để A >0 ( ví dụ -4 x<2) Cụ thể : Dựa vào bảng xét dấu ta có các trường hợp sau : + Nếu x<-4 ta có x-2<0 và x+4 <0 nên. x 2. = 2-x và. Đẳng thức trở thành. x4. = -x-4. 2-x -x-4 = 8 -2x = 10 x=-5 ( thoả mãn x< -4). + Nếu -4 x<2 ta có Đẳng thức trở thành. x 2. = 2-x và. x4. = x+4. 2-x +x+ 4 = 8 0x= 2 (vôlí ). + Nếu x 2 ta có. x 2. Đẳng thức trở thành. =x-2 và. x4. = x+4. x-2 + x+4 = 8 2x = 6 x = 3 (thoả mãn x 2 ). Vậy x=-5 ; x=3 Lưu ý: Qua hai cách giải trên tôi cho học sinh so sánh để thấy được lợi thế trong mỗi cách giải . Ở cách giải 2, thao tác giải sẽ nhanh hơn , dễ dàng xét dấu trong các khoảng giá trị hơn , nhất là các dạng chứa 3 ; 4 dấu giá trị tuyệt đối ( nên ý thức lựa chọn cách giải) Ví dụ 3 : Tìm x ,biết x 1 3 x 3 5 x 6 8. (1). Nếu giải bằng cách 1 sẽ phải xét nhiều trường hợp xảy ra ,dài và mất nhiều thời gian . Còn giải bằng cách hai (lập bảng xét dấu ). x x-1. 1. 3 +. -. 0. 6 +. +.
<span class='text_page_counter'>(11)</span> x-3. + -. -. x-6. 0. +. -. -. -. 0 +. + Nếu x<1 thì (1) 1-x +3x-9 +30 -5x =8 x=14/3 (loại) + Nếu 1 x<3 thì (1) x-1 +3x-9 +30 -5x =8 x=6 (loại) + Nếu 3 x<6 thì (1) x-1 -3x+9 +30 -5x =8 x=30/7 (thoả mãn ) + Nếu x 6 thì (1) x-1 -3x +9 +5x -30 =8 x=10 (thoả mãn ) Vậy x= 30/7 ; x=10 Tuy nhiên với cách hai sẽ dể mắc sai sót về dấu trong khi lập bảng ,nên khi xét dấu các biểu thức trong dấu giá trị tuyệt đối cần phải hết sức lưu ý và tuân theo đúng quy tắc lập bảng . Một điều cần lưu ý cho học sinh đó là kết hợp trường hợp trong khi xét các trường hợp xảy ra để thoả mãn biểu thức 0 (tôi đưa ra ví dụ cụ thể để khắc phục cho học sinh ). Ví dụ 4 : Tìm x biết. x 4 x 9 5. Lập bảng xét dấu x. 4. x-4. 0. x-9. -. 9 +. +. -. + 0. + Xét các trường hợp xảy ra , trong đó với x 9 thì đẳng thức trở thành x-4 + x-9 =5 x = 9 thoả mãn x 9 , như vậy nếu không kết hợp với x = 9 để x-9 = 0 mà chỉ xét tớí x > 9 để x-9 > 0 thì sẽ bỏ qua mất giá trị x = 9 Từ những dạng cơ bản đó đưa ra các dạng bài tập mở rộng khác về loại toán này: dạng lồng dấu ,dạng chứa từ ba dấu giá trị tuyệt đối trở lên. + Xét 4 x <9 ta có x-4 +9-x = 5 0x = 0 thoả mãn với mọi x sao cho 4 x<9 + Xét x < 4 ta có 4-x+9-x = 5. x = 4 (loại).
<span class='text_page_counter'>(12)</span> Vậy 4 x 9 3.phương pháp giải và cách tìm phương pháp giải Sau khi giới thiệu cho học sinh hết các dạng bài tôi chốt lại cho học sinh : *Phương pháp giải : tìm x trong đẳng thức chứa dấu giá trị tuyệt đối A. Phương pháp 1 : Nếu. =B ( B 0) thì suy ra A=B hoặc A=-B không cần. xét tới điều kiện của biến x Phương pháp 2 :Sử dụng tính chất A x . Và. =. B x . ,. A x . A A. và. A. 0 để giải dạng. A A. =B(x). Phương pháp 3 : Xét khoảng giá trị của biến ( dựa vào định nghĩa ) để bỏ dấu giá trị tuyệt đối , thường để giải với dạng. A x . =B(x) hay. A x . =. B x . +C. *Cách tìm tòi phương pháp giải : Cốt lõi của việc giải bài toán tìm x trong đẳng thức có chứa dấu giá trị tuyệt đối đó là cách bỏ dấu giá trị tuyệt đối . + Trước hết xem bài có rơi vào dạng đặc biệt không ? ( có đưa về dạng đặc biệt được không). Nếu là dạng đặc biệt. A. =B ( B 0) hay. A. =. B. thì áp dụng tính chất giá trị tuyệt. đối (giải bằng phương pháp 1 đã nêu ) không cần xét tới điều kiện của biến . + Khi đã xác định được dạng cụ thể ta nên suy nghĩ cách nào làm nhanh hơn, gọn hơn thì lựa chọn C KẾT LUẬN Khi áp dụng đề tài nghiên cứa này vào giảng dạy cho học sinh lớp tôi dạy .Tôi thấy học sinh làm dạng toán này nhanh gọn hơn.Học sinh không còn lúng trong khi gặp dạng toán này .Cụ thể khi làm phiếu kiểm tra với đề bài như sau: Tìm x, biết : a,. 3x 2. = 5(3đ). b, 2. 5x 4. +8 = 26 (3đ). c, 8 -. 4x 1. = x+3 (4đ). Kết quả nhận được như sau : -. học sinh không còn lúng túng về phương pháp giải cho từng loại bài. -. Biết lựa chọn cách giải nhanh , gọn ,hợp lí.
<span class='text_page_counter'>(13)</span> Hầu hết đã trình bày lời giải chặt chẽ. -. Kết quả cụ thể như sau: Giỏi. Khá. Trung bình. Yếu và kém. 55% 15% 25% 5% 2.Kiến nghị:Trên đây là một số kinh nghiệm của tôi trong việc dạy học sinh giải 1.Bài học kinh nghiệm :Khi nghiên cứu đề tài này tôi rút ra một số bài học cho bản một dạng toán. Tôi nghĩ, kinh nghiệm thì không thể không tránh khỏi thiếu sót và thân trong việc bồi dưỡng hai đầu cho học sinh yếu và học sinh khá - giỏi như sau: cần được chia sẻ. Nên tôi mong có sự ủng hộ, đóng góp ý kiến của các trưởng đầu - Hệ thống kiến thức bổ trợ cho dạng toán sắp dạy . ngành, của đồng nghiệp, để tôi có được nhiều kinh nghiệm hơn trong việc giảng - Hệ thống các phương pháp cơ bản để giải loại toán đó. dạy các em học sinh giải toán. - Khái quát hoá , tổng hợp hoá từng dạng , từng loại bài tập. -. Tìm tòi ,khai thác sâu kiến thức , sưu tầm và tích luỹ bài thành toán,sắpxếp Tôi nhiều xin chân cảm ơn! theo từng loại ,dạng bài để khi dạy giúp các em nắm vững dạng toán.. Tài liệu tham khảo 1, Sách giáo khoa toán 7 – NXB giáo dục -2007 2, Nâng cao và phát trỉên toán 7 - NXB giáo dục 2003 của Vũ Hữu Bình 3, Toán bồi dưỡng học sinh lớp 7- NXB giáo dục 2006 của Vũ Hữu Bình 4 , Bài tập nâng cao và một số chuyên đề toán 7- NXB giáo dục 2005 của Bùi văn Tuyên.
<span class='text_page_counter'>(14)</span>